Search results for: urdu sentiment analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27894

Search results for: urdu sentiment analysis

27654 An Investigation of Suppression in Mid-19th Century Japan: Case Study of the 1855 Catfish Prints as a Product of Censorship

Authors: Vasanth Narayanan

Abstract:

The mid-nineteenth century saw the Japanese elite and townsfolk alike undergo the now-infamous Ansei Edo earthquakes. The quakes decimated Japan in the final decades of the Tokugawa Era and, perhaps more consequentially, birthed a new genre of politically inspired artwork, the most notable of which are the namazu-e. This essay advocates an understanding of the 1855 Catfish Prints (namazu-e) that prioritizes the function of iconography and anthropomorphic deity in shaping the namazu-e into a wholly political experience that makes the censorship of the time part of its argument. The visual program is defined as the creation of a politically profitable experience, crafted through the union of explicit religion, highly masked commentary, and the impositions of censorship. The strategies by which the works are designed, in the face of censorship, to engage a less educated, pedestrian audience with its theme, including considerations of iconography, depictions of the working class, anthropomorphism, and the relationship between textual and visual elements, are discussed herein. The essay then takes up the question of the role of tense Japan–United States relations in fostering censorship and as a driver of the production of namazu-e. It is ultimately understood that the marriage of hefty censorship protocol, the explicitly religious medium, and inimical sentiment towards United States efforts at diplomacy renders the production of namazu-e an offspring of the censorship and deeply held frustrations of the time, cementing its status as a primitive form of peaceful protest against a seemingly apathetic government.

Keywords: Japan, Ansei Earthquake, Namazu, prints, censorship, religion

Procedia PDF Downloads 131
27653 The Role of Environmental Analysis in Managing Knowledge in Small and Medium Sized Enterprises

Authors: Liu Yao, B. T. Wan Maseri, Wan Mohd, B. T. Nurul Izzah, Mohd Shah, Wei Wei

Abstract:

Effectively managing knowledge has become a vital weapon for businesses to survive or to succeed in the increasingly competitive market. But do they perform environmental analysis when managing knowledge? If yes, how is the level and significance? This paper established a conceptual framework covering the basic knowledge management activities (KMA) to examine their contribution towards organizational performance (OP). Environmental analysis (EA) was then investigated from both internal and external aspects, to identify its effects on that contribution. Data was collected from 400 Chinese SMEs by questionnaires. Cronbach's α and factor analysis were conducted. Regression results show that the external analysis presents higher level than internal analysis. However, the internal analysis mediates the effects of external analysis on the KMA-OP relation and plays more significant role in the relation comparing with the external analysis. Thus, firms shall improve environmental analysis especially the internal analysis to enhance their KM practices.

Keywords: knowledge management, environmental analysis, performance, mediating, small sized enterprises, medium sized enterprises

Procedia PDF Downloads 614
27652 Psychological and Emotional Functioning of Elderly in Pakistan a Comparison in Punjab and Gilgit-Baltistan

Authors: Najma Najam, Rukhsana Kausar, Rabia Hussain Kanwal, Saira Batool, Anum Javed

Abstract:

In Pakistan, elderly population though increasing but it has been neglected by the researchers and policy makers which resulted in compromised quality of life of the ageing population. Two regions, Punjab and Gilgit-Baltistan (GB) were selected for comparison as Lahore and Multan (Punjab) are highly urbanized, large cities whereas Gilgit and Skardu are remote and mountain bounded valleys in GB. This study focuses on psychological and emotional functioning of elderly and a series of measures translated and adapted in Urdu language was used to assess quality of life, psychological and mental well-being, actual and perceived social support, attachment patterns, forgiveness, affects, geriatric depression, and emotional disturbance patterns (depression, anxiety, and stress) in elderly. A gender-equated sample of 201 elderly participants, 93 from GB (60 from Gilgit, 33 from Skardu) and 108 from Punjab (61 from Lahore, 47 from Multan) with over 60 years age was collected from the multiethnic community of Punjab and GB through purposive convenient sampling technique. Findings revealed that elderly from Multan have better psychological and emotional functioning, higher levels of social support, tendency to forgive, better mental wellbeing and quality of life and lower levels of stress, anxiety, depression, negative affect and attachment avoidance and anxiety related to partner as compared to the elderly from Lahore. Furthermore, both elderly male of Gilgit & Skardu have adequate mental well-being including subjective well-being and psychological functioning which showed positive aspects of mental health but elderly female are more attached to their home and neighbourhood which shows their social and environmental mastery. Gilgiti elderly male reported more degree of positive affect such as enthusiasm, active, alertness, excitement and strong whereas among elderly from Skardu shows more negative affect i.e. aversive mood states, irritability, hostility, and general distress. The need of psychosocial therapy and family counseling for the elderly in urban areas has been identified, which can facilitate in reducing or preventing the depressive and stressful tendencies. The findings are expected to have implications for improving quality of life of the elderly, designing interventions, support system and rehabilitation services to help them. However, findings may attract attention of policy makers and researchers as currently this is the most neglected population in Pakistan.

Keywords: psychological, emotional, aging, elderly, quality of life

Procedia PDF Downloads 534
27651 Improving Taint Analysis of Android Applications Using Finite State Machines

Authors: Assad Maalouf, Lunjin Lu, James Lynott

Abstract:

We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid.

Keywords: android, static analysis, string analysis, taint analysis

Procedia PDF Downloads 180
27650 The Documentary Analysis of Meta-Analysis Research in Violence of Media

Authors: Proud Arunrangsiwed

Abstract:

The part of “future direction” in the findings of meta-analysis could provide the great direction to conduct the future studies. This study, “The Documentary Analysis of Meta-Analysis Research in Violence of Media” would conclude “future directions” out of 10 meta-analysis papers. The purposes of this research are to find an appropriate research design or an appropriate methodology for the future research related to the topic, “violence of media”. Further research needs to explore by longitudinal and experimental design, and also needs to have a careful consideration about age effects, time spent effects, enjoyment effects, and ordinary lifestyle of each media consumer.

Keywords: aggressive, future direction, meta-analysis, media, violence

Procedia PDF Downloads 410
27649 Data Transformations in Data Envelopment Analysis

Authors: Mansour Mohammadpour

Abstract:

Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.

Keywords: data transformation, data envelopment analysis, undesirable data, negative data

Procedia PDF Downloads 20
27648 Considering Partially Developed Artifacts in Change Impact Analysis Implementation

Authors: Nazri Kama, Sufyan Basri, Roslina Ibrahim

Abstract:

It is important to manage the changes in the software to meet the evolving needs of the customer. Accepting too many changes causes delay in the completion and it incurs additional cost. One type of information that helps to make the decision is through change impact analysis. Current impact analysis approaches assume that all classes in the class artifact are completely developed and the class artifact is used as a source of analysis. However, these assumptions are impractical for impact analysis in the software development phase as some classes in the class artifact are still under development or partially developed that leads to inaccuracy. This paper presents a novel impact analysis approach to be used in the software development phase. The significant achievements of the approach are demonstrated through an extensive experimental validation using three case studies.

Keywords: software development, impact analysis, traceability, static analysis.

Procedia PDF Downloads 608
27647 On the Analysis of Pseudorandom Partial Quotient Sequences Generated from Continued Fractions

Authors: T. Padma, Jayashree S. Pillai

Abstract:

Random entities are an essential component in any cryptographic application. The suitability of a number theory based novel pseudorandom sequence called Pseudorandom Partial Quotient Sequence (PPQS) generated from the continued fraction expansion of irrational numbers, in cryptographic applications, is analyzed in this paper. An approach to build the algorithm around a hard mathematical problem has been considered. The PQ sequence is tested for randomness and its suitability as a cryptographic key by performing randomness analysis, key sensitivity and key space analysis, precision analysis and evaluating the correlation properties is established.

Keywords: pseudorandom sequences, key sensitivity, correlation, security analysis, randomness analysis, sensitivity analysis

Procedia PDF Downloads 590
27646 Impact on the Results of Sub-Group Analysis on Performance of Recommender Systems

Authors: Ho Yeon Park, Kyoung-Jae Kim

Abstract:

The purpose of this study is to investigate whether friendship in social media can be an important factor in recommender system through social scientific analysis of friendship in popular social media such as Facebook and Twitter. For this purpose, this study analyzes data on friendship in real social media using component analysis and clique analysis among sub-group analysis in social network analysis. In this study, we propose an algorithm to reflect the results of sub-group analysis on the recommender system. The key to this algorithm is to ensure that recommendations from users in friendships are more likely to be reflected in recommendations from users. As a result of this study, outcomes of various subgroup analyzes were derived, and it was confirmed that the results were different from the results of the existing recommender system. Therefore, it is considered that the results of the subgroup analysis affect the recommendation performance of the system. Future research will attempt to generalize the results of the research through further analysis of various social data.

Keywords: sub-group analysis, social media, social network analysis, recommender systems

Procedia PDF Downloads 363
27645 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score

Procedia PDF Downloads 198
27644 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks

Authors: Ashkan Ebadi, Adam Krzyzak

Abstract:

Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.

Keywords: tourism, hotel recommender system, hybrid, implicit features

Procedia PDF Downloads 272
27643 Patriotic Education through Private/Everyday Narratives: What We Can Learn from Young People

Authors: Yijie Wang, Hanwei Cheng

Abstract:

Under the Chinese educational context, the materials for patriotic education typically take the form of grand narratives. However, in post-modern times the younger members of society tend to welcome elements of more micro and personal nature. It is therefore important to explore how patriotism can be integrated into an ‘everyday’, private narrative that holds more attraction for the young. Based on semi-structured interviews of eight Chinese graduate students, this research examines how Chinese young people draw materials to establish national identity and develop love for the country from everyday-life details, as well as how they perceive, interpret and articulate their patriotism through private narratives. And implications for patriotic education are proposed accordingly. Several conclusions are drawn from the pre-interviews. Firstly, sensory experiences that remind people of their country—such as the taste of Chinese delicacies and the sound of a traditional instrument—are a major source of patriotic feelings. Secondly, the love for the country often stems from and is continued to be mediated by the emotional attachment with other people, typically significant others, and patriotism is articulated (or acknowledged) by the young as a kind of ‘sentiment’ rather than ‘faith’ or ‘belief’. Thirdly, for young people who are currently studying abroad, their birth country represents a kind of familiar, well-accustomed life or lifestyle, and any nostalgic realization of it leads to increased national belonging and sense of identity. Fourthly, the awareness of the country’s transformations—positive ones and neutral ones alike—triggers young people affections towards the country, and even negative transformations may result in promoted sense of self-involvement and therefore consolidate national identity. Implications for patriotic education can be drawn accordingly, and although the research is conducted under the Chinese context, it will hopefully contribute to the understanding of relevant fields.

Keywords: national identity, patriotic education, private narrative, young people

Procedia PDF Downloads 194
27642 Vibrations of Springboards: Mode Shape and Time Domain Analysis

Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich

Abstract:

Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain.

Keywords: springboard analysis, modal analysis, time domain analysis, vibrations

Procedia PDF Downloads 460
27641 Stable Isotope Analysis of Faunal Remains of Ancient Kythnos Island for Paleoenvironmental Reconstruction

Authors: M. Tassi, E. Dotsika, P. Karalis, A. Trantalidou, A. Mazarakis Ainian

Abstract:

The Kythnos Island in Greece is of particular archaeological interest, as it has been inhabited from the 12th BC until the 7th AD. From island excavations, numerous faunal and human skeletal remains have been recovered. This work is the first attempt at the paleoenvironmental reconstruction of the island via stable isotope analysis. Specifically, we perform 13C and 18O isotope analysis in faunal bone apatite in order to investigate the climate conditions that prevailed in the area. Additionally, we conduct 13C and 15N isotope analysis in faunal bone collagen, which will constitute the baseline for the subsequent diet reconstruction of the ancient Kythnos population.

Keywords: stable isotopes analysis, bone collagen stable isotope analysis, bone apatite stable isotope analysis, paleodiet, palaeoclimate

Procedia PDF Downloads 144
27640 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results

Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif

Abstract:

This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.

Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence

Procedia PDF Downloads 495
27639 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
27638 One Plus One is More than Two: Why Nurse Recruiters Need to Use Various Multivariate Techniques to Understand the Limitations of the Concept of Emotional Intelligence

Authors: Austyn Snowden

Abstract:

Aim: To examine the construct validity of the Trait Emotional Intelligence Questionnaire Short form. Background: Emotional intelligence involves the identification and regulation of our own emotions and the emotions of others. It is therefore a potentially useful construct in the investigation of recruitment and retention in nursing and many questionnaires have been constructed to measure it. Design: Secondary analysis of existing dataset of responses to TEIQue-SF using concurrent application of Rasch analysis and confirmatory factor analysis. Method: First year undergraduate nursing and computing students completed Trait Emotional Intelligence Questionnaire-Short Form. Responses were analysed by synthesising results of Rasch analysis and confirmatory factor analysis.

Keywords: emotional intelligence, rasch analysis, factor analysis, nurse recruiters

Procedia PDF Downloads 466
27637 Case Study about Women Driving in Saudi Arabia Announced in 2018: Netnographic and Data Mining Study

Authors: Majdah Alnefaie

Abstract:

The ‘netnographic study’ and data mining have been used to monitor the public interaction on Social Media Sites (SMSs) to understand what the motivational factors influence the Saudi intentions regarding allowing women driving in Saudi Arabia in 2018. The netnographic study monitored the publics’ textual and visual communications in Twitter, Snapchat, and YouTube. SMSs users’ communications method is also known as electronic word of mouth (eWOM). Netnography methodology is still in its initial stages as it depends on manual extraction, reading and classification of SMSs users text. On the other hand, data mining is come from the computer and physical sciences background, therefore it is much harder to extract meaning from unstructured qualitative data. In addition, the new development in data mining software does not support the Arabic text, especially local slang in Saudi Arabia. Therefore, collaborations between social and computer scientists such as ‘netnographic study’ and data mining will enhance the efficiency of this study methodology leading to comprehensive research outcome. The eWOM communications between individuals on SMSs can promote a sense that sharing their preferences and experiences regarding politics and social government regulations is a part of their daily life, highlighting the importance of using SMSs as assistance in promoting participation in political and social. Therefore, public interactions on SMSs are important tools to comprehend people’s intentions regarding the new government regulations in the country. This study aims to answer this question, "What factors influence the Saudi Arabians' intentions of Saudi female's car-driving in 2018". The study utilized qualitative method known as netnographic study. The study used R studio to collect and analyses 27000 Saudi users’ comments from 25th May until 25th June 2018. The study has developed data collection model that support importing and analysing the Arabic text in the local slang. The data collection model in this study has been clustered based on different type of social networks, gender and the study main factors. The social network analysis was employed to collect comments from SMSs owned by governments’ originations, celebrities, vloggers, social activist and news SMSs accounts. The comments were collected from both males and females SMSs users. The sentiment analysis shows that the total number of positive comments Saudi females car driving was higher than negative comments. The data have provided the most important factors influenced the Saudi Arabians’ intention of Saudi females car driving including, culture and environment, freedom of choice, equal opportunities, security and safety. The most interesting finding indicted that women driving would play a role in increasing the individual freedom of choice. Saudi female will be able to drive cars to fulfill her daily life and family needs without being stressed due to the lack of transportation. The study outcome will help Saudi government to improve woman quality of life by increasing the ability to find more jobs and studies, increasing income through decreasing the spending on transport means such as taxi and having more freedom of choice in woman daily life needs. The study enhances the importance of using use marketing research to measure the public opinions on the new government regulations in the country. The study has explained the limitations and suggestions for future research.

Keywords: netnographic study, data mining, social media, Saudi Arabia, female driving

Procedia PDF Downloads 153
27636 Spatial and Temporal Analysis of Violent Crime in Washington, DC

Authors: Pallavi Roe

Abstract:

Violent crime is a significant public safety concern in urban areas across the United States, and Washington, DC, is no exception. This research discusses the prevalence and types of crime, particularly violent crime, in Washington, DC, along with the factors contributing to the high rate of violent crime in the city, including poverty, inequality, access to guns, and racial disparities. The organizations working towards ensuring safety in neighborhoods are also listed. The proposal to perform spatial and temporal analysis on violent crime and the use of guns in crime analysis is presented to identify patterns and trends to inform evidence-based interventions to reduce violent crime and improve public safety in Washington, DC. The stakeholders for crime analysis are also discussed, including law enforcement agencies, prosecutors, judges, policymakers, and the public. The anticipated result of the spatial and temporal analysis is to provide stakeholders with valuable information to make informed decisions about preventing and responding to violent crimes.

Keywords: crime analysis, spatial analysis, temporal analysis, violent crime

Procedia PDF Downloads 320
27635 Analysis Customer Loyalty Characteristic and Segmentation Analysis in Mobile Phone Category in Indonesia

Authors: A. B. Robert, Adam Pramadia, Calvin Andika

Abstract:

The main purpose of this study is to explore consumer loyalty characteristic of mobile phone category in Indonesia. Second, this research attempts to identify consumer segment and to explore their profile in each segment as the basis of marketing strategy formulation. This study used some tools of multivariate analysis such as discriminant analysis and cluster analysis. Discriminate analysis used to discriminate consumer loyal and not loyal by using particular variables. Cluster analysis used to reveal various segment in mobile phone category. In addition to having better customer understanding in each segment, this study used descriptive analysis and cross tab analysis in each segment defined by cluster analysis. This study expected several findings. First, consumer can be divided into two large group of loyal versus not loyal by set of variables. Second, this study identifies customer segment in mobile phone category. Third, exploring customer profile in each segment that has been identified. This study answer a call for additional empirical research into different product categories. Therefore, a replication research is advisable. By knowing the customer loyalty characteristic, and deep analysis of their consumption behavior and profile for each segment, this study is very advisable for high impact marketing strategy development. This study contributes body of knowledge by adding empirical study of consumer loyalty, segmentation analysis in mobile phone category by multiple brand analysis.

Keywords: customer loyalty, segmentation, marketing strategy, discriminant analysis, cluster analysis, mobile phone

Procedia PDF Downloads 596
27634 3D Finite Element Analysis of Yoke Hybrid Electromagnet

Authors: Hasan Fatih Ertuğrul, Beytullah Okur, Huseyin Üvet, Kadir Erkan

Abstract:

The objective of this paper is to analyze a 4-pole hybrid magnetic levitation system by using 3D finite element and analytical methods. The magnetostatic analysis of the system is carried out by using ANSYS MAXWELL-3D package. An analytical model is derived by magnetic equivalent circuit (MEC) method. The purpose of magnetostatic analysis is to determine the characteristics of attractive force and rotational torques by the change of air gap clearances, inclination angles and current excitations. The comparison between 3D finite element analysis and analytical results are presented at the rest of the paper.

Keywords: yoke hybrid electromagnet, 3D finite element analysis, magnetic levitation system, magnetostatic analysis

Procedia PDF Downloads 727
27633 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach

Authors: Ju-Young Hwang, Hyo-Gyoung Kwak

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis

Procedia PDF Downloads 414
27632 Fuzzy Approach for Fault Tree Analysis of Water Tube Boiler

Authors: Syed Ahzam Tariq, Atharva Modi

Abstract:

This paper presents a probabilistic analysis of the safety of water tube boilers using fault tree analysis (FTA). A fault tree has been constructed by considering all possible areas where a malfunction could lead to a boiler accident. Boiler accidents are relatively rare, causing a scarcity of data. The fuzzy approach is employed to perform a quantitative analysis, wherein theories of fuzzy logic are employed in conjunction with expert elicitation to calculate failure probabilities. The Fuzzy Fault Tree Analysis (FFTA) provides a scientific and contingent method to forecast and prevent accidents.

Keywords: fault tree analysis water tube boiler, fuzzy probability score, failure probability

Procedia PDF Downloads 127
27631 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 70
27630 Politics of Violence and Terrorism in the Nigeria Democracy and Its Implications on National Peace and Security

Authors: Felix O. Akinboyewa

Abstract:

To say that Nigeria is faced with the problem of domestic terrorism is to say the obvious. The spate of political assassination during the fourth republic (1999-2010) is representative of what has become a growing trend. In this research, an attempt was made to examine the problems of political assassination within the context of significant categories of domestic-related terrorism in Nigeria Democracy. The central questions are: What exactly are the nature of political violence and terrorist act in the Nigeria nascent democracy? Was there any factor responsible for the politics of violence and terrorist act in the Nigeria democracy? What implications can the political violence and terrorist act have on democratic consolidation, national peace, and security? What solutions can be proffered to eradicate terrorist act and political violence in the Nigeria democracy? The study adopted a descriptive survey design which falls within the empirical research methodology. The sample size of the study consisted of 220 subjects randomly selected. The main instruments used were questionnaire and interview schedule. Data generated from the study were analyzed using descriptive statistics such as percentage and tables. The research findings showed that unemployed youths and the members of Nigeria Union of Road Transport Workers (NURTW) were the major actors in political violence in Nigeria. They have access to weapons and ammunitions which they use to terrorize the populace. The research showed that factors responsible for the political violence and terrorism in Nigeria are: poor electoral administration; election rigging; poor security system; religious and ethnic sentiment; problems of poverty and unemployment; over-exuberance and low level of education. The study also showed that electoral violence affects smooth running democracy in Nigeria. On the measures to be taken to eradicate political violence and terrorism in Nigeria, the research showed that provision of employment opportunities would go a long way to solving the problem. Civil society as an important institution can help to reduce incidence of political violence in Nigeria. Also, government has greater role to play. The study concludes that adherence to the proffered suggestions would reduce the level of political violence and terrorist act in Nigeria.

Keywords: consolidation, democracy, peace, security, terrorism, violence

Procedia PDF Downloads 124
27629 A Critical Genre Analysis of Negative Parts in CSR Reports

Authors: Shuai Liu

Abstract:

In corporate social responsibility (CSR) reporting, companies are expected to present both the positive and negative parts of the social and environmental impacts of their performance. This study investigates how the companies that listed in fortune 500 respond to this challenge by analyzing the representations of negative part especially the safety performance. It has found that in the level of genre analysis, it presented 3 major moves and 11 steps in terms of the interdiscursivity analysis. It was made up of three dominant discourse.. The study calls for greater focus on the internal and external analysis of the negative aspect of aspects of companies’ self-disclosure.

Keywords: CSR reports, negative parts, critical genre analysis, interdiscursivity

Procedia PDF Downloads 427
27628 BingleSeq: A User-Friendly R Package for Single-Cell RNA-Seq Data Analysis

Authors: Quan Gu, Daniel Dimitrov

Abstract:

BingleSeq was developed as a shiny-based, intuitive, and comprehensive application that enables the analysis of single-Cell RNA-Sequencing count data. This was achieved via incorporating three state-of-the-art software packages for each type of RNA sequencing analysis, alongside functional annotation analysis and a way to assess the overlap of differential expression method results. At its current state, the functionality implemented within BingleSeq is comparable to that of other applications, also developed with the purpose of lowering the entry requirements to RNA Sequencing analyses. BingleSeq is available on GitHub and will be submitted to R/Bioconductor.

Keywords: bioinformatics, functional annotation analysis, single-cell RNA-sequencing, transcriptomics

Procedia PDF Downloads 205
27627 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain

Authors: Juliza Hidayati, Sawarni Hasibuan

Abstract:

PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.

Keywords: palm oil, value chain, value added, supply chain

Procedia PDF Downloads 371
27626 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple Factorial Correspondence Analysis, Principal Component Analysis, Factor Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu Statistics

Procedia PDF Downloads 511
27625 Navigating States of Emergency: A Preliminary Comparison of Online Public Reaction to COVID-19 and Monkeypox on Twitter

Authors: Antonia Egli, Theo Lynn, Pierangelo Rosati, Gary Sinclair

Abstract:

The World Health Organization (WHO) defines vaccine hesitancy as the postponement or complete denial of vaccines and estimates a direct linkage to approximately 1.5 million avoidable deaths annually. This figure is not immune to public health developments, as has become evident since the global spread of COVID-19 from Wuhan, China in early 2020. Since then, the proliferation of influential, but oftentimes inaccurate, outdated, incomplete, or false vaccine-related information on social media has impacted hesitancy levels to a degree described by the WHO as an infodemic. The COVID-19 pandemic and related vaccine hesitancy levels have in 2022 resulted in the largest drop in childhood vaccinations of the 21st century, while the prevalence of online stigma towards vaccine hesitant consumers continues to grow. Simultaneously, a second disease has risen to global importance: Monkeypox is an infection originating from west and central Africa and, due to racially motivated online hate, was in August 2022 set to be renamed by the WHO. To better understand public reactions towards two viral infections that became global threats to public health no two years apart, this research examines user replies to threads published by the WHO on Twitter. Replies to two Tweets from the @WHO account declaring COVID-19 and Monkeypox as ‘public health emergencies of international concern’ on January 30, 2020, and July 23, 2022, are gathered using the Twitter application programming interface and user mention timeline endpoint. Research methodology is unique in its analysis of stigmatizing, racist, and hateful content shared on social media within the vaccine discourse over the course of two disease outbreaks. Three distinct analyses are conducted to provide insight into (i) the most prevalent topics and sub-topics among user reactions, (ii) changes in sentiment towards the spread of the two diseases, and (iii) the presence of stigma, racism, and online hate. Findings indicate an increase in hesitancy to accept further vaccines and social distancing measures, the presence of stigmatizing content aimed primarily at anti-vaccine cohorts and racially motivated abusive messages, and a prevalent fatigue towards disease-related news overall. This research provides value to non-profit organizations or government agencies associated with vaccines and vaccination programs in emphasizing the need for public health communication fitted to consumers' vaccine sentiments, levels of health information literacy, and degrees of trust towards public health institutions. Considering the importance of addressing fears among the vaccine hesitant, findings also illustrate the risk of alienation through stigmatization, lead future research in probing the relatively underexamined field of online, vaccine-related stigma, and discuss the potential effects of stigma towards vaccine hesitant Twitter users in their decisions to vaccinate.

Keywords: social marketing, social media, public health communication, vaccines

Procedia PDF Downloads 98