Search results for: triaxial soil testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5867

Search results for: triaxial soil testing

5627 Modeling of Digital and Settlement Consolidation of Soil under Oedomete

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, artificial defect, NDT, ultrasonic testing

Procedia PDF Downloads 327
5626 Predicting the Adsorptive Capacities of Biosolid as a Barrier in Soil to Remove Industrial Contaminants

Authors: H. Aguedal, H. Hentit, A. Aziz, D. R. Merouani, A. Iddou

Abstract:

The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants that can cause a serious pollution. To protect the groundwater, in this study, we proceeded to test the reliability of a bio solid as barrier to prevent the migration of a very dangerous pollutant ‘Cadmium’ through the different soil layers. The follow-up the influence of several parameters, such as: turbidity, pluviometry, initial concentration of cadmium and the nature of soil, allow us to find the most effective manner to integrate this barrier in the soil. From the results obtained, we noted the effective intervention of the barrier. Indeed, the recorded passing quantities are lowest for the highest rainfall; we noted that the barrier has a better affinity towards higher concentrations; the most retained amounts of cadmium has been in the top layer of the two types of soil, while the lowest amounts of cadmium are recorded in the inner layers of soils.

Keywords: adsorption of cadmium, barrier, groundwater pollution, protection

Procedia PDF Downloads 359
5625 The Potential Effect of Biochar Application on Microbial Activities and Availability of Mineral Nitrogen in Arable Soil Stressed by Drought

Authors: Helena Dvořáčková, Jakub Elbl, Irina Mikajlo, Antonín Kintl, Jaroslav Hynšt, Olga Urbánková, Jaroslav Záhora

Abstract:

Application of biochar to arable soils represents a new approach to restore soil health and quality. Many studies reported the positive effect of biochar application on soil fertility and development of soil microbial community. Moreover biochar may affect the soil water retention, but this effect has not been sufficiently described yet. Therefore this study deals with the influence of biochar application on: microbial activities in soil, availability of mineral nitrogen in soil for microorganisms, mineral nitrogen retention and plant production. To demonstrate the effect of biochar addition on the above parameters, the pot experiment was realized. As a model crop, Lactuca sativa L. was used and cultivated from December 10th 2014 till March 22th 2015 in climate chamber in thoroughly homogenized arable soil with and without addition of biochar. Five variants of experiment (V1–V5) with different regime of irrigation were prepared. Variants V1–V2 were fertilized by mineral nitrogen, V3–V4 by biochar and V5 was a control. The significant differences were found only in plant production and mineral nitrogen retention. The highest content of mineral nitrogen in soil was detected in V1 and V2, about 250 % in comparison with the other variants. The positive effect of biochar application on soil fertility, mineral nitrogen availability was not found. On the other hand results of plant production indicate the possible positive effect of biochar application on soil water retention.

Keywords: arable soil, biochar, drought, mineral nitrogen

Procedia PDF Downloads 419
5624 Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

Authors: Abdulfatah Faraj Aboufayed

Abstract:

Water erosion is the most important problems of the soil in the Jebel Nefusa area located in north west of Libya, therefore erosion station had been established in the Faculty of Veterinary and rainfed agriculture research Station, University of the Jepel Algherbee in Zentan. The length of the station is 72.6 feet, 6 feet width, and the percentage of it's slope is 3%. The station was established to measure the mount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The Monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 litter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil). It shows also strong correlation between amount of surface runoff water and amount of eroded soil.

Keywords: rain, surface runoff water, soil, water erosion, soil erosion

Procedia PDF Downloads 392
5623 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column

Procedia PDF Downloads 148
5622 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

Authors: Bushra Suhail, Laith Kadim

Abstract:

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 40%, and an uplift pressure decrease of 10% to 30%.

Keywords: expansive soil, piles, under reamed, structural and geotechnical engineering

Procedia PDF Downloads 317
5621 Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria

Authors: Augustine Osayande

Abstract:

This research is on Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria. The primary objective was to identify notable gullies sites and quantify the volume of soil loss in the study area. Direct field observation and measurement of gullies dimensions was done with the help of research assistants using a measuring tape, Camera and 3percent accuracy Global Positioning System (GPS). The result revealed that notable gullies in the area have resulted in the loss of lives and properties, destruction of arable lands and wastage of large areas of usable lands. Gullies in Edo North have Mean Volume of Soil Loss of 614, 763.33 m³, followed by Edo South with 79,604.76 m³ and Edo Central is 46,242.98 m³ and as such an average of 1,772, 888.7m3 of soil is lost annually in the study area due to gully erosion problem. The danger of gully erosion in helpless regions like Edo State called for urgent remedies in order to arrest the further loss of soil, buildings and other properties.

Keywords: Edo, magnitude, gully, volume, soil, sloss

Procedia PDF Downloads 135
5620 Influence of Compactive Efforts on the Hydraulic Conductivity of Bagasse Ash Treated Black Cotton Soil

Authors: T. S. Ijimdiya, K. J. Osinubi

Abstract:

This study examines the influence of compactive efforts on hydraulic conductivity behaviour of compacted black cotton soil treated with bagasse ash which is necessary in assessing the performance of the soil - bagasse ash mixture for use as a suitable barrier material in waste containment application. Black cotton soil treated with up to 12% bagasse ash (obtained from burning the fibrous residue from the extraction of sugar juice from sugarcane) by dry weight of soil for use in waste containment application. The natural soil classifies as A-7-6 or CH in accordance with the AASHTO and the Unified Soil Classification System, respectively. The treated soil samples were prepared at molding water contents of -2, 0, +2, and +4 % of optimum moisture contents and compacted using four compactive efforts of Reduced British Standard Light (RBSL), British Standard light (BSL), West African Standard (WAS) and British Standard Heavy (BSH). The results obtained show that hydraulic conductivity decreased with increase in bagasse ash content, moulding water content and compaction energy.

Keywords: bagasse ash treatment, black cotton soil, hydraulic conductivity, moulding water contents, compactive efforts

Procedia PDF Downloads 431
5619 Soil-Geopolymer Mixtures for Pavement Base and Subbase Layers

Authors: Mohammad Khattak, Bikash Adhikari, Sambodh Adhikari

Abstract:

This research deals with the physical, microstructural, mechanical, and shrinkage characteristics of flyash-based soil-geopolymer mixtures. Medium and high plastic soils were obtained from local construction projects. Class F flyash was used with a mixture of sodium silicate and sodium hydroxide solution to develop soil-geopolymer mixtures. Several mixtures were compacted, cured at different curing conditions, and tested for unconfined compressive strength (UCS), linear shrinkage, and observed under scanning electron microscopy (SEM). The results of the study demonstrated that the soil-geopolymer mixtures fulfilled the UCS criteria of cement treated design (CTD) and cement stabilized design (CSD) as recommended by the department of transportation for pavement base and subbase layers. It was found that soil-geopolymer demonstrated either similar or better UCS and shrinkage characteristics relative to conventional soil-cement mixtures. The SEM analysis revealed that microstructure of soil-geopolymer mixtures exhibited development and steady growth of geopolymerization during the curing period. Based on mechanical, shrinkage, and microstructural characteristics it was suggested that the soil-geopolymer mixtures, has an immense potential to be used as pavement subgrade, subbase, and base layers.

Keywords: soil-geopolymer, pavement base, soil stabilization, unconfined compressive strength, shrinkage, microstructure, and morphology

Procedia PDF Downloads 187
5618 Features of Soil Formation in the North of Western Siberia in Cryogenic Conditions

Authors: Tatiana V. Raudina, Sergey P. Kulizhskiy

Abstract:

A large part of Russia is located in permafrost areas. These areas are widely used because there are concentrated valuable natural resources. Therefore to explore of cryosols it is important due to the significant increase of anthropogenic stress as well as the problem of global climate change. In the north of Western Siberia permafrost phenomena is widespread. Permafrost as a factor of soil formation and cryogenesis as a process have a great impact on the soil formation of these areas. Based on the research results of permafrost-affected soils tundra landscapes formed in the central part of the Tazovskiy Peninsula in cryogenic conditions, data were obtained which characterize the morphological features of soils. The specificity of soil cover distribution and manifestation of soil-forming processes within the study area are noted. Permafrost features such as frost cracking, cryoturbation, thixotropy, movement of humus are formed. The formation of these features is increased with the development of the territory. As a consequence, there is a change in the components of the environment and the destruction of the soil cover.

Keywords: gleyed and nongleyed soils, permafrost, soil cryogenesis (pedocryogenesis), soil-forming macroprocesses

Procedia PDF Downloads 345
5617 Soil Micromorphological Analysis from the Hinterland of the Pharaonic Town, Sai Island, Sudan

Authors: Sayantani Neogi, Sean Taylor, Julia Budka

Abstract:

This paper presents the results of the investigations of soil/sediment sequences associated with the New Kingdom town at Sai Island, Sudan. During the course of this study, geoarchaeological surveys have been undertaken in the vicinity of this Pharaonic town within the island and the soil block samples for soil micromorphological analysis were accordingly collected. The intention was to better understand the archaeological site in its environmental context and the nature of the land surface prior to the establishment of the settlement. Soil micromorphology, a very powerful geoarchaeological methodology, is concerned with the description, measurement and interpretation of soil components and pedological features at a microscopic scale. Since soil profiles themselves are archives of their own history, soil micromorphology investigates the environmental and cultural signatures preserved within buried soils and sediments. A study of the thin sections from these soils/sediments has been able to provide robust data for providing interesting insights into the various nuances of this site, for example, the nature of the topography and existent environmental condition during the time of Pharaonic site establishment. These geoarchaeological evaluations have indicated that there is a varied hidden landscape context for this pharaonic settlement, which indicates a symbiotic relationship with the Nilotic environmental system.

Keywords: geoarchaeology, New Kingdom, Nilotic environment, soil micromorphology

Procedia PDF Downloads 260
5616 Bioremediation of PAHs-Contaminated Soil Using Land Treatment Processes

Authors: Somaye Eskandary

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are present in crude oil and its derivatives contaminate soil and also increase carcinogen and mutagen contamination, which is a concern for researchers. Land farming is one of the methods that remove pollutants from the soil by native microorganisms. It seems that this technology is cost-effective, environmentally friendly and causes less debris problem to be disposed. This study aimed to refine the polycyclic aromatic hydrocarbons from oil-contaminated soil using the land farming method. In addition to examine the concentration of polycyclic aromatic hydrocarbons by GC-FID, some characteristics such as soil microbial respiration and dehydrogenase, peroxidase, urease, acid and alkaline phosphatase enzyme concentration were also measured. The results showed that after land farming process the concentrations of some polycyclic aromatic hydrocarbons dropped to 50 percent. The results showed that the enzyme concentration is reduced by reducing the concentration of hydrocarbons and microbial respiration. These results emphasize the process of land farming for removal of polycyclic aromatic hydrocarbons from soil by indigenous microorganisms.

Keywords: soil contamination, gas chromatography, native microorganisms, soil enzymes, microbial respiration, carcinogen

Procedia PDF Downloads 381
5615 The Effect of Filter Cake Powder on Soil Stability Enhancement in Active Sand Dunes, In the Long and Short Term

Authors: Irit Rutman Halili, Tehila Zvulun, Natali Elgabsi, Revaya Cohen, Shlomo Sarig

Abstract:

Active sand dunes (ASD) may cause significant damage to field crops and livelihood, and therefore, it is necessary to find a treatment that would enhance ADS soil stability. Biological soil crusts (biocrusts) contain microorganisms on the soil surface. Metabolic polysaccharides secreted by biocrust cyanobacteria glue the soil particles into aggregates, thereby stabilizing the soil surface. Filter cake powder (FCP) is a waste by-product in the final stages of the production of sugar from sugarcane, and its disposal causes significant environmental pollution. FCP contains high concentrations of polysaccharides and has recently been shown to be soil stability enhancing agent in ASD. It has been reported that adding FCP to the ASD soil surface by dispersal significantly increases the level of penetration resistance of soil biocrust (PRSB) nine weeks after a single treatment. However, it was not known whether a similar effect could be obtained by administering the FCP in liquid form by means of spraying. It has now been found that spraying a water solution of FCP onto the ASD soil surface significantly increased the level of penetration resistance of soil biocrust (PRSB) three weeks after a single treatment. These results suggest that FCP spraying can be used as a short-term soil stability-enhancing agent for ASD, while administration by dispersal might be more efficient over the long term. Finally, an additional benefit of using FCP as a soil stabilizer, either by dispersal or by spraying, is the reduction in environmental pollution that would otherwise result from the disposal of FCP solid waste.

Keywords: active sand dunes, filter cake powder, biological soil crusts, penetration resistance of soil biocrust

Procedia PDF Downloads 158
5614 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation

Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang

Abstract:

This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.

Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response

Procedia PDF Downloads 393
5613 Effect of Biochar, Farmyard Manure, and Lime on Soil Properties, and on Growth and Nutrient Uptake of Wheat on Acidic Soils in Southern Ethiopia

Authors: Mekdes Lulu

Abstract:

This study assessed the effect of the interactions of biochar (BC), farmyard manure (FYM) and lime on soil chemical properties and on different wheat attributes in Southern Ethiopia. The experimental design was a randomized complete block in three replications. The site significantly (p ≤ 0.05) influenced soil and wheat attributes. Biochar showed a large significant effect (p ≤ 0.05) on soil organic carbon, cation exchange capacity, and exchangeable potassium (K), while lime showed a substantially significant (p ≤ 0.05) effect on exchangeable Calcium (Ca) and acidity. Farmyard manure (10 tonnes ha−1 ) had a significant effect on soil total nitrogen (TN). Biochar and lime showed a large significant effect on soil pH and available phosphorus (P) depending on the site. All amendments showed a significant (p ≤ 0.001) effect on most wheat attributes, but the highest effect was from BC. Biochar produced highly significant (p ≤ 0.001) effects on plant height, total number of tillers and productive tillers, number of seeds per spike, aboveground biomass, grain yield, and P and K content in wheat grain and straw. We accredited the greater effect of BC on wheat attributes to its influence on soil chemical properties. We recommend long-term studies on the impact of BC alone or in combination with FYM on acid soil types.

Keywords: grain yield, soil amendments, soil nutrients, soil organic carbon, Triticum aestivum

Procedia PDF Downloads 22
5612 Modeling of Geotechnical Data Using GIS and Matlab for Eastern Ahmedabad City, Gujarat

Authors: Rahul Patel, S. P. Dave, M. V Shah

Abstract:

Ahmedabad is a rapidly growing city in western India that is experiencing significant urbanization and industrialization. With projections indicating that it will become a metropolitan city in the near future, various construction activities are taking place, making soil testing a crucial requirement before construction can commence. To achieve this, construction companies and contractors need to periodically conduct soil testing. This study focuses on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical Geo-database involves three essential steps. Firstly, borehole data is collected from reputable sources. Secondly, the accuracy and redundancy of the data are verified. Finally, the geotechnical information is standardized and organized for integration into the database. Once the Geo-database is complete, it is integrated with GIS. This integration allows users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. The GIS map generated by this study enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This approach highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers. The information generated by this study can be utilized by engineers to make informed decisions during construction activities. For instance, they can use the data to optimize foundation designs and improve site selection. In conclusion, the rapid growth experienced by Ahmedabad requires extensive construction activities, necessitating soil testing. This study focused on the process of creating a comprehensive geotechnical database integrated with GIS. The database was developed by collecting borehole data from reputable sources, verifying its accuracy and redundancy, and organizing the information for integration. The GIS map generated by this study is an efficient solution that offers greater accuracy and generates valuable information that can be used as input for correlation analysis. It also serves as a decision support tool for geotechnical engineers, allowing them to make informed decisions during construction activities.

Keywords: arcGIS, borehole data, geographic information system (GIS), geo-database, interpolation, SPT N-value, soil classification, φ-value, bearing capacity

Procedia PDF Downloads 66
5611 Discrete Element Method Simulation of Crushable Pumice Sand

Authors: Sayed Hessam Bahmani, Rolsndo P. Orense

Abstract:

From an engineering point of view, pumice particles are problematic because of their crushability and compressibility due to their vesicular nature. Currently, information on the geotechnical characteristics of pumice sands is limited. While extensive empirical and laboratory tests can be implemented to characterize their behavior, these are generally time-consuming and expensive. These drawbacks have motivated attempts to study the effects of particle breakage of pumice sand through the Discrete Element Method (DEM). This method provides insights into the behavior of crushable granular material at both the micro and macro-level. In this paper, the results of single-particle crushing tests conducted in the laboratory are simulated using DEM through the open-source code YADE. This is done to better understand the parameters necessary to represent the pumice microstructure that governs its crushing features, and to examine how the resulting microstructure evolution affects a particle’s properties. The DEM particle model is then used to simulate the behavior of pumice sand during consolidated drained triaxial tests. The results indicate the importance of incorporating particle porosity and unique surface textures in the material characterization and show that interlocking between the crushed particles significantly influences the drained behavior of the pumice specimen.

Keywords: pumice sand, triaxial compression, simulation, particle breakage

Procedia PDF Downloads 241
5610 Neutral Sugar Contents of Laurel-leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined using the Waksman’s approximation analysis to clarify relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2) trees for analysis. The water and HCl soluble neutral sugars increased microbial biomass of the laurel-leaved forest soil. Arabinose, xylose, and galactose of the HCl soluble fraction were used immediately in comparison with other neutral sugars. Rhamnose, glucose, and fructose of the HCl soluble fraction were re-composed by the microbes.

Keywords: forest soil, neutral sugaras, soil organic matter, Waksman’s approximation analysis

Procedia PDF Downloads 305
5609 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution

Procedia PDF Downloads 419
5608 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster

Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon

Abstract:

Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.

Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil

Procedia PDF Downloads 289
5607 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam

Authors: T. M. Agbede, A. O. Adekiya

Abstract:

Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.

Keywords: cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam

Procedia PDF Downloads 317
5606 Uncovering Hidden Bugs: An Exploratory Approach

Authors: Sagar Jitendra Mahendrakar

Abstract:

Exploratory testing is a dynamic and adaptable method of software quality assurance that is frequently praised for its ability to find hidden flaws and improve the overall quality of the product. Instead of using preset test cases, exploratory testing allows testers to explore the software application dynamically. This is in contrast to scripted testing methodologies, which primarily rely on tester intuition, creativity, and adaptability. There are several tools and techniques that can aid testers in the exploratory testing process which we will be discussing in this talk.Tests of this kind are able to find bugs of this kind that are harder to find during structured testing or that other testing methods may have overlooked.The purpose of this abstract is to examine the nature and importance of exploratory testing in modern software development methods. It explores the fundamental ideas of exploratory testing, highlighting the value of domain knowledge and tester experience in spotting possible problems that may escape the notice of traditional testing methodologies. Throughout the software development lifecycle, exploratory testing promotes quick feedback loops and continuous improvement by giving testers the ability to make decisions in real time based on their observations. This abstract also clarifies the unique features of exploratory testing, like its non-linearity and capacity to replicate user behavior in real-world settings. Testers can find intricate bugs, usability problems, and edge cases in software through impromptu exploration that might go undetected. Exploratory testing's flexible and iterative structure fits in well with agile and DevOps processes, allowing for a quicker time to market without sacrificing the quality of the final product.

Keywords: exploratory, testing, automation, quality

Procedia PDF Downloads 46
5605 The Effect of Program Type on Mutation Testing: Comparative Study

Authors: B. Falah, N. E. Abakouy

Abstract:

Due to its high computational cost, mutation testing has been neglected by researchers. Recently, many cost and mutants’ reduction techniques have been developed, improved, and experimented, but few of them has relied the possibility of reducing the cost of mutation testing on the program type of the application under test. This paper is a comparative study between four operators’ selection techniques (mutants sampling, class level operators, method level operators, and all operators’ selection) based on the program code type of each application under test. It aims at finding an alternative approach to reveal the effect of code type on mutation testing score. The result of our experiment shows that the program code type can affect the mutation score and that the programs using polymorphism are best suited to be tested with mutation testing.

Keywords: equivalent mutant, killed mutant, mutation score, mutation testing, program code type, software testing

Procedia PDF Downloads 550
5604 The Utilisation of Two Types of Fly Ashes Used as Cement Replacement in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffill

Abstract:

This study represents the results of an experimental work using two types of fly ashes as a cement replacement in soft soil stabilisation. The fly ashes (FA1 and FA2) used in this study are by-products resulting from an incineration processes between 800 and 1200 ˚C. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were initially conducted on soil treated with different percentages of FA1 (0, 3, 6, 9, 12, and 15%) to identify the optimum FA1 content. Then FA1 was chemically activated by FA2 which has high alkalinity by blending the optimum content of FA1 with different portions of FA2. The improvement levels were evaluated dependent on the results obtained from consistency limits and compaction tests along with the results of unconfined compressive strength (UCS) tests which were conducted on specimens of soil treated with FA1 and FA2 and exposed to different periods of curing (zero, 7, 14, and 28 days). The results indicated that the FA1 and FA2 used in this study effectively improved the physical and geotechnical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.17 with 12% of FA1; however, there was a slight increase in IP with the use of FA2. Meanwhile, 12% of FA1 was identified as the optimum percentage improving the UCS of stabilised soil significantly. Furthermore, FA2 was found effective as a chemical activator to FA1 where the UCS was improved significantly after using FA2.

Keywords: fly ashes, soft soil stabilisation, waste materials, unconfined compressive strength

Procedia PDF Downloads 231
5603 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 195
5602 A More Powerful Test Procedure for Multiple Hypothesis Testing

Authors: Shunpu Zhang

Abstract:

We propose a new multiple test called the minPOP test for testing multiple hypotheses simultaneously. Under the assumption that the test statistics are independent, we show that the minPOP test has higher global power than the existing multiple testing methods. We further propose a stepwise multiple-testing procedure based on the minPOP test and two of its modified versions (the Double Truncated and Left Truncated minPOP tests). We show that these multiple tests have strong control of the family-wise error rate (FWER). A method for finding the p-values of the proposed tests after adjusting for multiplicity is also developed. Simulation results show that the Double Truncated and Left Truncated minPOP tests, in general, have a higher number of rejections than the existing multiple testing procedures.

Keywords: multiple test, single-step procedure, stepwise procedure, p-value for multiple testing

Procedia PDF Downloads 74
5601 Enhanced Degradation of Endosulfan in Soil Using Lycopersicon esculentum L. (Tomato) and Endosulfan Tolerant Bacterium Strains

Authors: Rupa Rani, Vipin Kumar

Abstract:

Endosulfan, an organochlorine pesticide is of environmental concern due to its apparent persistence and toxicity. It has been reported as contaminants in soil, air, and water and is bioaccumulated and magnified in ecosystems. The combined use of microorganisms and plants has great potential for remediating soil contaminated with organic compounds such as pesticides. The objective of this study was to evaluate whether the bacterial inoculation influences plant growth promotion, endosulfan degradation in soil and endosulfan accumulation in different plant parts. Lycopersicon esculentum L. (Tomato) was grown in endosulfan spiked soil and inoculated with endosulfan tolerant bacterial strains. Endosulfan residues from different parts of plants and soil were extracted and estimated by using gas chromatograph equipped with 63Ni electron capture detector (GC-ECD). The inoculation of bacterial strains into the soil with plants showed a beneficial effect on endosulfan degradation and plant biomass production. Maximum endosulfan (90%) degradation was observed after 120 days of bacterial inoculation in the soil. Furthermore, there was significantly less endosulfan accumulation in roots and shoots of bacterial strains inoculated plants as compared to uninoculated plants. The results show the effectiveness of inoculated endosulfan tolerant bacterial strains to increase the remediation of endosulfan contaminated soil.

Keywords: organochlorine pesticides, endosulfan, degradation, plant-bacteria partnerships

Procedia PDF Downloads 147
5600 Physico-Chemical Analysis of the Reclaimed Land Area of Kasur

Authors: Shiza Zafar

Abstract:

The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities.

Keywords: soil toxicity, agriculture, reclaimed land, physico-chemical analysis

Procedia PDF Downloads 375
5599 Impact of Climatic Parameters on Soil's Nutritional and Enzymatic Properties

Authors: Kanchan Vishwakarma, Shivesh Sharma, Nitin Kumar

Abstract:

Soil is incoherent matter on Earth’s surface having organic and mineral content. The spatial variation of 4 soil enzyme activities and microbial biomass were assessed for two seasons’ viz. monsoon and winter along the latitudinal gradient in North-central India as the area of this study is fettered with respect to national status. The study was facilitated to encompass the effect of climate change, enzyme activity and biomass on nutrient cycling. Top soils were sampled from 4 sites in North-India. There were significant correlations found between organic C, N & P wrt to latitude gradient in two seasons. This distribution of enzyme activities and microbial biomass was consequence of alterations in temperature and moisture of soil because of which soil properties change along the latitude transect.

Keywords: latitude gradient, microbial biomass, moisture, soil, organic carbon, temperature

Procedia PDF Downloads 391
5598 Dynamic Soil Structure Interaction in Buildings

Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar

Abstract:

Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.

Keywords: soil-structure interaction, response spectrum, analysis, finite element method, multi-storey buildings

Procedia PDF Downloads 474