Search results for: surface treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13688

Search results for: surface treatment

13448 An Investigation of Passivation Technology in Stainless Steel Alloy

Authors: Feng-Tsai Weng, Rick Wang, Yan-Cong Liao

Abstract:

Passivation is a kind of surface treatment for material to reinforce the corrosion resistance specially the stainless alloy. Passive film, is to getting more potential compared to their status before passivation. An oxidation film can be formed on the surface of stainless steel, which has a strong corrosion resistance ability after passivation treatment. In this research, a new passivation technology is proposed for a special stainless alloy which contains a 12-14% Chromium. This method includes the A-A-A (alkaline-acid-alkaline) process basically, which was developed by Carpenter that can neutralize trapped acid. Besides, a corrosion resistant coating layer was obtained by immersing the parts in a water bath of mineral oil at high temperature. Salt spray test ASTM B368 was conducted to investigated performance of corrosion resistant of the passivated stainless steel alloy parts. Results show much better corrosion resistant that followed a coating process after A-A-A Passivation process, than only using A-A-A process. The passivation time is with more than 380 hours of salt spray test ASTM B368, which is equal to 3000 hours of Salt spray test ASTM B117. Proposed passivation method of stainless steel can be completed in about 3 hours.

Keywords: passivation, alkaline-acid-alkaline, stainless steel, salt spray test

Procedia PDF Downloads 353
13447 Effect of UV/Ozone Treatment on the Adhesion Strength of Polymeric Systems

Authors: Marouen Hamdi, Johannes A. Poulis

Abstract:

This study investigates the impact of UV/ozone treatment on the adhesion of ethylene propylene diene methylene (EPDM) rubber, polyvinyl chloride (PVC), and acrylonitrile butadiene styrene (ABS) materials. The experimental tests consist of contact angle measurements, standardized adhesion tests, and spectroscopic and microscopic observations. Also, commonly-used surface free energy models were applied to characterize the wettability of the materials. Preliminary results show that the treatment enhances the wettability of the examined polymers. Also, it considerably improved the adhesion strength of PVC and ABS and shifted their failure modes from adhesive to cohesive, without a significant effect on EPDM. Spectroscopic characterization showed significant oxidation-induced changes in the chemical structures of treated PVC and ABS surfaces. Also, new morphological changes (microcracks, micro-holes, and wrinkles) were observed on these two materials using the SEM. These chemical and morphological changes on treated PVC and ABS promote more reactivity and mechanical interlocking with the adhesive, which explains the improvement in their adhesion strength. After characterizing the adhesion strength of the systems, accelerated ageing tests in controlled environment chambers will be conducted to determine the effect of temperature, moisture, and UV radiation on the performance of the polymeric bonded joints.

Keywords: accelerated tests, adhesion strength, ageing of polymers, UV/ozone treatment

Procedia PDF Downloads 139
13446 Benzimidazole as Corrosion Inhibitor for Heat Treated 6061 Al-SiCp Composite in Acetic Acid

Authors: Melby Chacko, Jagannath Nayak

Abstract:

6061 Al-SiCp composite was solutionized at 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed onto the surface of composite by mixed adsorption where chemisorption is predominant.

Keywords: 6061 Al-SiCp composite, T6 treatment, corrosion inhibition, chemisorption

Procedia PDF Downloads 385
13445 The Study of Seed Coating Effects on Germination Speed of Astragalus Adscendens under Different Moisture Conditions and Planting Depth in the Boroujerd Region

Authors: Hamidreza Mehrabi, Mandana Rezayee

Abstract:

The coated seed process is from amplifier ways that stick various materials on the outer surface of the seeds that minimize the negative environmental effects and increase the ability of Plant establishment. This study was done to assess the effects of coated seed on the germination speed of Astragalus adscendens in different conditions of drought stress and planting depth as it was conducted with a completely randomized factorial design with four replications. treatments of covering material was used in Four non coating levels (NC), mineral-based coating (CC), organic - based coating (OC) hydro gel-based coating (HC) ; treatment of moisture percent used in three levels of dried soil content, treatments of planting depth in two surfaces of planting and three times of the seed diameter was 9%, 14% and 21 % respectively. During the test, it was evaluated the germination speed attribute. The main results showed that moisture treatments and planting depth at a surface of 1% (P <0/01) was significant and has no significant effect of treatment materials. Also, In examining of the interaction between type of covering material and soil moisture were not observed significant differences for germination speed between covering treatments and controls covering, but there was a significant difference between treatments in 9% and 21%. Although in examining the triple interaction, increasing moisture and planting depth enhanced the speed of germination process, but it was not significant statistically, while it has made important differences in terms of description; because it had not growth in the moisture level of 9% and shallow cultivation (high stress). However, treatment of covered materials growth has developed significantly, so it can be useful in enhancing plant performance.

Keywords: seed coating, soil moisture, sowing depth, germination percentage

Procedia PDF Downloads 258
13444 Field Trial of Resin-Based Composite Materials for the Treatment of Surface Collapses Associated with Former Shallow Coal Mining

Authors: Philip T. Broughton, Mark P. Bettney, Isla L. Smail

Abstract:

Effective treatment of ground instability is essential when managing the impacts associated with historic mining. A field trial was undertaken by the Coal Authority to investigate the geotechnical performance and potential use of composite materials comprising resin and fill or stone to safely treat surface collapses, such as crown-holes, associated with shallow mining. Test pits were loosely filled with various granular fill materials. The fill material was injected with commercially available silicate and polyurethane resin foam products. In situ and laboratory testing was undertaken to assess the geotechnical properties of the resultant composite materials. The test pits were subsequently excavated to assess resin permeation. Drilling and resin injection was easiest through clean limestone fill materials. Recycled building waste fill material proved difficult to inject with resin; this material is thus considered unsuitable for use in resin composites. Incomplete resin permeation in several of the test pits created irregular ‘blocks’ of composite. Injected resin foams significantly improve the stiffness and resistance (strength) of the un-compacted fill material. The stiffness of the treated fill material appears to be a function of the stone particle size, its associated compaction characteristics (under loose tipping) and the proportion of resin foam matrix. The type of fill material is more critical than the type of resin to the geotechnical properties of the composite materials. Resin composites can effectively support typical design imposed loads. Compared to other traditional treatment options, such as cement grouting, the use of resin composites is potentially less disruptive, particularly for sites with limited access, and thus likely to achieve significant reinstatement cost savings. The use of resin composites is considered a suitable option for the future treatment of shallow mining collapses.

Keywords: composite material, ground improvement, mining legacy, resin

Procedia PDF Downloads 347
13443 Terahertz Surface Plasmon in Carbon Nanotube Dielectric Interface via Amplitude Modulated Laser

Authors: Monika Singh

Abstract:

A carbon nanotube thin film coated on dielectric interface is employed to produce THz surface plasma wave (SPW). The carbon nanotube has its plasmon frequency in the THz range. The SPW field falls off away from the metal film both inside the dielectric as well as in free space. An amplitude modulated laser pulse normally incident, from free space on slow wave structure, exert a modulation frequency ponderomotive force on the free electrons of the CNT film and resonantly excite the THz surface plasma wave at the modulation frequency. Carbon nanotube based plasmonic nano-structure materials provides potentially more versatile approach to tightly confined surface modes in the THz range in comparison to noble metals.

Keywords: surface plasmons, surface waves, thin films, THz radiation

Procedia PDF Downloads 382
13442 Rapid Generation of Octagonal Pyramids on Silicon Wafer for Photovoltaics by Swift Anisotropic Chemical Etching Process

Authors: Sami Iqbal, Azam Hussain, Weiping Wu, Guo Xinli, Tong Zhang

Abstract:

A novel octagonal upright micro-pyramid structure was generated by wet chemical anisotropic etching on a monocrystalline silicon wafer (100). The primary objectives are to reduce front surface reflectance of silicon wafers, improve wettability, enhance surface morphology, and maximize the area coverage by generated octagonal pyramids. Under rigorous control and observation, the etching process' response time was maintained precisely. The experimental outcomes show a significant decrease in the optical surface reflectance of silicon wafers, with the lowest reflectance of 8.98%, as well as enhanced surface structure, periodicity, and surface area coverage of more than 85%. The octagonal silicon pyramid was formed with a high etch rate of 0.41 um/min and a much shorter reaction time with the addition of hydrofluoric acid coupled with magnetic stirring (mechanical agitation) at 300 rpm.

Keywords: octagonal pyramids, rapid etching, solar cells, surface engineering, surface reflectance

Procedia PDF Downloads 87
13441 Dipole and Quadrupole Scattering of Ultra Short Pulses on Metal Nanospheres

Authors: Sergey Svita, Valeriy Astapenko

Abstract:

The presentation is devoted to the theoretical analysis of ultrashort electromagnetic pulses (USP) scattering on metallic nanospheres in a dielectric medium in the vicinity of surface plasmon resonance due to excitation of dipole and quadrupole surface plasmons.

Keywords: surface plasmon, scattering, metallic nanosphere

Procedia PDF Downloads 368
13440 Evaluation of the Effectiveness of the Argon Plasma Jet on Healing Process of the Wagner Grade 2 Diabetic Foot Ulcer

Authors: M. Khaledi Pour, P. Akbartehrani, M. Amini, M. Khani, M. Mohajeri Tehrani, R. Radi, B. Shokri

Abstract:

Diabetic Foot Ulcer (DFU) is one of the costly severe complications of diabetes. Neuropathy and Peripheral Arterial Disease (PAD) due to diabetes are significant causes of this complication. In 10 years the patients with DFUs are twice as likely to die as patients without DFUs. Cold Atmospheric Plasma (CAP) is a promising tool for medical purposes. CAP generate reactive species at room temperature and are effective in killing bacteria and fibroblast proliferation. These CAP-based tools produce NO, which has bactericidal and angiogenesis properties. It also showed promising effects in the DFUs surface reduction and the time to wound closure. In this paper, we evaluated the effect of the Argon Plasma Jet (APJ) on the healing process of the Wagner Grade 2 DFUs in a randomized clinical trial. The 20 kHz sinusoidal voltage frequency derives the APJ. Patients (n=20) were randomly double-blinded assigned into two groups. These groups receive the standard care (SC, n=10) and the standard care with APJ treatment (SC+APJ, n=10) for five sessions in four weeks. The results showed that the APJ treatment along standard care could reduce the wound surface by 20 percent more than the standard care. Also, It showed a more influential role in controlling wound infection.

Keywords: argon plasma jet, cold atmospheric plasma, diabetes, diabetic foot ulcer

Procedia PDF Downloads 184
13439 A Literature Review of Emotional Labor and Non-Task Behavior

Authors: Yeong-Gyeong Choi, Kyoung-Seok Kim

Abstract:

This study, literature review research, intends to deal with the problem of conceptual ambiguity among research on emotional labor, and to look into the evolutionary trends and changing aspects of defining the concept of emotional labor. In addition, in existing studies, deep acting and surface acting are highly related to a positive outcome variable and a negative outcome variable, respectively. It was confirmed that for employees performing emotional labor, deep acting and surface acting are highly related to OCB and CWB, respectively. While positive emotion that employees come to experience during job performance process can easily trigger a positive non-task behavior such as OCB, negative emotion that employees experience through excessive workload or unfair treatment can easily induce a negative behavior like CWB. The two management behaviors of emotional labor, surface acting and deep acting, can have either a positive or negative effect on non-task behavior of employees, depending on which one they would choose. Thus, the purpose of this review paper is to clarify the relationship between emotional labor and non-task behavior more specifically.

Keywords: emotion labor, non-task behavior, OCB, CWB

Procedia PDF Downloads 340
13438 Efficient Hydrogen Separation through Pd-Pt Membrane

Authors: Lawan Muhammad Adam, Abduljabar Hilal Alsayoud

Abstract:

One of the most promising techniques to produce pure hydrogen is through a palladium-based membrane (Pd-membrane). Density functional theory (DFT) is employed in this work to examine how the physical and chemical adsorption properties of hydrogen on the surface of Pd-Pt can be mutated in the presence of contaminating gases, CH₄, CO, and CO₂. The main target is to survey the energy topology related to hydrogen adsorption while adjusting the stages of freedom in both the structure and composition. The adsorption sites, crystal plane of the slab, and relative orientation of the adsorbed molecules on its surface, as well as various arrangements of adsorbed species, have been considered in this study. The dependency of hydrogen adsorption on surface coverage is studied. The study demonstrated the physical adsorption energies of the molecules on the surface concerning the different coverages of hydrogen atoms. The most stable combinations of the adsorption sites (Top, Hollow, and Bridge) with various orientations of gaseous molecules on the Pd-Pt surface were identified according to their calculated energies. When the binding of contaminating gaseous species to the Pd-Pt surface and their impact on the physical adsorption energies of the H₂ are examined, it is observed that the most poisonous gas relative to all other gases modifies the energetics of the adsorption process of hydrogen on the surface.

Keywords: DFT, Pd-Pt-membrane, H₂, CO, CO₂

Procedia PDF Downloads 60
13437 Nanostructured Oxide Layer by Anodization on Austenitic Stainless Steels: Structural and Corrosion Insights

Authors: Surya Prakash Gajagouni, Akram Alfantazi, Imad Barsoum

Abstract:

Austenitic stainless steels are widely recognized for their exceptional corrosion resistance and mechanical properties, rendering them indispensable materials across various industries from construction to biomedical applications. However, in chloride and high temperature atmosphere it to further enhance their surface properties, anodization has emerged as a promising surface treatment technique. Anodization modifies the surface of stainless steels by creating a protective oxide layer, improving corrosion resistance and imparting additional functional characteristics. This paper explores the structural and corrosion characteristics of anodized austenitic stainless steels (AISI 304) using a two-step anodic technique. We utilized a perchloric acid-based electrolyte followed by an ammonium fluoride-based electrolyte. This sequential approach aimed to cultivate deeper and intricately self-ordered nanopore oxide arrays on a substrate made of 304 stainless steel. Electron Microscopic (SEM and TEM) images revealed nanoporous layered structures with increased length and crack development correlating with higher voltage and anodization time. Surface composition and chemical oxidation state of surface-treated SS were determined using X-ray photoelectron spectroscopy (XPS) techniques, revealing a surface layer rich in Ni and suppressed Cr, resulting in a thin film composed of Ni and Fe oxide compared to untreated SS. Electrochemical studies demonstrated enhanced corrosion resistance in a strong alkaline medium compared to untreated SS. Understanding the intricate relationship between the structural features of anodized stainless steels and their corrosion resistance is crucial for optimizing the performance of these materials in diverse applications. This study aims to contribute to the advancement of surface engineering strategies for enhancing the durability and functionality of austenitic stainless steels in aggressive environments.

Keywords: austenitic stainless steel, anodization, nanoporous oxides, marine corrosion

Procedia PDF Downloads 24
13436 Effect of Chemical Additive on Fixed Abrasive Polishing of LBO Crystal with Non-Water Based Slurry

Authors: Jun Li, Wenze Wang, Zhanggui Hu, Yongwei Zhu, Dunwen Zuo

Abstract:

Non-water based fixed abrasive polishing was adopted to manufacture LBO crystal for nano precision surface quality because of its deliquescent. Ethyl alcohol was selected as the non-water based slurry solvent and ethanediamine, lactic acid, hydrogen peroxide were add in the slurry as a chemical additive, respectively. Effect of different additives with non-water based slurry on material removal rate, surface topography, microscopic appearances and surface roughness were investigated in fixed abrasive polishing of LBO crystal. The results show the best surface quality of LBO crystal with surface roughness Sa 8.2 nm and small damages was obtained by non-water based slurry with lactic acid. Non-water based fixed abrasive polishing can achieve nano precision surface quality of LBO crystal with high material removal.

Keywords: non-water based slurry, LBO crystal, fixed abrasive polishing, surface roughness

Procedia PDF Downloads 458
13435 Assessment of Runway Micro Texture Using Surface Laser Scanners: An Explorative Study

Authors: Gerard Van Es

Abstract:

In this study, the use of a high resolution surface laser scanner to assess the micro texture of runway surfaces was investigated experimentally. Micro texture is one of the important surface components that helps to provide high braking friction between aircraft tires and a wet runway surface. Algorithms to derive different parameters that characterise micro texture was developed. Surface scans with a high resolution laser scanner were conducted on 40 different runway (like) surfaces. For each surface micro texture parameters were calculated from the laser scan data. These results were correlated with results obtained from a British pendulum tester that was used on the same surface. Results obtained with the British pendulum tester are generally considered to be indicative for the micro texture related friction characteristics. The results show that a meaningful correlation can be found between different parameters that characterise micro texture obtained with the laser scanner and the British pendulum tester results. Surface laser scanners are easier to operate and give more consistent results than a British pendulum tester. Therefore for airport operators surface laser scanners can be a useful tool to determine if their runway becomes slippery when wet due to a smooth micro texture.

Keywords: runway friction, micro texture, aircraft braking performance, slippery runways

Procedia PDF Downloads 101
13434 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology

Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn

Abstract:

Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes.

Keywords: lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery

Procedia PDF Downloads 635
13433 Applications of High Intensity Ultrasound to Modify Millet Protein Concentrate Functionality

Authors: B. Nazari, M. A. Mohammadifar, S. Shojaee-Aliabadi, L. Mirmoghtadaie

Abstract:

Millets as a new source of plant protein were not used in food applications due to its poor functional properties. In this study, the effect of high intensity ultrasound (frequency: 20 kHz, with contentious flow) (US) in 100% amplitude for varying times (5, 12.5, and 20 min) on solubility, emulsifying activity index (EAI), emulsion stability (ES), foaming capacity (FC), and foaming stability (FS) of millet protein concentrate (MPC) were evaluated. In addition, the structural properties of best treatments such as molecular weight and surface charge were compared with the control sample to prove the US effect. The US treatments significantly (P<0.05) increased the solubility of the native MPC (65.8±0.6%) at all sonicated times with the maximum solubility that is recorded at 12.5 min treatment (96.9±0.82 %). The FC of MPC was also significantly affected by the US treatment. Increase in sonicated time up to 12.5 min significantly increased the FC of native MPC (271.03±4.51 ml), but higher increase reduced it significantly. Minimal improvements were observed in the FS of all sonicated MPC compared to the native MPC. Sonicated time for 12.5 min affected the EAI and ES of the native MPC more markedly than 5 and 20 min that may be attributed to higher increase in proteins tendency to adsorption at the oil and water interfaces after the US treatment at this time. SDS-PAGE analysis showed changes in the molecular weight of MPC that attributed to shearing forces created by cavitation phenomenon. Also, this phenomenon caused an increase in the exposure of more amino acids with negative charge in the surface of US treated MPC, that was demonstrated by Zetasizer data. High intensity ultrasound, as a green technology, can significantly increase the functional properties of MPC and can make this usable for food applications.

Keywords: functional properties, high intensity ultrasound, millet protein concentrate, structural properties

Procedia PDF Downloads 227
13432 Improvement of Mechanical Properties and Corrosion Resistance of AA7056 Aluminum Alloys by the Non-isothermal Aging Process

Authors: Tse-An Pan, Sheng-Long Lee

Abstract:

The effect of non-isothermal aging on the mechanical properties and corrosion resistance of Al-9Zn-2.3Mg-1.9Cu (AA7056) alloys was investigated. The results revealed that thick materials were limited to retrogression and re-aging treatment (RRA). It could not reach the retrogression temperature in the RRA treatment. Compared with the RRA treatment, the non-isothermal aging (NIA) treatment produced discontinuous precipitates at grain boundaries, while the intragranular precipitates were fine and dense. The strength was similar to that of the RRA treatment; the corrosion resistance of the alloy was significantly improved by NIA aging. NIA treatment was less affected by the thickness of the alloy. The difference between the actual temperature and the setting temperature of the alloy is minimal during the aging process. The combination of properties could overcome the fact that RRA treatment cannot handle thick materials.

Keywords: Al-Zn-Mg-Cu alloy, corrosion, retrogression, re-aging, non-isothermal aging

Procedia PDF Downloads 169
13431 Household Low Temperature MS2 (ATCC15597-B1) Virus Inactivation Using a Hot Bubble Column Evaporator

Authors: Adrian Garrido Sanchis, Richard Pashley

Abstract:

The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses when using a hot air bubble column evaporator (HBCE) system in the treatment of household wastewater. In this study, we have combined MS2 virus surface charging properties with thermal inactivation rates, using an improved double layer plaque assay technique, in order to assess the efficiency of the HBCE process for virus removal in water. When bubbling a continuous flow of dry air, at 200°C, only heats the aqueous solution in the bubble column to about 50°C. Viruses are not inactivated by this solution temperature, as confirmed separately from water bath heating experiments. Hence, the efficiency of the HBCE process for virus removal in water appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. This new energy efficient treatment for water reuse applications can reduce the thermal energy required to only 25% (about 113.7 kJ/L) of that required for boiling (about 450 kJ/L).

Keywords: MS2 virus inactivation, water reuse, hot bubble column evaporator, water treatment

Procedia PDF Downloads 198
13430 Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging

Authors: Ju Young Kim, Mohammad Zahirul Islam, Mahmuda Akter Mele, Su Jeong Han, Hyuk Sung Yoon, In-Lee Choi, Ho-Min Kang

Abstract:

Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Keywords: chlorine dioxide, ethylene, fungi, sodium hypochlorite

Procedia PDF Downloads 354
13429 Multiresolution Mesh Blending for Surface Detail Reconstruction

Authors: Honorio Salmeron Valdivieso, Andy Keane, David Toal

Abstract:

In the area of mechanical reverse engineering, processes often encounter difficulties capturing small, highly localized surface information. This could be the case if a physical turbine was 3D scanned for lifecycle management or robust design purposes, with interest on eroded areas or scratched coating. The limitation partly is due to insufficient automated frameworks for handling -localized - surface information during the reverse engineering pipeline. We have developed a tool for blending surface patches with arbitrary irregularities into a base body (e.g. a CAD solid). The approach aims to transfer small surface features while preserving their shape and relative placement by using a multi-resolution scheme and rigid deformations. Automating this process enables the inclusion of outsourced surface information in CAD models, including samples prepared in mesh handling software, or raw scan information discarded in the early stages of reverse engineering reconstruction.

Keywords: application lifecycle management, multiresolution deformation, reverse engineering, robust design, surface blending

Procedia PDF Downloads 132
13428 Rationality and Evidence of Pre-Prepared Treatment Plan in Oesophageal HDR Brachytherapy

Authors: Jim S. Meng, Mammo H. Yewondwossen

Abstract:

As a part of routine oesophageal HDR brachytherapy procedure, treatment planning takes about 45 minutes while patients are under light sedation. Some patients may suffer gagging and/or spasms, and the treatment may need to be aborted. A pre-prepared plan generated before the patient’s sedation may reduce the brachytherapy procedure time by forty minutes. This paper reports the rationality and evidence of pre-prepared treatment plans. A retrospective study of 28 patients confirm that all of the pre-prepared plans would be acceptable. The rationality of pre-prepared HDR brachytherapy plans is further confirmed by a systemic study with a wide range of applicator curvature and treatment volume. Detailed comparison between CT based treatment plans and pre-prepared plans are discussed. This argument holds also for endobronchial HDR brachytherapy. With the above evidence, pre-prepared plans have been used for all oesophagus and bronchus HDR brachytherapy cases in our clinic.

Keywords: HDR brachytherapy, treatment planning, oesophageal carcinoma, pre-planning

Procedia PDF Downloads 385
13427 Treatment of Acid Mine Lake by Ultrasonically Modified Fly Ash at Different Frequencies

Authors: Burcu Ileri, Deniz Sanliyuksel Yucel, Onder Ayyildiz

Abstract:

The oxidation of pyrite in water results in the formation of acid mine drainage, which typically forms extremely acid mine lake (AML) in the depression areas of abandoned Etili open-pit coal mine site, Northwest Turkey. Nine acid mine lakes of various sizes have been located in the Etili coal mine site. Hayirtepe AML is one of the oldest lake having a mean pH value of 2.9 and conductivity of 4550 μS/cm, and containing elevated concentrations of Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn. The water quality of the lake has been deteriorated due to its high chemical composition, in particular, increasing heavy metal pollution. In this study, fly ash (FA), a coal combustion by-product from fluidized bed thermal power plant in the northwestern part of Turkey, was used as an adsorbent for the treatment of Hayirtepe AML. The FA is a relatively abundant and cost effective material, but its use in adsorption processes usually require excessive adsorbent doses. To increase adsorption efficiency and lower the adsorbent dose, we modified the FA by means of ultrasonic treatment (20 kHz and 40 kHz). The images of scanning electron microscopy (SEM) have demonstrated that ultrasonic treatment not only decreased the size of ash particles but also created pits and cracks on their surfaces which in turn led to a significant increase in the BET surface area. Both FA and modified fly ash were later tested for the removal of heavy metals from the AML. The effect of various operating parameters such as ultrasonic power, pH, ash dose, and adsorption contact time were examined to obtain the optimum conditions for the treatment process. The results have demonstrated that removal of heavy metals by ultrasound-modified fly ash requires much shorter treatment times and lower adsorbent doses than those attained by the unmodified fly ash. This research was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK), (Project no: 116Y510).

Keywords: acid mine lake, heavy metal, modified fly ash, ultrasonic treatment

Procedia PDF Downloads 187
13426 Porosity and Surface Chemistry of Functionalized Carbonaceous Materials from Date Palm Leaflets

Authors: El-Said I. El-Shafey, Syeda Naheed F. Ali, Saleh S. Al-Busafi, Haider A. J. Al-Lawati

Abstract:

Date palm leaflets were utilized as a precursor for activated carbon (AC) preparation using KOH activation. AC produced was oxidized using nitric acid producing oxidized activated carbon (OAC). OAC that possesses acidic surface was surface functionalized to produce basic activated carbons using linear diamine compounds (ethylene diamine and propylene diamine). OAC was also functionalized to produce hydrophobic activated carbons using ethylamine (EA) and aniline (AN). Dehydrated carbon was also prepared from date palm leaflets using sulfuric acid dehydration/ oxidation and was surface functionalized in the same way as AC. Nitric acid oxidation was not necessary for DC as it is acidic carbon. The surface area of AC is high (823 m2/g) with microporosity domination, however, after oxidation and surface functionalization, both the surface area and surface microporosity decrease tremendously. DC surface area was low (15 m2/g) with mesoporosity domination. Surface functionalization has decreased the surface area of activated carbons. FTIR spectra show that -COOH group on DC and OAC almost disappeared after surface functionalization. The surface chemistry of all carbons produced was tested for pHzpc, basic sites, boehm titration, thermogravimetric analysis and zeta potential measurement. Scanning electron microscopy and energy dispersive spectroscopy in addition to CHN elemental analysis were also carried out. DC and OAC possess low pHzpc and high surface functionality, however, basic and hydrophobic carbons possess high pHzpc and low surface functionality. The different behavior of carbons is related to their different surface chemistry. Methylene blue adsorption was found to be faster on hydrophobic carbons based on AC and DC. The Larger adsorption capacity of methylene blue was found for hydrophobic carbons. Dominating adsorption forces of methylene blue varies from carbon to another depending on its surface nature. Sorption forces include hydrophobic forces, H-bonding, electrostatic interactions and van der Waals forces.

Keywords: carbon, acidic, basic, hydrophobic

Procedia PDF Downloads 278
13425 Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility

Authors: Xiaodong Xu, Dan Zhao, Xiujuan Chang, Chunming Li, Huiyun Zhou, Xin Li, Qiang Shi, Shifang Luan, Jinghua Yin

Abstract:

Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (S)-1-acryloylpyrrolidine-2-carboxylic acid ((S)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (S)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer.

Keywords: functionalization, polypropylene, chiral monomer, hemocompatibility

Procedia PDF Downloads 368
13424 Surface Modification of SUS-304 Using Nitriding Treatment for Application of Bipolar Plates of Proton Exchange Membrane Fuel Cells

Authors: Wei-Ru Chang, Jenn-Jiang Hwang, Zen-Ting Hsiao, Shu-Feng Lee

Abstract:

Proton exchange membrane (PEM) fuel cells are widely used in electrical systems as an economical, low-polluting energy source. This study investigates the effects of PEMFC gas nitriding treatment on metal bipolar plates. The test material was SUS304 stainless steel. The study explored five different pretreatment processes, varying the corrosion resistance and electrical conductivity conditions. The most effective process was industrial acid washing, followed by heating to 500 °C. Under the condition, the corrosion current density was 8.695 μA, significantly lower than that of the untreated pretreatment sample flakes, which was measured as 38.351 μA.

Keywords: nitriding, bipolar, 304, corrosion, resistance, pretreatment

Procedia PDF Downloads 1069
13423 Synthesis and Evaluation of Heterogeneous Nano-Catalyst: Cr Loaded in to MCM-41

Authors: A. Salemi Golezania, A. Sharifi Fateha

Abstract:

In this study a nano-composite catalyst was synthesized by incorporation of chromium into the framework of MCM-41 as a base catalyst. Mesoporous silica molecular sieves MCM-41 were synthesized under Hydrothermal Continues pH Adjusting Path Way. Then, MCM-41 was impregnated by chromium nitrate aqueous solution for several times under water aspiration. Raw powder was cured by heat treatment in vacuum furnace at 500°C. Phase formation, morphology and gas absorption properties of resulted materials were characterized by XRD, TEM and BET analysis, respectively. The results showed that high quality hexagonal meso structure as a matrix and Cr as a second phase has been formed with a narrow size pore diameter distribution and high surface area in Cr/MCM-41 nano-composite structure. The specific surface and total volume of porosity of the synthesized nanocomposite are obtained 931m^2/gr and 1.12 cm^3/gr, respectively.

Keywords: nano-catalyst, MCM-41, Cr/MCM-41, Marine Science and Engineering

Procedia PDF Downloads 375
13422 Biocarbon for High-Performance Supercapacitors Derived from the Wastewater Treatment of Sewage Sludge

Authors: Santhosh Ravichandran, F. J. Rodríguez-Varela

Abstract:

In this study, a biocarbon (BC) was made from sewage sludge from the water treatment plant (PTAR) in Saltillo, Coahuila, Mexico. The sludge was carbonized in water and then chemically activated by pyrolysis. The biocarbon was evaluated physicochemically using XRD, SEM-EDS, and FESEM. A broad (002) peak attributable to graphitic structures indicates that the material is amorphous. The resultant biocarbon has a high specific surface area (412 m2 g-1), a large pore volume (0.39 cm3 g-1), interconnected hierarchical porosity, and outstanding electrochemical performance. It is appropriate for high-performance supercapacitor electrode materials due to its high specific capacitance of 358 F g-1, great rate capability, and outstanding cycling stability (around 87% capacitance retention after 10,000 cycles, even at a high current density of 19 A g-1). In an aqueous solution, the constructed BC/BC symmetric supercapacitor exhibits increased super capacitor behavior with a high energy density of 29.5 Whkg-1. The concept provides an efficient method for producing high-performance electrode materials for supercapacitors from conventional water treatment biomass wastes.

Keywords: supercapacitors, carbon, material science, batteries

Procedia PDF Downloads 66
13421 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forword, membrane, solar, water treatment

Procedia PDF Downloads 72
13420 Effect of Cryogenic Treatment on Various Mechanical and Metallurgical Properties of Different Material: A Review

Authors: Prashant Dhiman, Viranshu Kumar, Pradeep Joshi

Abstract:

Lot of research is going on to study the effect of cryogenic treatment on materials. Cryogenic treatment is a heat treatment process which is used widely to enhance the mechanical and metallurgical properties of various materials whether the material is ferrous or non ferrous. In almost all ferrous metals, it is found that retained austenite is converted into martensite. Generally deep cryogenic treatment is done using liquid nitrogen having temperature of -195 ℃. The austenite is unstable at this stage and converts into martensite. In non ferrous materials there presents a microcavity and under the action of stress it becomes crack. When this crack propagates, fracture takes place. As the metal contract under low temperature, by doing cryogenic treatment these microcavities will be filled hence increases the soundness of the material. Properties which are enhanced by cryogenic treatment of both ferrous and non ferrous materials are hardness, tensile strength, wear rate, electrical and thermal conductivity, and others. Also there is decrease in residual stress. A large number of manufacturing process (EDM, CNC etc.) are using cryogenic treatment on different tools or workpiece to reduce their wear. In this Review paper the use of cryogenic heat treatment in different manufacturing has been shown along with their advantages.

Keywords: cyrogenic treatment, EDM (Electrical Discharge Machining), CNC (Computer Numeric Control), Mechanical and Metallurgical Properties

Procedia PDF Downloads 422
13419 Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance

Authors: Ayman M. Ibrahim, Jinpeng Cai, Peilun Shen, Dianwen Liu

Abstract:

The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface.

Keywords: sulfurization flotation, adsorption characteristics, malachite, hydrophobicity

Procedia PDF Downloads 55