Search results for: surface preparation effects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17486

Search results for: surface preparation effects

17246 Characterization of Self-Assembly Behavior of 1-Dodecylamine Molecules on Au (111) Surface

Authors: Wan-Tzu Yen, Yu-Chen Luo, I-Ping Liu, Po-Hsuan Yeh, Sheng-Hsun Fu, Yuh-Lang Lee

Abstract:

Self-assembled characteristics and adsorption performance of 1-dodecylamine molecules on gold (Au) (111) surfaces were characterized via cyclic voltammetry (CV), surface-enhanced infrared absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM). The present study focused on the formation of 1-dodecylamine (DDA) on a gold surface with respect to the ex-situ arrangement of an adlayer on the Au(111) surface, and phase transition at potential dynamics carried out by EC-STM. This study reveals that alkyl amine molecules were formed an adsorption pattern with highly regular “lie down shape” on Au(111) surface, even in an extreme acid system (pH = 1). Acidic electrolyte (HClO₄) could protonate the surface of alkyl amine of a monolayer of the gold surface when potential shifts to negative. The quite stability of 1-dodecylamine on the gold surface maintained the monolayer across the potential window (0.1-0.8V). This transform model was confirmed by EC-STM. In addition, amine-modified Au(111) electrode adlayer used to examine how to affect an electron transfer across an interface using [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ redox pair containing 0.1 M HClO₄ solution.

Keywords: cyclic voltammetry, dodecylamine, gold (Au)(111), scanning tunneling microscopy, self-assembled monolayer, surface-enhanced infrared absorption spectroscopy

Procedia PDF Downloads 198
17245 Flow Separation Control on an Aerofoil Using Grooves

Authors: Neel K. Shah

Abstract:

Wind tunnel tests have been performed at The University of Manchester to investigate the impact of surface grooves of a trapezoidal planform on flow separation on a symmetrical aerofoil. A spanwise array of the grooves has been applied around the maximum thickness location of the upper surface of an NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. A laminar separation bubble developed on the aerofoil at low AoA. It has been found that the grooves shorten the streamwise extent of the separation bubble by shedding a pair of counter-rotating vortices. However, the increase in leading-edge suction due to the shorter bubble is not significant since the creation of the grooves results in a decrease of surface curvature and an increase in blockage (increase in surface pressure). Additionally, the increased flow mixing by the grooves thickens the boundary layer near the trailing edge of the aerofoil also contributes to this limitation. As a result of these competing effects, the improvement in the pressure-lift and pressure-drag coefficients are small, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. Crosswire anemometry shows that the grooves increase turbulence intensity and Reynolds stresses in the wake, thus indicating an increase in viscous drag.

Keywords: aerofoil flow control, flow separation, grooves, vortices

Procedia PDF Downloads 315
17244 Novel Technique for calculating Surface Potential Gradient of Overhead Line Conductors

Authors: Sudip Sudhir Godbole

Abstract:

In transmission line surface potential gradient is a critical design parameter for planning overhead line, as it determines the level of corona loss (CL), radio interference (RI) and audible noise (AN).With increase of transmission line voltage level bulk power transfer is possible, using bundle conductor configuration used, it is more complex to find accurate surface stress in bundle configuration. The majority of existing models for surface gradient calculations are based on analytical methods which restrict their application in simulating complex surface geometry. This paper proposes a novel technique which utilizes both analytical and numerical procedure to predict the surface gradient. One of 400 kV transmission line configurations has been selected as an example to compare the results for different methods. The different strand shapes are a key variable in determining.

Keywords: surface gradient, Maxwell potential coefficient method, market and Mengele’s method, successive images method, charge simulation method, finite element method

Procedia PDF Downloads 538
17243 Mechanical Behaviours of Ti/GFRP/Ti Laminates with Different Surface Treatments of Titanium Sheets

Authors: Amit Kumar Haldar, Mark Simms, Ian McDevitt, Anthony Comer

Abstract:

Interface properties of fiber metal laminates (FML) affects the integrity and deformation failure modes. In this paper, the mechanical behaviours of Ti/GFRP/Ti laminates were experimentally investigated through low-velocity impact tests. Two different surface treatments of Titanium (Ti-6Al-4V) alloy sheets were prepared to obtain the composite interface properties based on annealing and sandblast surface treatment processes. The deformation failure modes, impact load sustaining ability and energy absorption capacity of FMLs were analysed. The impact load and modulus were shown to be dependent on the surface treatments of Titanium (Ti-6Al-4V) alloy sheets. It was demonstrated that the impact load performance was enhanced when titanium surfaces were annealed and sandblasted. It has also been shown that the values of the strength and energy absorption were slightly higher when the tests conducted at relatively higher loading rate, as a result of the rate-sensitive effects on the damage resistance of the FML.

Keywords: fiber metal laminates, metal composite interface, indentation, low velocity impact

Procedia PDF Downloads 198
17242 Heat Transfer of an Impinging Jet on a Plane Surface

Authors: Jian-Jun Shu

Abstract:

A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

Keywords: flux, free impinging jet, solid-surface, uniform wall temperature

Procedia PDF Downloads 480
17241 Soret and Dufour's Effects on Mixed Convection Unsteady MHD Boundary Layer Flow over a Stretching Sheet Embedded in a Porous Medium with Chemically Reactive Spices

Authors: Deva Kanta Phukan

Abstract:

An investigation is made to carry out to study the thermal-diffusion and diffusion thermo-effects in hydro-magnetic unsteady flow by a mixed convection boundary layer past an impermeable vertical stretching sheet embedded in a conducting fluid-saturated porous medium in the presence of a chemical reaction effect. The velocity of stretching surface, the surface temperature and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed in to self similar unsteady equations using similarity transformations and solved numerically by the Runge kutta fourth order scheme in association with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, temperature, the concentration, the skin friction , and the Nusselt and Sherwood numbers are shown graphically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.

Keywords: heat and mass transfer, boundary layer flow, porous media, magnetic field, Soret number, Dufour’s number

Procedia PDF Downloads 445
17240 Effects of Surface Textures and Chemistries on Wettability

Authors: Dipti Raj, Himanshu Mishra

Abstract:

Wetting of a solid surface by a liquid is an extremely common yet subtle phenomenon in natural and applied sciences. A clear understanding of both short and long-term wetting behaviors of surfaces is essential for creating robust anti-biofouling coatings, non-wetting textiles, non-fogging mirrors, and preventive linings against dirt and icing. In this study, silica beads (diameter, D ≈ 100 μm) functionalized using different silane reagents were employed to modify the wetting characteristics of smooth polydimethylsiloxane (PDMS) surfaces. Resulting composite surfaces were found to be super-hydrophobic, i.e. contact angle of water,

Keywords: contact angle, Cassie-Baxter, PDMS, silica, texture, wetting

Procedia PDF Downloads 255
17239 Investigation of Doping Effects on Nonradiative Recombination Parameters in Bulk GaAs

Authors: Soufiene Ilahi

Abstract:

We have used Photothermal deflection spectroscopy PTD to investigate the impact of doping on electronics properties of bulk. Then, the extraction of these parameters is performed by fitting the theoretical curves to the experimental PTD ones. We have remarked that electron mobility in p type C-doped GaAs is about 300 cm2/V·s. Accordinagly, the diffusion length of minority carrier lifetime is equal to 5 (± 7%), 5 (± 4,4%) and 1.42 µm (± 7,2 %) for the Cr, C and Si doped GaAs respectively. Surface recombination velocity varies randomly that can be found around of 7942 m/s, 100 m/s and 153 m/s GaAs doped Si, Cr, C, respectively.

Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, surface and interface recombination in GaAs

Procedia PDF Downloads 72
17238 Using Reservoir Models for Monitoring Geothermal Surface Features

Authors: John P. O’Sullivan, Thomas M. P. Ratouis, Michael J. O’Sullivan

Abstract:

As the use of geothermal energy grows internationally more effort is required to monitor and protect areas with rare and important geothermal surface features. A number of approaches are presented for developing and calibrating numerical geothermal reservoir models that are capable of accurately representing geothermal surface features. The approaches are discussed in the context of cases studies of the Rotorua geothermal system and the Orakei-korako geothermal system, both of which contain important surface features. The results show that models are able to match the available field data accurately and hence can be used as valuable tools for predicting the future response of the systems to changes in use.

Keywords: geothermal reservoir models, surface features, monitoring, TOUGH2

Procedia PDF Downloads 416
17237 Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type

Authors: S. Bangphan, P. Bangphan, C. Ketsombun, T. Sammana

Abstract:

Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice.

Keywords: brown rice, response surface methodology (RSM), peeling machine, optimization, paddy husker

Procedia PDF Downloads 575
17236 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii

Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi

Abstract:

Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.

Keywords: full factorial design, neural network, nose radius, surface finish

Procedia PDF Downloads 368
17235 Effect of Different Contact Rollers on the Surface Texture during the Belt Grinding Process

Authors: Amine Hamdi, Sidi Mohammed Merghache, Brahim Fernini

Abstract:

During abrasive machining of hard steels by belt grinding, the finished surface texture is influenced by the pressure between the abrasive belt and the workpiece; this pressure is the force applied by the contact roller on the workpiece. Therefore, the contact roller has an important role and has a direct impact on process efficiency. The objective of this article is to study and compare the influence of different contact rollers on the belt ground surface texture. The quality of the surface texture is characterized by eight roughness parameters (Ra, Rz, Rp, Rv, Rsk, Rku, Rsm, and Rdq) and five parameters of the bearing area curve (Rpk, Rk, Rvk, Mr1, and Mr2). The results of the experimental tests indicate a better surface texture obtained by the PA 6 polyamide roller (hardness 60 Shore D) compared to that obtained with other rollers of the same hardness or of different hardness. Simultaneously, optimum medium pressure between the belt and the workpiece allows chip removal without fracturing the abrasive grains. This generates a good surface texture.

Keywords: belt grinding, contact roller, pressure, abrasive belt, surface texture

Procedia PDF Downloads 184
17234 Modification Effect of CeO2 on Pt-Pd Nano Sized Catalysts for Formic Acid Oxidation

Authors: Ateeq Ur Rehman

Abstract:

This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electrocatalysts. The synthesized catalysts are characterized using different physicochemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.

Keywords: CeO2, ordered mesoporous carbon (OMC), nano particles, formic acid fuel cell

Procedia PDF Downloads 316
17233 Particleboard Production from Atmospheric Plasma Treated Wheat Straw Particles

Authors: Štěpán Hýsek, Milan Podlena, Miloš Pavelek, Matěj Hodoušek, Martin Böhm, Petra Gajdačová

Abstract:

Particle boards have being used in the civil engineering as a decking for load bearing and non-load bearing vertical walls and horizontal panels (e. g. floors, ceiling, roofs) in a large scale. When the straw is used as non-wood material for manufacturing of lignocellulosic panels, problems with wax layer on the surface of the material can occur. Higher percentage of silica and wax cause the problems with the adhesion of the adhesive and this is the reason why it is necessary to break the surface layer for the better bonding effect. Surface treatment of the particles cause better mechanical properties, physical properties and the overall better results of the composite material are reached. Plasma application is one possibility how to modify the surface layer. The aim of this research is to modify the surface of straw particles by using cold plasma treatment. Surface properties of lignocellulosic materials were observed before and after cold plasma treatment. Cold plasma does not cause any structural changes deeply in the material. There are only changes in surface layers, which are required. Results proved that the plasma application influenced the properties of surface layers and the properties of composite material.

Keywords: composite, lignocellulosic materials, straw, cold plasma, surface treatment

Procedia PDF Downloads 330
17232 Using Sugar Mill Waste for Biobased Epoxy Composites

Authors: Ulku Soydal, Mustafa Esen Marti, Gulnare Ahmetli

Abstract:

In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER.

Keywords: epoxy resin, biocomposite, lime waste, properties

Procedia PDF Downloads 315
17231 Modeling and Simulation of Pad Surface Topography by Diamond Dressing in Chemical-Mechanical Polishing Process

Authors: A.Chen Chao-Chang, Phong Pham-Quoc

Abstract:

Chemical-mechanical polishing (CMP) process has been widely applied on fabricating integrated circuits (IC) with a soft polishing pad combined with slurry composed of micron or nano-scaled abrasives for generating chemical reaction to remove substrate or film materials from wafer. During CMP process, pad uniformity usually works as a datum surface of wafer planarization and pad asperities can dominate the microscopic pad-slurry-wafer interaction. However, pad topography can be changed by related mechanism factors of CMP and it needs to be re-conditioned or dressed by a diamond dresser of well-distributed diamond grits on a disc surface. It is still very complicated to analyze and understand kinematic of diamond dressing process under the effects of input variables including oscillatory of diamond dresser and rotation speed ratio between the pad and the diamond dresser. This paper has developed a generic geometric model to clarify the kinematic modeling of diamond dressing processes such as dresser/pad motion, pad cutting locus, the relative velocity of the diamond abrasive grits on pad surface, and overlap of cutting for prediction of pad surface topography. Simulation results focus on comparing and analysis kinematics of the diamond dressing on certain CMP tools. Results have shown the significant parameters for diamond dressing process and also discussed. Future study can apply on diamond dresser design and experimental verification of pad dressing process.

Keywords: kinematic modeling, diamond dresser, pad cutting locus, CMP

Procedia PDF Downloads 255
17230 Multi-Sensor Concept in Optical Surface Metrology

Authors: Özgür Tan

Abstract:

In different fields of industry, there is a huge demand to acquire surface information in the dimension of micrometer up to centimeter in order to characterize functional behavior of products. Thanks to the latest developments, there are now different methods in surface metrology, but it is not possible to find a unique measurement technique which fulfils all the requirements. Depending on the interaction with the surface, regardless of optical or tactile, every method has its own advantages and disadvantages which are given by nature. However new concepts like ‘multi-sensor’, tools in surface metrology can be improved to solve most of the requirements simultaneously. In this paper, after having presented different optical techniques like confocal microscopy, focus variation and white light interferometry, a new approach is presented which combines white-light interferometry with chromatic confocal probing in a single product. Advantages of different techniques can be used for challenging applications.

Keywords: flatness, chromatic confocal, optical surface metrology, roughness, white-light interferometry

Procedia PDF Downloads 260
17229 The Temperature Degradation Process of Siloxane Polymeric Coatings

Authors: Andrzej Szewczak

Abstract:

Study of the effect of high temperatures on polymer coatings represents an important field of research of their properties. Polymers, as materials with numerous features (chemical resistance, ease of processing and recycling, corrosion resistance, low density and weight) are currently the most widely used modern building materials, among others in the resin concrete, plastic parts, and hydrophobic coatings. Unfortunately, the polymers have also disadvantages, one of which decides about their usage - low resistance to high temperatures and brittleness. This applies in particular thin and flexible polymeric coatings applied to other materials, such a steel and concrete, which degrade under varying thermal conditions. Research about improvement of this state includes methods of modification of the polymer composition, structure, conditioning conditions, and the polymerization reaction. At present, ways are sought to reflect the actual environmental conditions, in which the coating will be operating after it has been applied to other material. These studies are difficult because of the need for adopting a proper model of the polymer operation and the determination of phenomena occurring at the time of temperature fluctuations. For this reason, alternative methods are being developed, taking into account the rapid modeling and the simulation of the actual operating conditions of polymeric coating’s materials in real conditions. The nature of a duration is typical for the temperature influence in the environment. Studies typically involve the measurement of variation one or more physical and mechanical properties of such coating in time. Based on these results it is possible to determine the effects of temperature loading and develop methods affecting in the improvement of coatings’ properties. This paper contains a description of the stability studies of silicone coatings deposited on the surface of a ceramic brick. The brick’s surface was hydrophobized by two types of inorganic polymers: nano-polymer preparation based on dialkyl siloxanes (Series 1 - 5) and an aqueous solution of the silicon (series 6 - 10). In order to enhance the stability of the film formed on the brick’s surface and immunize it to variable temperature and humidity loading, the nano silica was added to the polymer. The right combination of the polymer liquid phase and the solid phase of nano silica was obtained by disintegration of the mixture by the sonification. The changes of viscosity and surface tension of polymers were defined, which are the basic rheological parameters affecting the state and the durability of the polymer coating. The coatings created on the brick’s surfaces were then subjected to a temperature loading of 100° C and moisture by total immersion in water, in order to determine any water absorption changes caused by damages and the degradation of the polymer film. The effect of moisture and temperature was determined by measurement (at specified number of cycles) of changes in the surface hardness (using a Vickers’ method) and the absorption of individual samples. As a result, on the basis of the obtained results, the degradation process of polymer coatings related to their durability changes in time was determined.

Keywords: silicones, siloxanes, surface hardness, temperature, water absorption

Procedia PDF Downloads 243
17228 Burnishing Effect on the Mechanical Characteristics of 100C6

Authors: Ouahiba Taamallah, Tarek Litim

Abstract:

This work relates to the physico-geometrical aspect of the surface layers of 100C6 steel having undergone the burnishing treatment by hard steel ball. The application of tip diamond burnishing promotes better roughness compared to turning. In addition, it allows the surface layers to be consolidated by work hardening phenomena. The optimal effects are closely related to the parameters of the treatment and the active part of the device. With an 80% improvement in roughness resulting from the treatment, burnishing can be defined as a finishing operation within the machining range. With a 40% gain in consolidation rate, this treatment is an efficient process for material consolidation.

Keywords: 100C6 steel, burnishing, hardening, roughness

Procedia PDF Downloads 158
17227 Natural Convection between Two Parallel Wavy Plates

Authors: Si Abdallah Mayouf

Abstract:

In this work, the effects of the wavy surface on free convection heat transfer boundary layer flow between two parallel wavy plates have been studied numerically. The two plates are considered at a constant temperature. The equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm. The important parameters in this problem are the amplitude of the wavy surfaces and the distance between the two wavy plates. Results are presented as velocity profiles, temperature profiles and local Nusselt number according to the important parameters.

Keywords: free convection, wavy surface, parallel plates, fluid dynamics

Procedia PDF Downloads 308
17226 Tank Barrel Surface Damage Detection Algorithm

Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský

Abstract:

The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.

Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank

Procedia PDF Downloads 139
17225 The Effects of Nanoemulsions Based on Commercial Oils for the Quality of Vacuum-Packed Sea Bass at 2±2°C

Authors: Mustafa Durmuş, Yesim Ozogul, Esra Balıkcı, Saadet Gokdoğan, Fatih Ozogul, Ali Rıza Köşker, İlknur Yuvka

Abstract:

Food scientists and researchers have paid attention to develop new ways for improving the nutritional value of foods. The application of nanotechnology techniques to the food industry may allow the modification of food texture, taste, sensory attributes, coloring strength, processability, and stability during shelf life of products. In this research, the effects of nanoemulsions based on commercial oils for vacuum-packed sea bass fillets stored at 2±2°C were investigated in terms of the sensory, chemical (total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), peroxide value (PV) and free fatty acids (FFA), pH, water holding capacity (WHC)) and microbiological qualities (total anaerobic bacteria and total lactic acid bacteria). Physical properties of emulsions (viscosity, the particle size of droplet, thermodynamic stability, refractive index, and surface tension) were determined. Nanoemulsion preparation method was based on high energy principle, with ultrasonic homojenizator. Sensory analyses of raw fish showed that the demerit points of the control group were found higher than those of treated groups. The sensory score (odour, taste and texture) of the cooked fillets decreased with storage time, especially in the control. Results obtained from chemical and microbiological analyses also showed that nanoemulsions significantly (p<0.05) decreased the values of biochemical parameters and growth of bacteria during storage period, thus improving quality of vacuum-packed sea bass.

Keywords: quality parameters, nanoemulsion, sea bass, shelf life, vacuum packing

Procedia PDF Downloads 459
17224 Evaluation and Analysis of the Secure E-Voting Authentication Preparation Scheme

Authors: Nidal F. Shilbayeh, Reem A. Al-Saidi, Ahmed H. Alsswey

Abstract:

In this paper, we presented an evaluation and analysis of E-Voting Authentication Preparation Scheme (EV-APS). EV-APS applies some modified security aspects that enhance the security measures and adds a strong wall of protection, confidentiality, non-repudiation and authentication requirements. Some of these modified security aspects are Kerberos authentication protocol, PVID scheme, responder certificate validation, and the converted Ferguson e-cash protocol. Authentication and privacy requirements have been evaluated and proved. Authentication guaranteed only eligible and authorized voters were permitted to vote. Also, the privacy guaranteed that all votes will be kept secret. Evaluation and analysis of some of these security requirements have been given. These modified aspects will help in filtering the counter buffer from unauthorized votes by ensuring that only authorized voters are permitted to vote.

Keywords: e-voting preparation stage, blind signature protocol, Nonce based authentication scheme, Kerberos Authentication Protocol, pseudo voter identity scheme PVID

Procedia PDF Downloads 299
17223 Preparation and Characterization of Modified ZnO Incorporated into Mesoporous MCM-22 Catalysts and Their Catalytic Performances of Crude Jatropha Oil to Biodiesel

Authors: Bashir Abubakar Abdulkadir, Anita Ramli, Lim Jun Wei, Yoshimitsu Uemura

Abstract:

In this study, the ZnO/MCM-22 catalyst with different ZnO loading were prepared using conventional wet impregnation process and the catalyst activity was tested for biodiesel production from Jatropha oil. The effects of reaction parameters with regards to catalyst activity were investigated. The synthesized catalysts samples were then characterized by X-ray diffraction (XRD) for crystal phase, Brunauer–Emmett–Teller (BET) for surface area, pore volume and pore size, Field Emission Scanning electron microscope attached to energy dispersive x-ray (FESEM/EDX) for morphology and elemental composition and TPD (NH3 and CO2) for basic and acidic properties of the catalyst. The XRD spectra couple with the EDX result shows the presence of ZnO in the catalyst confirming the positive intercalation of the metal oxide into the mesoporous MCM-22. The synthesized catalyst was confirmed to be mesoporous according to BET findings. Also, the catalysts can be considered as a bifunctional catalyst based on TPD outcomes. Transesterification results showed that the synthesized catalyst was highly efficient and effective to be used for biodiesel production from low grade oil such as Jatropha oil and other industrial application where the high fatty acid methyl ester (FAMEs) yield was achieved at moderate reaction conditions. It was also discovered that the catalyst can be used more than five (5) runs with little deactivation confirming the catalyst to be highly active and stable to the heat of reaction.

Keywords: MCM-22, synthesis, transesterification, ZnO

Procedia PDF Downloads 211
17222 Preparation of Regional Input-Output Table for Fars Province in 2011: GRIT1Method

Authors: Maryam Akbarzadeh, F. Esmaeilzadeh, A. Poostvar, M. Manuchehri

Abstract:

Preparation of regional input-output tables requires statistical methods combined with high costs and too much time. Obtained estimates by non-statistical methods have low confidence coefficient. Therefore, integrated methods for this purpose are suggested by recent input–output studies. In this study, first GRIT method is introduced as an appropriate integrated method for preparation of input-output table of Fars province. Next, input-output table is prepared for Fars province using this method. Therefore, this study is based on input-output table of national economy in 2001. Necessary modifications performed in the field of changes at level of prices and differences of regional trade compared with other areas at national level. Moreover, up to date statistics and information and technical experts view on the various economic sectors along with input-output table 33 was used in 2011 followed by investigation of general structure of the province economy based on the amounts of added value obtained from this table.

Keywords: grit, input-output, table, regional

Procedia PDF Downloads 260
17221 Remote Observation of Environmental Parameters on the Surface of the Maricunga Salt Flat, Atacama Region, Chile

Authors: Lican Guzmán, José Manuel Lattus, Mariana Cervetto, Mauricio Calderón

Abstract:

Today the estimation of effects produced by climate change in high Andean wetland environments is confronted by big challenges. This study provides a way to an analysis by remote sensing how some Ambiental aspects have evolved on the Maricunga salt flat in the last 30 years, divided into the summer and winter seasons, and if global warming is conditioning these changes. The first step to achieve this goal was the recompilation of geological, hydrological, and morphometric antecedents to ensure an adequate contextualization of its environmental parameters. After this, software processing and analysis of Landsat 5,7 and 8 satellite imagery was required to get the vegetation, water, surface temperature, and soil moisture indexes (NDVI, NDWI, LST, and SMI) in order to see how their spatial-temporal conditions have evolved in the area of study during recent decades. Results show a tendency of regular increase in surface temperature and disponibility of water during both seasons but with slight drought periods during summer. Soil moisture factor behaves as a constant during the dry season and with a tendency to increase during wintertime. Vegetation analysis shows an areal and quality increase of its surface sustained through time that is consistent with the increase of water supply and temperature in the basin mentioned before. Roughly, the effects of climate change can be described as positive for the Maricunga salt flat; however, the lack of exact correlation in dates of the imagery available to remote sensing analysis could be a factor for misleading in the interpretation of results.

Keywords: global warming, geology, SIG, Atacama Desert, Salar de Maricunga, environmental geology, NDVI, SMI, LST, NDWI, Landsat

Procedia PDF Downloads 81
17220 The Anti-Allergic Activity of Prasaprohyai Preparation Extract after Accelerated Stability Testing

Authors: Sunita Makchuchit, Arunporn Itharat

Abstract:

Prasaprohyai, a Thai traditional medicine preparation listed in the Thai National List of Essential Medicines, is commonly used for treatment of fever and colds. Prasaprohyai preparation consists of 21 different plants, with Kaempferia galanga (50% w/w) as the main ingredient. The objective of this study was to investigate the anti-allergic activity of the crude extract from Prasaprohyai after accelerated stability test procedure. The method of extract used maceration in 95% ethanol and the crude extract was kept under accelerated condition at 40 ± 2 oC and 75 ± 5% relative humidity (RH) for six months. After six months of storage at 40 oC, the crude sample in various storage times (0, 15, 30, 45, 60, 90, 120, 150 and 180 days) were investigated for anti-allergic activity using IgE-sensitized RBL-2H3 cell lines. The results showed that the stability of crude ethanolic extract from Prasaprohyai under accelerated testing had no significant effect of anti-allergic activity when compared with day 0. The results showed that the ethanolic extract could be stored for two years at room temperature without loss of activity.

Keywords: accelerated stability, anti-allergy, prasaprohyai, RBL-2H3 cell lines

Procedia PDF Downloads 489
17219 Numerical Modelling of Surface Waves Generated by Low Frequency Electromagnetic Field for Silicon Refinement Process

Authors: V. Geza, J. Vencels, G. Zageris, S. Pavlovs

Abstract:

One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus. Therefore, a new approach could address this problem. We propose an approach of creating surface waves on silicon melt’s surface in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which includes coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.

Keywords: numerical modelling, silicon refinement, surface waves, VOF method

Procedia PDF Downloads 252
17218 Formation of Nanostructured Surface Layers of a Material with TiNi-Based Shape Memory by Diffusion Metallization

Authors: Zh. M. Blednova, P. O. Rusinov

Abstract:

Results of research on the formation of the surface layers of a material with shape memory effect (SME) based on TiNi diffusion metallization in molten Pb-Bi under isothermal conditions in an argon atmosphere are presented. It is shown that this method allows obtaining of uniform surface layers in nanostructured state of internal surfaces on the articles of complex shapes with stress concentrators. Structure, chemical and phase composition of the surface layers provide a manifestation of TiNi shape memory. The average grain size of TiNi coatings ranges between 60 ÷ 160 nm.

Keywords: diffusion metallization, nikelid titanium surface layers, shape memory effect, nanostructures

Procedia PDF Downloads 326
17217 Impact of Machining Parameters on the Surface Roughness of Machined PU Block

Authors: Louis Denis Kevin Catherine, Raja Aziz Raja Ma’arof, Azrina Arshad, Sangeeth Suresh

Abstract:

Machining parameters are very important in determining the surface quality of any material. In the past decade, some new engineering materials were developed for the manufacturing industry which created a need to conduct an investigation on the impact of the said parameters on their surface roughness. The polyurethane (PU) block is widely used in the automotive industry to manufacture parts such as checking fixtures that are used to verify the dimensional accuracy of automotive parts. In this paper, the design of experiment (DOE) was used to investigate the effect of the milling parameters on the PU block. Furthermore, an analysis of the machined surface chemical composition was done using scanning electron microscope (SEM). It was found that the surface roughness of the PU block is severely affected when PU undergoes a flood machining process instead of a dry condition. In addition, the step over and the silicon content were found to be the most significant parameters that influence the surface quality of the PU block.

Keywords: polyurethane (PU), design of experiment (DOE), scanning electron microscope (SEM), surface roughness

Procedia PDF Downloads 523