Search results for: random working time
21826 Development of an Innovative Mobile Phone Application for Employment of Persons With Disabilities Toward the Inclusive Society
Authors: Marutani M, Kawajiri H, Usui C, Takai Y, Kawaguchi T
Abstract:
Background: To build the inclusive society, the Japanese government provides “transition support for employment system” for Persons with Disabilities (PWDs). It is, however, difficult to provide appropriate accommodations due to their changeable health conditions. Mobile phone applications (App) are useful to monitor their health conditions and their environments, and effective to improve reasonable accommodations for PWDs. Purpose: This study aimed to develop an App that PWDs input their self-assessment and make their health conditions and environment conditions visible. To attain the goal, we investigated the items of the App for the first step. Methods: Qualitative and descriptive design was used for this study. Study participants were recruited by snowball sampling in July and August 2023. They had to have had minimum of five-years of experience to support PWDs’ employment. Semi-structured interviews were conducted on their assessment regarding PWDs’ conditions of daily activities, their health conditions, and living and working environment. Verbatim transcript was created from each interview content. We extracted the following items in tree groups from each verbatim transcript: daily activities, health conditions, and living and working. Results: Fourteen participants were involved (average years of experience: 10.6 years). Based on the interviews, tree item groups were enriched. The items of daily activities were divided into fifty-five. The example items were as follows: “have meals on one’s style” “feel like slept well” “wake-up time, bedtime, and mealtime are usually fixed.” “commute to the office and work without barriers.” Thirteen items of health conditions were obtained like “feel no anxiety” “relieve stress” “focus on work and training” “have no pain” “have the physical strength to work for one day.” The items of categories of living and working environments were divided into fifteen-two. The example items were as follows: “have no barrier in home” “have supportive family members” “have time to take medication on time while at work” “commute time is just right” “people at the work understand the symptoms” “room temperature and humidity are just right” “get along well with friends in my own way.” The participants also mentioned the styles to input self-assessment like that a face scale would be preferred to number scale. Conclusion: The items were enriched existent paper-based assessment items in terms of living and working environment because those were obtained from the perspective of PWDs. We have to create the app and examine its usefulness with PWDs toward inclusive society.Keywords: occupational health, innovatiove tool, people with disability, employment
Procedia PDF Downloads 5521825 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation
Authors: Yaping Zhao
Abstract:
In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density
Procedia PDF Downloads 50321824 The Effect of Adolescents’ Grit on Stem Creativity: The Mediation of Creative Self-Efficacy and the Moderation of Future Time Perspective
Authors: Han Kuikui
Abstract:
Adolescents, serving as the reserve force for technological innovation talents, possess STEM creativity that is not only pivotal to achieving STEM education goals but also provides a viable path for reforming science curricula in compulsory education and cultivating innovative talents in China. To investigate the relationship among adolescents' grit, creative self-efficacy, future time perspective, and STEM creativity, a survey was conducted in 2023 using stratified random sampling. A total of 1263 junior high school students from the main urban areas of Chongqing, from grade 7 to grade 9, were sampled. The results indicated that (1) Grit positively predicts adolescents' creative self-efficacy and STEM creativity significantly; (2) Creative self-efficacy mediates the positive relationship between grit and adolescents' STEM creativity; (3) The mediating role of creative self-efficacy is moderated by future time perspective, such that with a higher future time perspective, the positive predictive effect of grit on creative self-efficacy is more substantial, which in turn positively affects their STEM creativity.Keywords: grit, stem creativity, creative self-efficacy, future time perspective
Procedia PDF Downloads 5221823 Effects of Listening to Pleasant Thai Classical Music on Increasing Working Memory in Elderly: An Electroencephalogram Study
Authors: Anchana Julsiri, Seree Chadcham
Abstract:
The present study determined the effects of listening to pleasant Thai classical music on increasing working memory in elderly. Thai classical music without lyrics that made participants feel fun and aroused was used in the experiment for 3.19-5.40 minutes. The accuracy scores of Counting Span Task (CST), upper alpha ERD%, and theta ERS% were used to assess working memory of participants both before and after listening to pleasant Thai classical music. The results showed that the accuracy scores of CST and upper alpha ERD% in the frontal area of participants after listening to Thai classical music were significantly higher than before listening to Thai classical music (p < .05). Theta ERS% in the fronto-parietal network of participants after listening to Thai classical music was significantly lower than before listening to Thai classical music (p < .05).Keywords: brain wave, elderly, pleasant Thai classical music, working memory
Procedia PDF Downloads 45921822 Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling
Authors: Aamna Lawrence, Ashutosh Mishra
Abstract:
Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies.Keywords: demyelination, Hodgkin-Huxley model, non-invasive electrical stimulation, tremor
Procedia PDF Downloads 12821821 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable
Authors: Seon Soon Choi
Abstract:
The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable
Procedia PDF Downloads 41021820 LiDAR Based Real Time Multiple Vehicle Detection and Tracking
Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt
Abstract:
Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.Keywords: lidar, segmentation, clustering, tracking
Procedia PDF Downloads 42321819 Tourism Development Analysis According to Offer Improvements: Case of Crikvenica
Authors: Josip Arneric, Antonio Sostaric
Abstract:
Crikvenica is one of the favourite tourist destinations at the Adriatic Sea in Croatia which attracts guests with its natural beauties and is one of the top destinations with the highest number of overnights stays. The main purpose of this research is to determine which elements of tourist offer should be improved to achieve sustainable development of the town of Crikvenica. Namely, the survey results from a random sample have shown that the most common reason of the visits is relaxation and vacation, and that more attention should be given to the following categories: restaurants and the working hours of stores and banks. We have also examined whether or not there is a correlation between an average daily expenditure and the overnight stay. The paper ends with the conclusion and the recommendations on how to improve the tourist offer of Crikvenica in order to increase guest satisfaction and to keep its reputation at a high level.Keywords: tourism development, survey, Crikvenica, management sciences
Procedia PDF Downloads 37221818 Accidents and Close Call Situations Connected to the Use of Mobile Phones in Working-Age People ≥ 50 Years Old
Authors: Leena Korpinen, Rauno Pääkkönen, Fabriziomaria Gobba
Abstract:
The aim of this paper is to investigate accidents and close call situations connected to the use of mobile phones in working-age people ≥ 50 years old. The paper is part of a cross-sectional study that was carried out in 2002 in 15,000 working-age Finns. The study showed that mobile-phone-related accidents and close call situations, both at work and at leisure, are more common in people under 50 years that in people ≥ 50 years old. However, people under 50 use mobile phones more than those aged ≥ 50.Keywords: mobile phone, age, accident, close call situation
Procedia PDF Downloads 35021817 Working Mode and Key Technology of Thermal Vacuum Test Software for Spacecraft Test
Authors: Zhang Lei, Zhan Haiyang, Gu Miao
Abstract:
A universal software platform is developed for improving the defects in the practical one. This software platform has distinct advantages in modularization, information management, and the interfaces. Several technologies such as computer technology, virtualization technology, network technology, etc. are combined together in this software platform, and four working modes are introduced in this article including single mode, distributed mode, cloud mode, and the centralized mode. The application area of the software platform is extended through the switch between these working modes. The software platform can arrange the thermal vacuum test process automatically. This function can improve the reliability of thermal vacuum test.Keywords: software platform, thermal vacuum test, control and measurement, work mode
Procedia PDF Downloads 41421816 Effectiveness of Medication and Non-Medication Therapy on Working Memory of Children with Attention Deficit and Hyperactivity Disorder
Authors: Mohaammad Ahmadpanah, Amineh Akhondi, Mohammad Haghighi, Ali Ghaleiha, Leila Jahangard, Elham Salari
Abstract:
Background: Working memory includes the capability to keep and manipulate information in a short period of time. This capability is the basis of complicated judgments and has been attended to as the specific and constant character of individuals. Children with attention deficit and hyperactivity are among the people suffering from deficiency in the active memory, and this deficiency has been attributed to the problem of frontal lobe. This study utilizes a new approach with suitable tasks and methods for training active memory and assessment of the effects of the trainings. Participants: The children participating in this study were of 7-15 year age, who were diagnosed by the psychiatrist and psychologist as hyperactive and attention deficit based on DSM-IV criteria. The intervention group was consisted of 8 boys and 6 girls with the average age of 11 years and standard deviation of 2, and the control group was consisted of 2 girls and 5 boys with an average age of 11.4 and standard deviation of 3. Three children in the test group and two in the control group were under medicinal therapy. Results: Working memory training meaningfully improved the performance in not-trained areas as visual-spatial working memory as well as the performance in Raven progressive tests which are a perfect example of non-verbal, complicated reasoning tasks. In addition, motional activities – measured based on the number of head movements during computerized measuring program – was meaningfully reduced in the medication group. The results of the second test showed that training similar exercise to teenagers and adults results in the improvement of cognition functions, as in hyperactive people. Discussion: The results of this study showed that the performance of working memory is improved through training, and these trainings are extended and generalized in other areas of cognition functions not receiving any training. Trainings resulted in the improvement of performance in the tasks related to prefrontal. They had also a positive and meaningful impact on the moving activities of hyperactive children.Keywords: attention deficit hyperactivity disorder, working memory, non-medical treatment, children
Procedia PDF Downloads 36721815 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources
Authors: Samad Jafarmadar, Amin Habibzadeh
Abstract:
A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.Keywords: combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids
Procedia PDF Downloads 27021814 Factors Influencing Resolution of Anaphora with Collective Nominals in Russian
Authors: Anna Moskaleva
Abstract:
A prolific body of research in theoretical and experimental linguistics claims that a preference for conceptual or grammatical information in the process of agreement greatly depends on the type of agreement dependency. According to the agreement hierarchy, an anaphoric agreement is more sensitive to semantic or conceptual rather than grammatical information of an antecedent. Furthermore, a higher linear distance between a pronoun and its antecedent is assumed to trigger semantic agreement, yet the hierarchical distance is hardly examined in the research field, and the contribution of each distance factor is unclear. Apart from that, working memory volume is deemed to play a role in maintaining grammatical information during language comprehension. The aim of this study is to observe distance and working memory effects in resolution of anaphora with collective nominals (e.g., team) and to have a closer look at the interaction of the factors. Collective nominals in many languages can have a holistic or distributive meaning and can be addressed by a singular or a plural pronoun, respectively. We investigated linguistic factors of linear and rhetorical (hierarchical) distance and a more general factor of working memory volume in their ability to facilitate the interpretation of the number feature of a collective noun in Russian. An eye-tracking reading experiment on comprehension has been conducted where university students were presented with composed texts, including collective nouns and personal pronouns alluding to them. Different eye-tracking measures were calculated using statistical methods. The results have shown that a significant increase in reading time in the case of a singular pronoun was demonstrated when both distances were high, and no such effect was observed when just one of the distances was high. A decrease in reading time has been obtained with distance in the case of a plural pronoun. The working memory effect was not revealed in the experiment. The resonance of distance factors indicates that not only the linear distance but also the hierarchical distance is of great importance in interpreting pronouns. The experimental findings also suggest that, apart from the agreement hierarchy, the preference for conceptual or grammatical information correlates with the distance between a pronoun and its antecedent.Keywords: collective nouns, agreement hierarchy, anaphora resolution, eye-tracking, language comprehension
Procedia PDF Downloads 3821813 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 24021812 Job Satisfaction Levels of Nurses Working in Public Hospitals
Authors: S. Kurt, B. C. Demirbag
Abstract:
Meeting employees’ expectations from an organization physically and mentally is a result of one’s assessing his or her work and its environment as well as his feeling about them. It was to determine the job satisfaction levels of the nurses in public hospitals. This descriptive study was carried out with 404 nurses (60%) accepting to take part in the study voluntarily and working in the same hospital for at least three months from 673 nurses working in hospitals depending on The Secretaryship of Public Hospital Association in Rize. The study aimed to reach the whole population by not taking samples. The data were collected by the personal information form (16 questions) prepared by the researcher, and the job satisfaction scale (36 articles) between June 1st and August 30th, 2014. According to scale, mean scores of nurses’ job satisfaction were 3.23±0.51. In addition, it was determined that the factors such as nurses’s age, marital status, childbearing, place of duty, position in workplace, being liked of job, education status, work experience, weekly working hours, maturing in professional practice, unit worked, hospital worked and colleagues affected the job satisfaction levels of nurses (p <0.05). In conclusion; the nurses’ general job satisfaction levels were moderate level.Keywords: hospitals, job satisfaction level, nurses, public hospitals
Procedia PDF Downloads 36021811 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model
Authors: Aid Abdelkrim
Abstract:
A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading
Procedia PDF Downloads 39621810 Elevated Temperature Shot Peening for M50 Steel
Authors: Xinxin Ma, Guangze Tang, Shuxin Yang, Jinguang He, Fan Zhang, Peiling Sun, Ming Liu, Minyu Sun, Liqin Wang
Abstract:
As a traditional surface hardening technique, shot peening is widely used in industry. By using shot peening, a residual compressive stress is formed in the surface which is beneficial for improving the fatigue life of metal materials. At the same time, very fine grains and high density defects are generated in the surface layer which enhances the surface hardness, either. However, most of the processes are carried out at room temperature. For high strength steel, such as M50, the thickness of the strengthen layer is limited. In order to obtain a thick strengthen surface layer, elevated temperature shot peening was carried out in this work by using Φ1mm cast ion balls with a speed of 80m/s. Considering the tempering temperature of M50 steel is about 550 oC, the processing temperature was in the range from 300 to 500 oC. The effect of processing temperature and processing time of shot peening on distribution of residual stress and surface hardness was investigated. As we known, the working temperature of M50 steel can be as high as 315 oC. Because the defects formed by shot peening are unstable when the working temperature goes higher, it is worthy to understand what happens during the shot peening process, and what happens when the strengthen samples were kept at a certain temperature. In our work, the shot peening time was selected from 2 to 10 min. And after the strengthening process, the samples were annealed at various temperatures from 200 to 500 oC up to 60 h. The results show that the maximum residual compressive stress is near 900 MPa. Compared with room temperature shot peening, the strengthening depth of 500 oC shot peening sample is about 2 times deep. The surface hardness increased with the processing temperature, and the saturation peening time decreases. After annealing, the residual compressive stress decreases, however, for 500 oC peening sample, even annealing at 500 oC for 20 h, the residual compressive stress is still over 600 MPa. However, it is clean to see from SEM that the grain size of surface layers is still very small.Keywords: shot peening, M50 steel, residual compressive stress, elevated temperature
Procedia PDF Downloads 45621809 Online Monitoring of Airborne Bioaerosols Released from a Composting, Green Waste Site
Authors: John Sodeau, David O'Connor, Shane Daly, Stig Hellebust
Abstract:
This study is the first to employ the online WIBS (Waveband Integrated Biosensor Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing “dust” released from a composting/green waste site. The purpose of the research was to provide a “proof of principle” for using WIBS to monitor such a location continually over days and nights in order to construct comparative “bioaerosol site profiles”. Current impaction/culturing methods take many days to achieve results available by the WIBS technique in seconds.The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, “shape”, site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a “light” workload period, another as a “heavy” workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5 micron to 3 micron with morphologies ranging from elongated to elipsoidal/spherical. The real-time number-concentration data were consistent with an Andersen sampling protocol that was employed at the site. The number-concentrations of fluorescent particles as a proportion of total particles counted amounted, on average, to ~1% for the “light” workday period, ~7% for the “heavy” workday period and ~18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays.Keywords: bioaerosols, composting, fluorescence, particle counting in real-time
Procedia PDF Downloads 35521808 Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces
Authors: Paula Verdugo-Hernandez, Patricio Cumsille
Abstract:
We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of mathematical working spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.Keywords: convergence, graphical representations, mathematical working spaces, paradigms of real analysis, real number sequences
Procedia PDF Downloads 14321807 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 6921806 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network
Authors: Vinai K. Singh
Abstract:
In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans
Procedia PDF Downloads 13621805 University Coordinating Council Office: Perceived and Expected Roles and Performances
Authors: Pitsanu Poonpetpun
Abstract:
This research paper consisted of three objectives: 1) to investigate actual perception of Suan Sunandha Rajabhat University’s members towards roles and performances of the Coordinating Council Office under the University Council; 2) to investigate expectation of Suan Sunandha Rajabhat University’s members towards roles and performances of the Coordinating Council Office under the University Council; and 3) to compare actual perception and expectation of Suan Sunandha Rajabhat University’s members towards roles and performances of the Coordinating Council Office under the University Council. A total of 316 samples from the population of the members of Suan Sunandha Rajabhat University were selected by use of the simple random sampling technique. Descriptive statistics and Dependent T- Test for paired samples were used, where the Dependent T- Test was for an analysis of a comparison of actual perception and expectation of Suan Sunandha Rajabhat University’s members towards roles and performances of the Coordinating Council Office under the University Council. The findings unveiled significantly high levels for the following roles: [i] appropriately circulating agendas and meeting files before time; [ii] preparing appropriate amount and quality of audio- visual equipment for meetings; [iii] compiling and keeping up-to-date documents; [iv] coordinating and working on linking all useful information to serve for the university uses for strategic policing; and [v] preparing appropriate meeting venues.Keywords: coordinating council office of the university council, expected role, perceived role, performances of duties
Procedia PDF Downloads 29821804 The Role of Logistics Services in Influencing Customer Satisfaction and Reviews in an Online Marketplace
Authors: nafees mahbub, blake tindol, utkarsh shrivastava, kuanchin chen
Abstract:
Online shopping has become an integral part of businesses today. Big players such as Amazon are setting the bar for delivery services, and many businesses are working towards meeting them. However, what happens if a seller underestimates or overestimates the delivery time? Does it translate to consumer comments, ratings, or lost sales? Although several prior studies have investigated the impact of poor logistics on customer satisfaction, that impact of under estimation of delivery times has been rarely considered. The study uses real-time customer online purchase data to study the impact of missed delivery times on satisfaction.Keywords: LOST SALES, DELIVERY TIME, CUSTOMER SATISFACTION, CUSTOMER REVIEWS
Procedia PDF Downloads 21421803 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump
Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir
Abstract:
The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.Keywords: bubble pump, drift flow model, instability, simulation
Procedia PDF Downloads 26221802 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data
Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates
Abstract:
Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.
Procedia PDF Downloads 9721801 Impact of Violence against Women on Small and Medium Enterprises (SMEs) in Rural Sindh: A Case Study of Kandhkot
Authors: Mohammad Shoaib Khan, Abdul Sattar Bahalkani
Abstract:
This research investigates the violence and their impact on SMEs in Sindh. The main objective of current research is to examine the women empowerment through women participation in small and medium enterprises in upper Sindh. The data were collected from 500 respondents from Kandhkot District, by using simple random technique. A structural questionnaire was designed as an instrument for measuring the impact of SMEs business in women empowerment in rural Sindh. It was revealed that the rural women is less confident and their husbands were always given them hard time once they are exposing themselves to outside the boundaries of the house. It was revealed that rural women have a major contribution in social, economic, and political development. It was further revealed that women are getting low wages and due to non-availability of market facility they are paying low wages. The negative impact of husbands’ income and having children at the age of 0-6 years old are also significant. High income of other household member raises the reservation wage of mothers, thus lowers the probability of participation when the objective of working is to help family’s financial need. The impact of childcare on mothers’ labor force participation is significant but not as the theory predicted. The probability of participation in labor force is significantly higher for women who lived in the urban areas where job opportunities are greater compared to the rural.Keywords: empowerment, violence against women, SMEs, rural
Procedia PDF Downloads 33121800 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 5421799 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable
Authors: Xinyuan Y. Song, Kai Kang
Abstract:
Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data
Procedia PDF Downloads 14321798 Death Anxiety and Well-being in Doctors during COVID-19: The Explanatory and Boosting Roles of Depression and Work Locality
Authors: Mamoona Mushtaq, Komal Meher
Abstract:
The COVID-19 pandemic, a global public health crisis, has triggered anxiety and fear of death in the public, particularly among health professionals. This study aimed to assess the direct and mediated associations between death anxiety, sleep quality, and subjective well-being in doctors working during the pandemic. Another aim was tested to analyze the interactive role of workplace locality in these associations. An indirect-effect model was tested on a sample of 244 doctors working during the pandemic. Findings revealed that the association between death anxiety and subjective well-being was mediated through depression. The theoretical and practical implications of the findings are discussed.Keywords: death anxiety, depression, subjective well-being, working locality
Procedia PDF Downloads 14021797 Important Factors Affecting the Effectiveness of Quality Control Circles
Authors: Sogol Zarafshan
Abstract:
The present study aimed to identify important factors affecting the effectiveness of quality control circles in a hospital, as well as rank them using a combination of fuzzy VIKOR and Grey Relational Analysis (GRA). The study population consisted of five academic members and five experts in the field of nursing working in a hospital, who were selected using a purposive sampling method. Also, a sample of 107 nurses was selected through a simple random sampling method using their employee codes and the random-number table. The required data were collected using a researcher-made questionnaire which consisted of 12 factors. The validity of this questionnaire was confirmed through giving the opinions of experts and academic members who participated in the present study, as well as performing confirmatory factor analysis. Its reliability also was verified (α=0.796). The collected data were analyzed using SPSS 22.0 and LISREL 8.8, as well as VIKOR–GRA and IPA methods. The results of ranking the factors affecting the effectiveness of quality control circles showed that the highest and lowest ranks were related to ‘Managers’ and supervisors’ support’ and ‘Group leadership’. Also, the highest hospital performance was for factors such as ‘Clear goals and objectives’ and ‘Group cohesiveness and homogeneity’, and the lowest for ‘Reward system’ and ‘Feedback system’, respectively. The results showed that although ‘Training the members’, ‘Using the right tools’ and ‘Reward system’ were factors that were of great importance, the organization’s performance for these factors was poor. Therefore, these factors should be paid more attention by the studied hospital managers and should be improved as soon as possible.Keywords: Quality control circles, Fuzzy VIKOR, Grey Relational Analysis, Importance–Performance Analysis
Procedia PDF Downloads 135