Search results for: radiation damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3770

Search results for: radiation damage

3530 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites

Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria

Abstract:

Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.

Keywords: gamma irradiation, graphene oxide, nanocomposites, PVDF

Procedia PDF Downloads 286
3529 Radioprotective Effects of Super-Paramagnetic Iron Oxide Nanoparticles Used as Magnetic Resonance Imaging Contrast Agent for Magnetic Resonance Imaging-Guided Radiotherapy

Authors: Michael R. Shurin, Galina Shurin, Vladimir A. Kirichenko

Abstract:

Background. Visibility of hepatic malignancies is poor on non-contrast imaging for daily verification of liver malignancies prior to radiation therapy on MRI-guided Linear Accelerators (MR-Linac). Ferumoxytol® (Feraheme, AMAG Pharmaceuticals, Waltham, MA) is a SPION agent that is increasingly utilized off-label as hepatic MRI contrast. This agent has the advantage of providing a functional assessment of the liver based upon its uptake by hepatic Kupffer cells proportionate to vascular perfusion, resulting in strong T1, T2 and T2* relaxation effects and enhanced contrast of malignant tumors, which lack Kupffer cells. The latter characteristic has been recently utilized for MRI-guided radiotherapy planning with precision targeting of liver malignancies. However potential radiotoxicity of SPION has never been addressed for its safe use as an MRI-contrast agent during liver radiotherapy on MRI-Linac. This study defines the radiomodulating properties of SPIONs in vitro on human monocyte and macrophage cell lines exposed to 60Go gamma-rays within clinical radiotherapy dose range. Methods. Human monocyte and macrophages cell line in cultures were loaded with a clinically relevant concentration of Ferumoxytol (30µg/ml) for 2 and 24 h and irradiated to 3Gy, 5Gy and 10Gy. Cells were washed and cultured for additional 24 and 48 h prior to assessing their phenotypic activation by flow cytometry and function, including viability (Annexin V/PI assay), proliferation (MTT assay) and cytokine expression (Luminex assay). Results. Our results reveled that SPION affected both human monocytes and macrophages in vitro. Specifically, iron oxide nanoparticles decreased radiation-induced apoptosis and prevented radiation-induced inhibition of human monocyte proliferative activity. Furthermore, Ferumoxytol protected monocytes from radiation-induced modulation of phenotype. For instance, while irradiation decreased polarization of monocytes to CD11b+CD14+ and CD11bnegCD14neg phenotype, Ferumoxytol prevented these effects. In macrophages, Ferumoxytol counteracted the ability of radiation to up-regulate cell polarization to CD11b+CD14+ phenotype and prevented radiation-induced down-regulation of expression of HLA-DR and CD86 molecules. Finally, Ferumoxytol uptake by human monocytes down-regulated expression of pro-inflammatory chemokines MIP-1α (Macrophage inflammatory protein 1α), MIP-1β (CCL4) and RANTES (CCL5). In macrophages, Ferumoxytol reversed the expression of IL-1RA, IL-8, IP-10 (CXCL10) and TNF-α, and up-regulates expression of MCP-1 (CCL2) and MIP-1α in irradiated macrophages. Conclusion. SPION agent Ferumoxytol increases resistance of human monocytes to radiation-induced cell death in vitro and supports anti-inflammatory phenotype of human macrophages under radiation. The effect is radiation dose-dependent and depends on the duration of Feraheme uptake. This study also finds strong evidence that SPIONs reversed the effect of radiation on the expression of pro-inflammatory cytokines involved in initiation and development of radiation-induced liver damage. Correlative translational work at our institution will directly assess the cyto-protective effects of Ferumoxytol on human Kupfer cells in vitro and ex vivo analysis of explanted liver specimens in a subset of patients receiving Feraheme-enhanced MRI-guided radiotherapy to the primary liver tumors as a bridge to liver transplant.

Keywords: superparamagnetic iron oxide nanoparticles, radioprotection, magnetic resonance imaging, liver

Procedia PDF Downloads 73
3528 Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics

Authors: Sleman Yahya Rasul

Abstract:

Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding.

Keywords: boro-tellurite glasses, hfo2, radiation shielding, mechanical properties, elastic properties, optical properties

Procedia PDF Downloads 44
3527 Environmental Radiation Level in Soil from Some Selected Mining Sites in Minna Environs, Niger State, Nigeria

Authors: Abdullahi Muhammad

Abstract:

In this research work, the activity concentrations of the well-known naturally occurring radionuclide materials 40K, 226Ra and 232Th were determine in soil samples obtained from three mining regions of Niger State, Nigeria. A total of 24 soil samples were analysed using NaI(TI) detector to determine the activity concentrations of sample. The range of activity concentration found in this study for the soil samples ranges from 256 to 447 Bq kg-1, 12.2 to 27.56 Bq kg-1 and 3.50 to 11.90 Bq kg-1 for 40K, 226Ra and 232Th, respectively. The perspective of safety and considering the low level of radiation hazard index compared to the world averages and recommended safety limits, these samples can be considered safe for use in building and construction without causing radiological risk to the people residing in these areas.

Keywords: activity concentrations, 40K, 226Ra and 232Th, radiation hazard

Procedia PDF Downloads 4
3526 Effects of Gamma Radiation on Tomato Leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)

Authors: Akın Kuyulu, Hanife Genç

Abstract:

In present study, it was aimed to evaluate the gamma radiation impacts on tomato leaf miner at different biological stages. The laboratory colony of tomato leaf miner was used to set up the experiments. Different biological stages of the insects (eggs, 4th instars and pupae) were irradiated using Cobalt-60 at doses of 0 (control), 100 Gray (Gy), 200 Gy, 300 Gy and 400 Gy in Cos-44HH-N source, at dose rate of 480 Gy/h. After irradiation, the eggs were incubated until hatching; the mature larvae were reared to complete their developments. Adult emergences from irradiated pupae were also evaluated. The results showed that there were no egg hatching at all tested irradiation doses. Although, the pupal percentages of irradiated mature larvae were 54%, 15% and 8% at doses of 100 Gy, 200 Gy and 300 Gy respectively, there were no adult emergences from irradiated mature larvae. On the other hand, the adult emergences were observed from irradiated pupae, decreased as radiation doses increased along with malformed adult appearance. Male and female individuals were out crossed with laboratory reared adults. Fecundity was correlated with radiation doses.

Keywords: irradiation, tomato, tomato leafminer, Tuta absoluta

Procedia PDF Downloads 243
3525 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell

Abstract:

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

Keywords: mm-wave communications, multi-sector array, patch antenna, small cell networks

Procedia PDF Downloads 159
3524 Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study

Authors: Ramanpreet, Gursatej Gandhi

Abstract:

Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect.

Keywords: Buccal micronucleus cytome assay, cytogenetic damage, electric field strength, personal exposimeter

Procedia PDF Downloads 158
3523 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore

Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie

Abstract:

Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.

Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model

Procedia PDF Downloads 153
3522 Thermoluminescence Characteristic of Nanocrystalline BaSO4 Doped with Europium

Authors: Kanika S. Raheja, A. Pandey, Shaila Bahl, Pratik Kumar, S. P. Lochab

Abstract:

The subject of undertaking for this paper is the study of BaSO4 nanophosphor doped with Europium in which mainly the concentration of the rare earth impurity Eu (0.05, 0.1, 0.2, 0.5, and 1 mol %) has been varied. A comparative study of the thermoluminescence(TL) properties of the given nanophosphor has also been done using a well-known standard dosimetry material i.e. TLD-100.Firstly, a number of samples were prepared successfully by the chemical co-precipitation method. The whole lot was then compared to a well established standard material (TLD-100) for its TL sensitivity property. BaSO4:Eu ( 0.2 mol%) showed the highest sensitivity out of the lot. It was also found that when compared to the standard TLD-100, BaSo4:Eu (0.2mol%) showed surprisingly high sensitivity for a large range of doses. The TL response curve for all prepared samples has also been studied over a wide range of doses i.e 10Gy to 2kGy for gamma radiation. Almost all the samples of BaSO4:Eu showed a remarkable linearity for a broad range of doses, which is a characteristic feature of a fine TL dosimeter. The graph remained linear even beyond 1kGy for gamma radiation. Thus, the given nanophosphor has been successfully optimised for the concentration of the dopant material to achieve its highest TL sensitivity. Further, the comparative study with the standard material revealed that the current optimised sample shows an astonishingly better TL sensitivity and a phenomenal linear response curve for an incredibly wide range of doses for gamma radiation (Co-60) as compared to the standard TLD-100, which makes the current optimised BaSo4:Eu quite promising as an efficient gamma radiation dosimeter. Lastly, the present phosphor has been optimised for its annealing temperature to acquire the best results while also studying its fading and reusability properties.

Keywords: gamma radiation, nanoparticles, radiation dosimetry, thermoluminescence

Procedia PDF Downloads 430
3521 A Large-Strain Thermoviscoplastic Damage Model

Authors: João Paulo Pascon

Abstract:

A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations.

Keywords: ductile damage model, finite element method, large strains, thermoviscoplasticity

Procedia PDF Downloads 86
3520 A Damage Level Assessment Model for Extra High Voltage Transmission Towers

Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang

Abstract:

Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.

Keywords: damage level monitoring, drift ratio, fragility curve, smart grid, transmission tower

Procedia PDF Downloads 299
3519 Human-Elephant Conflict and Mitigation Measures in Buffer Zone of Bardia National Park, Nepal

Authors: Rabin Paudel, Dambar Bahadur Mahato, Prabin Poudel, Bijaya Neupane, Sakar Jha

Abstract:

Understanding Human-Elephant Conflict (HEC) is very important in countries like Nepal, where solutions to escalating conflicts are urgently required. However, most of the HEC mitigation measures implemented so far have been done on an ad hoc basis without the detailed understanding of nature and extent of the damage. This study aims to assess the current scenario of HEC in regards to crop and property damages by Wild Asian Elephant and people’s perception towards existing mitigating measures and elephant conservation in Buffer zone area of Bardia National Park. The methods used were a questionnaire survey (N= 178), key-informant interview (N= 18) and focal group discussions (N= 6). Descriptive statistics were used to determine the nature and extent of damage and to understand people’s perception towards HEC, its mitigation measures and elephant conservation. Chi-square test was applied to determine the significance of crop and property damages with respect to distance from the park boundary. Out of all types of damage, crop damage was found to be the highest (51%), followed by house damage (31%) and damage to stored grains (18%) with winter being the season with the greatest elephant damage. Among 178 respondents, the majority of them (82%) were positive towards elephant conservation despite the increment in HEC incidents as perceived by 88% of total respondents. Among the mitigation measures present, the most applied was electric fence (91%) followed by barbed wire fence (5%), reinforced concrete cement wall (3%) and gabion wall (1%). Most effective mitigation measures were reinforced concrete cement wall and gabion wall. To combat increasing crop damage, the insurance policy should be initiated. The efficiency of the mitigation measures should be timely monitored, and corrective measures should be applied as per the need.

Keywords: crop and property damage, elephant conflict, Asiatic wild elephant, mitigation measures

Procedia PDF Downloads 150
3518 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 101
3517 Electrochemiluminescent Detection of DNA Damage Induced by Tetrachloro-1,4- Benzoquinone Using DNA Sensor

Authors: Tian-Fang Kang, Xue Sun

Abstract:

DNA damage induced by tetrachloro-1,4-benzoquinone (TCBQ), a reactive metabolite of pentachloro-phenol (PCP), was investigated using a glassy carbon electrode (GCE) modified with calf thymus double-stranded DNA (ds-DNA) in this work. DNA modified films were constructed by layer-by-layer adsorption of polycationic poly(diallyldimethyl- ammonium chloride) (PDDA) and negatively charged ds-DNA on the surface of a glassy carbon electrode. The DNA intercalator [Ru(bpy)2(dppz)]2+ (bpy=2, 2′-bipyridine, dppz0dipyrido [3, 2-a: 2′,3′-c] phenazine) was chosen as an electrochemical probe to detect DNA damage. After the sensor was incubated in 0.1 M pH 7.3 phosphate buffer solution (PBS) for 30min, the intact PDDA/DNA film produced a sensitive electrochemiluminescent (ECL) signal. However, after the sensor was incubated in 100 μM TCBQ or a mixed solution of 100 μM TCBQ and 2 mM H2O2, ECL signal decreased significantly. During the incubation of DNA in TCBQ or TCBQ-H2O2 solution, the double-helix of DNA was damaged, which resulted in the decrease of Ru-dppz bound to DNA. Additionally, the results were verified independently by fluorescence experiments. This paper provides a sensitive method to directly screen DNA damage induced by chemicals in the environment.

Keywords: DNA damage, detection, electrochemiluminescence, sensor

Procedia PDF Downloads 410
3516 Enhancement of Radiosensitization by Aptamer 5TR1-Functionalized AgNCs for Triple-Negative Breast Cancer

Authors: Xuechun Kan, Dongdong Li, Fan Li, Peidang Liu

Abstract:

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with a poor prognosis, and radiotherapy is one of the main treatment methods. However, due to the obvious resistance of tumor cells to radiotherapy, high dose of ionizing radiation is required during radiotherapy, which causes serious damage to normal tissues near the tumor. Therefore, how to improve radiotherapy resistance and enhance the specific killing of tumor cells by radiation is a hot issue that needs to be solved in clinic. Recent studies have shown that silver-based nanoparticles have strong radiosensitization, and silver nanoclusters (AgNCs) also provide a broad prospect for tumor targeted radiosensitization therapy due to their ultra-small size, low toxicity or non-toxicity, self-fluorescence and strong photostability. Aptamer 5TR1 is a 25-base oligonucleotide aptamer that can specifically bind to mucin-1 highly expressed on the membrane surface of TNBC 4T1 cells, and can be used as a highly efficient tumor targeting molecule. In this study, AgNCs were synthesized by DNA template based on 5TR1 aptamer (NC-T5-5TR1), and its role as a targeted radiosensitizer in TNBC radiotherapy was investigated. The optimal DNA template was first screened by fluorescence emission spectroscopy, and NC-T5-5TR1 was prepared. NC-T5-5TR1 was characterized by transmission electron microscopy, ultraviolet-visible spectroscopy and dynamic light scattering. The inhibitory effect of NC-T5-5TR1 on cell activity was evaluated using the MTT method. Laser confocal microscopy was employed to observe NC-T5-5TR1 targeting 4T1 cells and verify its self-fluorescence characteristics. The uptake of NC-T5-5TR1 by 4T1 cells was observed by dark-field imaging, and the uptake peak was evaluated by inductively coupled plasma mass spectrometry. The radiation sensitization effect of NC-T5-5TR1 was evaluated through cell cloning and in vivo anti-tumor experiments. Annexin V-FITC/PI double staining flow cytometry was utilized to detect the impact of nanomaterials combined with radiotherapy on apoptosis. The results demonstrated that the particle size of NC-T5-5TR1 is about 2 nm, and the UV-visible absorption spectrum detection verifies the successful construction of NC-T5-5TR1, and it shows good dispersion. NC-T5-5TR1 significantly inhibited the activity of 4T1 cells and effectively targeted and fluoresced within 4T1 cells. The uptake of NC-T5-5TR1 reached its peak at 3 h in the tumor area. Compared with AgNCs without aptamer modification, NC-T5-5TR1 exhibited superior radiation sensitization, and combined radiotherapy significantly inhibited the activity of 4T1 cells and tumor growth in 4T1-bearing mice. The apoptosis level of NC-T5-5TR1 combined with radiation was significantly increased. These findings provide important theoretical and experimental support for NC-T5-5TR1 as a radiation sensitizer for TNBC.

Keywords: 5TR1 aptamer, silver nanoclusters, radio sensitization, triple-negative breast cancer

Procedia PDF Downloads 64
3515 Radiation Dose and Associated Exposure Parameters in Selected MDCT Scanners in Multiphase Scan of Abdomen-Pelvic Region: A Clinical Study

Authors: P. Sathyathas, H. M. I. S. W. Herath, T. Amalraj, U. J. M. A. L. Jayasinghe

Abstract:

Over two thirds of medical radiation can now be attributed to Computed Tomography (CT). There is little information on amount of radiation received from multiphase CT scan of abdomen- pelvic region in clinical practice. We sought to estimate the radiation dose and associated exposure parameters in the multiphase abdomen - pelvic scan of Multideteror Computed Tomography (MDCT) studies in clinical practice. This was a retrospective cross sectional studies describing radiation dose associated with main exposure parameters in diagnostic multiphase abdomen - pelvic scans performed on 152 consecutive patients by two different sixteen slice CT scanners. Patient information, exposure parameters of CTDI (volume), DLP, kVp, mAs and pitch were recorded for every phases of abdomen- a pelvic study from dose report of MDCT scanners (MDCTs). Age of patients range from 14 years to 87 years in both MDCT scanners. Overall CTDI (volume) median was 63.8 (±10.4) mGy for a multiphase abdominal-pelvic scan with scanner A while it was 35.4 (±15.6) mGy for scanner B. Patients' effective dose for multiphase abdomen - pelvic CT scan range from 8.2 mSv to 58 mSv. Median effective dose for patients, who underwent multiphase abdomen- pelvis scan with scanner A and B were 38.5 (± 8.2) mSv and 21.3 (± 8.6) mSv respectively. Median value of exposure parameters of mAs, kVp and pitch, were 150 (±29.7), 130 (±15.3) and 1.3 (±0.1) respectively in scanner A. In scanner B; they were 60 (±14.5), 120 and 1. The median effective dose for patients between multiphase abdomen-pelvic scan of both MDCT, a significant different (P<0.05) was observed. Multiphase abdomen – pelvic scan of clinical study shows significant different of effective dose with reference level of phantom studies (8-14mSv) and it depends on the type of vendors.

Keywords: abdomen-pelvic region, computed tomography, exposure parameters, radiation dose

Procedia PDF Downloads 328
3514 Effect of Radiation on Magnetohydrodynamic Two Phase Stenosed Arterial Blood Flow with Heat and Mass Transfer

Authors: Bhavya Tripathi, Bhupendra Kumar Sharma

Abstract:

In blood, the concentration of red blood cell varies with the arterial diameter. In the case of narrow arteries, red blood cells concentrate around the center of the artery and there exists a cell-free plasma layer near the arterial wall due to Fahraeus-Lindqvist effect. Due to non- uniformity of the fluid in the narrow arteries, it is preferable to consider the two-phase model of the blood flow. In the present article, coupled nonlinear differential equations have been developed for momentum, energy and concentration of two phase model of the blood flow assuming the Newtonian fluid in both central core and cell free plasma layer and the exact solutions have been found for the problem. For having an adequate insight into the stenosed arterial two-phase blood flow, major components of the flow as flow resistance, total flow rate, and wall shear stress have been estimated for different values of magnetic and radiation parameter. Results show that the increase in the effects of magnetic field decreases the velocity of both cores as well as plasma regions. This result can be helpful to control the blood flow in narrow arteries during surgical process. Temperature of core as well plasma regions decrease as value of radiation parameter increases. The present result is implemented in the form of radiation therapy which is very helpful for cancer patients.

Keywords: two phase blood flow, radiation, magnetohydrodynamics (MHD), stenosis

Procedia PDF Downloads 205
3513 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)

Procedia PDF Downloads 240
3512 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.

Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy

Procedia PDF Downloads 409
3511 Gamma Irradiation Effect on Structural and Optical Properties of Bismuth-Boro-Tellurite Glasses

Authors: Azuraida Amat, Halimah Mohamed Kamari, Che Azurahanim Che Abdullah, Ishak Mansor

Abstract:

The changes of the optical and structural properties of Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were studied. Six glass samples, with different compositions [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were irradiated with 25kGy gamma radiation at room temperature. The Fourier Transform Infrared Spectroscopy (FTIR) was used to explore the structural bonding in the prepared glass samples due to exposure, while UV-VIS Spectrophotometer was used to evaluate the changes in the optical properties before and after irradiation. Gamma irradiation causes a profound changes in the peak intensity as shown by FTIR spectra which is due to the breaking of the network bonding. Before gamma irradiation, the optical band gap, Eg value decreased from 2.44 eV to 2.15 eV with the addition of Bismuth content. The value kept decreasing (from 2.18 eV to 2.00 eV) following exposure to gamma radiation due to the increase of non-bridging oxygen (NBO) and the increase of defects in the glass. In conclusion, the glass with high content of Bi2O3 (0.30Bi) give the smallest Eg and show less changes in FTIR spectra after gamma irradiation, which indicate that this glass is more resistant to gamma radiation compared to other glasses.

Keywords: boro-tellurite, bismuth, gamma radiation, optical properties

Procedia PDF Downloads 427
3510 An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool

Authors: Farokh Alipour, Ali Falavand, Neda Beit Saeid

Abstract:

The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout.

Keywords: LNG, pool fire, spill, radiation

Procedia PDF Downloads 404
3509 Early Detection of Damages in Railway Steel Truss Bridges from Measured Dynamic Responses

Authors: Dinesh Gundavaram

Abstract:

This paper presents an investigation on bridge damage detection based on the dynamic responses estimated from a passing vehicle. A numerical simulation of steel truss bridge for railway was used in this investigation. The bridge response at different locations is measured using CSI-Bridge software. Several damage scenarios are considered including different locations and severities. The possibilities of dynamic properties of global modes in the identification of structural changes in truss bridges were discussed based on the results of measurement.

Keywords: bridge, damage, dynamic responses, detection

Procedia PDF Downloads 274
3508 Dosimetry in Interventional Radiology Examinations for Occupational Exposure Monitoring

Authors: Ava Zarif Sanayei, Sedigheh Sina

Abstract:

Interventional radiology (IR) uses imaging guidance, including X-rays and CT scans, to deliver therapy precisely. Most IR procedures are performed under local anesthesia and start with a small needle being inserted through the skin, which may be called pinhole surgery or image-guided surgery. There is increasing concern about radiation exposure during interventional radiology procedures due to procedure complexity. The basic aim of optimizing radiation protection as outlined in ICRP 139, is to strike a balance between image quality and radiation dose while maximizing benefits, ensuring that diagnostic interpretation is satisfactory. This study aims to estimate the equivalent doses to the main trunk of the body for the Interventional radiologist and Superintendent using LiF: Mg, Ti (TLD-100) chips at the IR department of a hospital in Shiraz, Iran. In the initial stage, the dosimeters were calibrated with the use of various phantoms. Afterward, a group of dosimeters was prepared, following which they were used for three months. To measure the personal equivalent dose to the body, three TLD chips were put in a tissue-equivalent batch and used under a protective lead apron. After the completion of the duration, TLDs were read out by a TLD reader. The results revealed that these individuals received equivalent doses of 387.39 and 145.11 µSv, respectively. The findings of this investigation revealed that the total radiation exposure to the staff was less than the annual limit of occupational exposure. However, it's imperative to implement appropriate radiation protection measures. Although the dose received by the interventional radiologist is a bit noticeable, it may be due to the reason for using conventional equipment with over-couch x-ray tubes for interventional procedures. It is therefore important to use dedicated equipment and protective means such as glasses and screens whenever compatible with the intervention when they are available or have them fitted to equipment if they are not present. Based on the results, the placement of staff in an appropriate location led to increasing the dose to the radiologist. Manufacturing and installation of moveable lead curtains with a thickness of 0.25 millimeters can effectively minimize the radiation dose to the body. Providing adequate training on radiation safety principles, particularly for technologists, can be an optimal approach to further decreasing exposure.

Keywords: interventional radiology, personal monitoring, radiation protection, thermoluminescence dosimetry

Procedia PDF Downloads 62
3507 Recommended Practice for Experimental Evaluation of the Seepage Sensitivity Damage of Coalbed Methane Reservoirs

Authors: Hao Liu, Lihui Zheng, Chinedu J. Okere, Chao Wang, Xiangchun Wang, Peng Zhang

Abstract:

The coalbed methane (CBM) extraction industry (an unconventional energy source) is yet to promulgated an established standard code of practice for the experimental evaluation of sensitivity damage of coal samples. The existing experimental process of previous researches mainly followed the industry standard for conventional oil and gas reservoirs (CIS). However, the existing evaluation method ignores certain critical differences between CBM reservoirs and conventional reservoirs, which could inevitably result in an inaccurate evaluation of sensitivity damage and, eventually, poor decisions regarding the formulation of formation damage prevention measures. In this study, we propose improved experimental guidelines for evaluating seepage sensitivity damage of CBM reservoirs by leveraging on the shortcomings of the existing methods. The proposed method was established via a theoretical analysis of the main drawbacks of the existing methods and validated through comparative experiments. The results show that the proposed evaluation technique provided reliable experimental results that can better reflect actual reservoir conditions and correctly guide future development of CBM reservoirs. This study is pioneering the research on the optimization of experimental parameters for efficient exploration and development of CBM reservoirs.

Keywords: coalbed methane, formation damage, permeability, unconventional energy source

Procedia PDF Downloads 128
3506 Dynamic Damage Analysis of Carbon Fiber Reinforced Polymer Composite Confinement Vessels

Authors: Kamal Hammad, Alexey Fedorenko, Ivan Sergeichev

Abstract:

This study uses analytical modeling, experimental testing, and explicit numerical simulations to evaluate failure and spall damage in Carbon Fiber-Reinforced Polymer (CFRP) composite confinement vessels. It investigates the response of composite materials to explosive loading dynamic impact, revealing varied failure modes. Hashin damage was used to model inplane failure, while the Virtual Crack Closure Technique (VCCT) modeled inter-laminar damage. Results show moderate agreement between simulations and experiments regarding free surface velocity and failure stresses, with discrepancies due to wire alignment imperfections and wave reverberations in the experimental test. The findings can improve design and risk-reduction strategies in high-risk scenarios, leading to enhanced safety and economic efficiency in material assessment and structural design processes.

Keywords: explicit, numerical, spall, damage, CFRP, composite, vessels, explosive, dynamic, impact, Hashin, VCCT

Procedia PDF Downloads 54
3505 Study of Superconducting Patch Printed on Electric-Magnetic Substrates Materials

Authors: Fortaki Tarek, S. Bedra

Abstract:

In this paper, the effects of both uniaxial anisotropy in the substrate and high Tc superconducting patch on the resonant frequency, half-power bandwidth, and radiation patterns are investigated using an electric field integral equation and the spectral domain Green’s function. The analysis has been based on a full electromagnetic wave model with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant and radiation characteristics of high Tc superconducting rectangular microstrip patch in the case where the patch is printed on electric-magnetic uniaxially anisotropic substrate materials. The stationary phase technique has been used for computing the radiation electric field. The obtained results demonstrate a considerable improvement in the half-power bandwidth, of the rectangular microstrip patch, by using a superconductor patch instead of a perfect conductor one. Further results show that high Tc superconducting rectangular microstrip patch on the uniaxial substrate with properly selected electric and magnetic anisotropy ratios is more advantageous than the one on the isotropic substrate by exhibiting wider bandwidth and radiation characteristic. This behavior agrees with that discovered experimentally for superconducting patches on isotropic substrates. The calculated results have been compared with measured one available in the literature and excellent agreement has been found.

Keywords: high Tc superconducting microstrip patch, electric-magnetic anisotropic substrate, Galerkin method, surface complex impedance with boundary conditions, radiation patterns

Procedia PDF Downloads 445
3504 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation

Procedia PDF Downloads 401
3503 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa

Authors: Samy A. Khalil, U. Ali Rahoma

Abstract:

The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.

Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa

Procedia PDF Downloads 101
3502 In Vitro Propagation of Aloe vera and Aloe littoralis Plants: Gamma Radiation, Biochemical and Genetic Changes

Authors: Z. Nourmohammadi, F. Farahani, M. Shaker

Abstract:

Aloe is an important commercial crop available in a wide range of species and varieties in international markets. The applications of this plant have been recorded in the ancient cultures of India, Egypt, Greece, Rome and China. Aloe has been used for centuries and is currently being actively studied for medicinal purposes. Aloe is propagated through lateral buds, which is slow, very expensive and low income practice. Nowadays, it has been cultured by in vitro propagation for rapid multiplication of plants, genetic improvement of crops, obtaining disease-free clones and for progressive valuable germplasm. The present study focused on the influence of different phytohormones on rapid in vitro propagation of Aloe plants. We also investigated the effect of gamma radiation on biochemical characters as well as genetic changes. Shoot tip of 2-3 cm were collected from offshoot of Aloe barbadensis and Aloe littoralis, and were inoculated with MS medium containing various concentrations of BA (0.5, 1, 2 mg/l), IAA (0.5, 1 mg/l). The best treatment for a highest shoot number and bud proliferation was MS medium containing 2 mg/l BAP and 0.5 mg/l IAA in A. barbadensis and A. littoralis. Maximum percentage of proliferated shoot buds (90% and 95%) from a single explant were obtained in MS medium after 4-5 weeks of the second and the first subcultures, respectively. Different genome sizes were also indicated among treatments and subcultures. The mixoploids identified in flow cytometery histograms in different treatments. The effect of gamma radiation on A. littoralis showed that by increasing the dose of gamma radiation, amounts of chlorophyll A, B, carotenoids, total protein content and superoxide dismutase were significantly increased compared to control plants. Genetic variation analysis also revealed significant genetic differences between control and gamma radiation treated regenerated plants by AMOVA test. Higher genetic heterozygocity was observed in radiation treated plants. Our findings may provide useful method for improving of Aloe plant proliferation with increasing of useful material such as antioxidant enzymes.

Keywords: aloe, antioxidant enzyme, micropropagation, gamma radiation, genetic variation

Procedia PDF Downloads 431
3501 Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels

Authors: Xuan Sun, Mingbo Tong

Abstract:

To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures.

Keywords: stiffened, low-velocity impact, Abaqus, impact energy

Procedia PDF Downloads 622