Search results for: partial least squares regression
4350 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.Keywords: Karkheh River, Log Pearson Type III, probability distribution, residual sum of squares
Procedia PDF Downloads 1974349 Formation of ZnS/ZnO Heterojunction for Photocatalytic Hydrogen Evolution Using Partial Oxidation and Chemical Precipitation Synthesis Methods
Authors: Saba Didarataee, Abbas Ali Khodadadi, Yadollah Mortazavi, Fatemeh Mousavi
Abstract:
Photocatalytic water splitting is one of the most attractive alternative methods for hydrogen evolution. A variety of nanoparticle engineering techniques were introduced to improve the activity of semiconductor photocatalysts. Among these methods, heterojunction formation is an appealing method due to its ability to effectively preventing electron-hole recombination and improving photocatalytic activity. Reaching an optimal ratio of the two target semiconductors for the formation of heterojunctions is still an open question. Considering environmental issues as well as the cost and availability, ZnS and ZnO are frequently studied as potential choices. In this study, first, the ZnS nanoparticle was synthesized in a hydrothermal process; the formation of ZnS nanorods with a diameter of 14-30 nm was confirmed by field emission scanning electron microscope (FESEM). Then two different methods, partial oxidation and chemical precipitation were employed to construct ZnS/ZnO core-shell heterojunction. X-ray diffraction (XRD), BET, and diffuse reflectance spectroscopy (DRS) analysis were carried out to determine crystallite phase, surface area, and bandgap of photocatalysts. Furthermore, the temperature of oxidation was specified by a temperature programmed oxidation (TPO) and was fixed at 510℃, at which mild oxidation occurred. The bandgap was calculated by the Kubelka-Munk method and decreased by increasing oxide content from 3.53 (pure ZnS) to 3.18 (pure ZnO). The optimal samples were determined by testing the photocatalytic activity of hydrogen evolution in a quartz photoreactor with side irradiation of UVC lamps with a wavelength of 254 nm. In both procedures, it was observed that the photocatalytic activity of the ZnS/ZnO composite was sensibly higher than the pure ZnS and ZnO, which is attributed to forming a type-II heterostructure. The best ratio of oxide to sulfide was 0.24 and 0.37 in partial oxidation and chemical precipitation, respectively. The highest hydrogen evolution was 1081 µmol/gr.h, gained from partial oxidizing of ZnS nanoparticles at 510℃ for 30 minutes.Keywords: heterostructure, hydrogen, partial oxidation, photocatalyst, water splitting, ZnS
Procedia PDF Downloads 1284348 The Application of Raman Spectroscopy in Olive Oil Analysis
Authors: Silvia Portarena, Chiara Anselmi, Chiara Baldacchini, Enrico Brugnoli
Abstract:
Extra virgin olive oil (EVOO) is a complex matrix mainly composed by fatty acid and other minor compounds, among which carotenoids are well known for their antioxidative function that is a key mechanism of protection against cancer, cardiovascular diseases, and macular degeneration in humans. EVOO composition in terms of such constituents is generally the result of a complex combination of genetic, agronomical and environmental factors. To selectively improve the quality of EVOOs, the role of each factor on its biochemical composition need to be investigated. By selecting fruits from four different cultivars similarly grown and harvested, it was demonstrated that Raman spectroscopy, combined with chemometric analysis, is able to discriminate the different cultivars, also as a function of the harvest date, based on the relative content and composition of fatty acid and carotenoids. In particular, a correct classification up to 94.4% of samples, according to the cultivar and the maturation stage, was obtained. Moreover, by using gas chromatography and high-performance liquid chromatography as reference techniques, the Raman spectral features further allowed to build models, based on partial least squares regression, that were able to predict the relative amount of the main fatty acids and the main carotenoids in EVOO, with high coefficients of determination. Besides genetic factors, climatic parameters, such as light exposition, distance from the sea, temperature, and amount of precipitations could have a strong influence on EVOO composition of both major and minor compounds. This suggests that the Raman spectra could act as a specific fingerprint for the geographical discrimination and authentication of EVOO. To understand the influence of environment on EVOO Raman spectra, samples from seven regions along the Italian coasts were selected and analyzed. In particular, it was used a dual approach combining Raman spectroscopy and isotope ratio mass spectrometry (IRMS) with principal component and linear discriminant analysis. A correct classification of 82% EVOO based on their regional geographical origin was obtained. Raman spectra were obtained by Super Labram spectrometer equipped with an Argon laser (514.5 nm wavelenght). Analyses of stable isotope content ratio were performed using an isotope ratio mass spectrometer connected to an elemental analyzer and to a pyrolysis system. These studies demonstrate that RR spectroscopy is a valuable and useful technique for the analysis of EVOO. In combination with statistical analysis, it makes possible the assessment of specific samples’ content and allows for classifying oils according to their geographical and varietal origin.Keywords: authentication, chemometrics, olive oil, raman spectroscopy
Procedia PDF Downloads 3324347 A Novel Approach towards Test Case Prioritization Technique
Authors: Kamna Solanki, Yudhvir Singh, Sandeep Dalal
Abstract:
Software testing is a time and cost intensive process. A scrutiny of the code and rigorous testing is required to identify and rectify the putative bugs. The process of bug identification and its consequent correction is continuous in nature and often some of the bugs are removed after the software has been launched in the market. This process of code validation of the altered software during the maintenance phase is termed as Regression testing. Regression testing ubiquitously considers resource constraints; therefore, the deduction of an appropriate set of test cases, from the ensemble of the entire gamut of test cases, is a critical issue for regression test planning. This paper presents a novel method for designing a suitable prioritization process to optimize fault detection rate and performance of regression test on predefined constraints. The proposed method for test case prioritization m-ACO alters the food source selection criteria of natural ants and is basically a modified version of Ant Colony Optimization (ACO). The proposed m-ACO approach has been coded in 'Perl' language and results are validated using three examples by computation of Average Percentage of Faults Detected (APFD) metric.Keywords: regression testing, software testing, test case prioritization, test suite optimization
Procedia PDF Downloads 3384346 Exploring Re-Configuration of Ordinary Spaces into Recreation and Leisure Space in Compact Unplanned Settlements: Experience from Manzese Informal Settlement-Dar Es Salaam Tanzania
Authors: Edson Ephraim Sanga
Abstract:
This paper stems to explore possible places used for recreation in unplanned settlements in order to avail knowledge on how to create and shape urban spaces essential for recreation and leisure. The context of unplanned settlements is spatially characterized compactness and congestions of buildings developed by residents without professional inputs. These characteristics surpass greenery landscapes such as parks and squares essential for health, happiness and wellbeing. The lack of recreational greenery landscape arises a question on how possible can recreation take places in the settlements? This study used qualitative methods mainly observation and in-depth interview to explore the recreational situation in Manzese informal settlements as an instrumental case and found that ordinary spaces are re-configured into recreational spaces and used as ‘parks’ and ‘squares’ in the settlements. The spaces are diverse and complex as they possess different spatial characteristics based on their physical attributes and the way they are used and interpreted by respective users. This paper argues that the re-configuration processes of ordinary spaces should not be taken for granted because they portray the appropriation of spaces from quotidian dimensions in a particular context.Keywords: ordinary spaces, recreation, unplanned settlement, urban spaces
Procedia PDF Downloads 2754345 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer
Authors: Nirav J. Patel, Kalpesh K. Dudani
Abstract:
Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.Keywords: acoustic, partial discharge, perfectly matched layer, sensor
Procedia PDF Downloads 5274344 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal
Authors: Israa Sh. Tawfic, Sema Koc Kayhan
Abstract:
Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.Keywords: compressed sensing, lest support orthogonal matching pursuit, partial knowing support, restricted isometry property, signal reconstruction
Procedia PDF Downloads 2404343 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression
Authors: N. Alhazmi
Abstract:
Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity
Procedia PDF Downloads 2224342 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness
Procedia PDF Downloads 3094341 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: bootstrap, edgeworth approximation, IID, quantile
Procedia PDF Downloads 1594340 A Study of Non Linear Partial Differential Equation with Random Initial Condition
Authors: Ayaz Ahmad
Abstract:
In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.Keywords: drift term, finite time blow up, inverse problem, soliton solution
Procedia PDF Downloads 2154339 Harnessing Entrepreneurial Opportunities for National Security
Authors: Itiola Kehinde Adeniran
Abstract:
This paper investigated the influence of harnessing entrepreneurial opportunities on the national security in Nigeria with a specific focus on the security situation of the post-amnesty programmes of the Federal Government in Ondo State. The self-administered structured questionnaire was employed to collect data from one hundred and twenty participants through purposive sampling method. Inferential statistics was used to analyze the data, specifically; ordinary least squares linear regression method was employed with the aid of statistical package for social science (SPSS) version 20 in order to determine the influence of independent variable (entrepreneurial opportunities) on dependent variable (national security). The result showed that business opportunities have a significant influence on the rate of criminal activities. The study also revealed that entrepreneurial opportunity creation and discovery as well as providing a model on how these entrepreneurial opportunities could be effectively and efficiently utilized jointly predict better national security, which counted for 69% variance of crime rate reduction. The paper, therefore, recommended that citizens should be encouraged to develop an interest in the skill-based activities in order to change their mindset towards self-employment which can motivate them in identify entrepreneurial opportunities.Keywords: entrepreneurship, entrepreneurial opportunities, national security, unemployment
Procedia PDF Downloads 3304338 The Significance of Intellectual Capital and Strategic Orientations on Innovation Capability in Malaysian ICTSMEs
Authors: Juliana Osman, David Gilbert, Caroline Tan
Abstract:
Innovation capability is recognized as a critical factor that contributes to promoting firm growth and wealth creation. While studies on innovation are in abundance, few empirical studies have been undertaken to examine the relationships of intellectual capital with innovation capability, and research investigating the combinations of strategic orientation dimensions is limited and virtually nothing in regard to the Malaysian context. This research investigates the impact of intellectual capital and three strategic orientations on the innovation capability and firm performance of Malaysian ICT SMEs. Data was collected from 213 firms relating to intellectual capital and the three strategic orientations; market orientation, learning orientation and technology orientation. Using partial least squares structural equation modelling (PLS-SEM) to analyse the data, results indicate that while market orientation has a direct negative relationship to firm performance, it is positively related to performance through the mediating effect of innovation capability. Learning orientation and technology orientation are mediated by innovation capability, while intellectual capital was found to be partially mediated by innovation capability. Findings indicate that firm performance is positively and significantly related to innovation capability and that market orientation, learning orientation, technology orientation and intellectual capital are all significant and positively related to innovation capability. The developed model indicates that Malaysian ICT SMEs would perform better with greater emphasis on developing innovation capability through enhancement of intellectual capital and the strategic orientations measured in this study.Keywords: innovation capability, intellectual capital, strategic orientations, PLS-SEM
Procedia PDF Downloads 4724337 Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design
Authors: Noha Ibrahim, Eman S. Elzanfaly, Said A. Hassan, Ahmed E. El Gendy
Abstract:
Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation.Keywords: amlodipine, central composite face-centred design, experimental design, fractional factorial design, multivariate calibration, olmesartan
Procedia PDF Downloads 1494336 Non-Destructive Prediction System Using near Infrared Spectroscopy for Crude Palm Oil
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of predictive models has facilitated the estimation process in recent years. In this research, 176 crude palm oil (CPO) samples acquired from Felda Johor Bulker Sdn Bhd were studied. A FOSS NIRSystem was used to tak e absorbance measurements from the sample. The wavelength range for the spectral measurement is taken at 1600nm to 1900nm. Partial Least Square Regression (PLSR) prediction model with 50 optimal number of principal components was implemented to study the relationship between the measured Free Fatty Acid (FFA) values and the measured spectral absorption. PLSR showed predictive ability of FFA values with correlative coefficient (R) of 0.9808 for the training set and 0.9684 for the testing set.Keywords: palm oil, fatty acid, NIRS, PLSR
Procedia PDF Downloads 2094335 The Impact of Structural Empowerment on Risk Management Practices: A Case Study of Saudi Arabia Construction Small and Medium-Sized Enterprises
Authors: S. Alyami, S. Mohammad
Abstract:
These Risk management practices have a significant impact on construction SMEs. The effective utilisation of these practices depends on culture change in order to optimise decision making for critical activities within construction projects. Thus, successful implementation of empowerment strategies would enhance operational employees to participate in effective decision making. However, there remain many barriers to individuals and organisations within empowerment strategies that require empirical investigation before the industry can benefit from their implementation. Gaps in understanding the relationship between employee empowerment and risk management practices still exist. This research paper aims to examine the impact of the structural empowerment on risk management practices in construction SMEs. The questionnaire has been distributed to participants (162 employees) that involve projects and civil engineers within a case study from Saudi construction SMEs. Partial least squares based structural equation modeling (PLS-SEM) was utilised to perform analysis. The results reveal a positive relationship between empowerment and risk management practices. The study shows how structural empowerment contributes to operational employees in risk management practices through involving activities such as decision making, self-efficiency, and autonomy. The findings of this study will contribute to close the current gaps in the construction SMEs context.Keywords: construction SMEs, culture, decision making, empowerment, risk management
Procedia PDF Downloads 1194334 Compost Enriched with Actinomyces and Bacillus Polymyxa Algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards
Authors: Abdelaziz Sheba Abdelrahman
Abstract:
Compost enriched with actinomyces and Bacillus polymyxa algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards Organic fertiliser, compost enriched with actinomyces, and the biofertilizer Bacillus polymyxa algae were used as a partial replacement for mineral N fertiliser in Ewaise mango orchards during the 2019 and 2020 seasons. When compared to using mineral N alone, the results showed that reducing the percentage of mineral N fertiliser from 100 to 50% and using compost enriched with actinomyces at 25 to 50% and Bacillus polymyxa had an announced promotion on leaf area, total chlorophylls, leaf N, P, and K, yield, and fruit quality. The use of compost enriched with actinomyces and Bacillus polymyxa, as well as mineral N, resulted in a significant decrease in nitrite in the pulp. Reducing mineral N to 25% of the suitable N had a negative impact on yield. The application of appropriate N via 50% inorganic N + compost enriched with actinomyces at 50% + Bacillus polymyxa algae increased yield quantitatively and qualitatively in Ewaise mango orchards. This promised treatment significantly reduced nitrite levels in the pulp fruit.Keywords: bacillus polymyxa algae, fertiliser, biofertilizer, ewaise mango
Procedia PDF Downloads 1134333 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy
Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket
Abstract:
Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety
Procedia PDF Downloads 1504332 A Sliding Model Control for a Hybrid Hyperbolic Dynamic System
Authors: Xuezhang Hou
Abstract:
In the present paper, a hybrid hyperbolic dynamic system formulated by partial differential equations with initial and boundary conditions is considered. First, the system is transformed to an abstract evolution system in an appropriate Hilbert space, and spectral analysis and semigroup generation of the system operator is discussed. Subsequently, a sliding model control problem is proposed and investigated, and an equivalent control method is introduced and applied to the system. Finally, a significant result that the state of the system can be approximated by an ideal sliding mode under control in any accuracy is derived and examined.Keywords: hyperbolic dynamic system, sliding model control, semigroup of linear operators, partial differential equations
Procedia PDF Downloads 1364331 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement
Authors: Tudor Barbu
Abstract:
We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes
Procedia PDF Downloads 3134330 Intelligent Tutor Using Adaptive Learning to Partial Discharges with Virtual Reality Systems
Authors: Hernández Yasmín, Ochoa Alberto, Hurtado Diego
Abstract:
The aim of this study is developing an intelligent tutoring system for electrical operators training with virtual reality systems at the laboratory center of partials discharges LAPEM. The electrical domain requires efficient and well trained personnel, due to the danger involved in the partials discharges field, qualified electricians are required. This paper presents an overview of the intelligent tutor adaptive learning design and user interface with VR. We propose the develop of constructing a model domain of a subset of partial discharges enables adaptive training through a trainee model which represents the affective and knowledge states of trainees. According to the success of the intelligent tutor system with VR, it is also hypothesized that the trainees will able to learn the electrical domain installations of partial discharges and gain knowledge more efficient and well trained than trainees using traditional methods of teaching without running any risk of being in danger, traditional methods makes training lengthily, costly and dangerously.Keywords: intelligent tutoring system, artificial intelligence, virtual reality, partials discharges, adaptive learning
Procedia PDF Downloads 3154329 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 4664328 Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights
Authors: Ji-Wook Mauk, Yu-Suk Kim, Hyung-Joon Kim
Abstract:
This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled RC frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was established for comparison. Non-linear static analyses for the studied frames were performed to investigate their structural behavior under extreme loading conditions and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled RC frames are increased and their ductility is reduced, as infilled masonry walls are higher. Especially, Reinforced concrete frames with a higher partial infilled masonry wall would experience shear failures. Non-linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frames present stable collapse mechanism while the reinforced concrete frames with a partially infilled masonry wall collapse in more brittle manner due to short-column effects.Keywords: fully infilled RC frame, partially infilled RC frame, masonry wall, short-column effect
Procedia PDF Downloads 4224327 Properties of Triadic Concrete Containing Rice Husk Ash and Wood Waste Ash as Partial Cement Replacement
Authors: Abdul Rahman Mohd. Sam, Olukotun Nathaniel, Dunu Williams
Abstract:
Concrete is one of the most popular materials used in construction industry. However, one of the setbacks is that concrete can degrade with time upon exposure to an aggressive environment that leads to decrease in strength. Thus, research works and innovative ways are needed to enhance the strength and durability of concrete. This work tries to look into the potential use of rice husk ash (RHA) and wood waste ash (WWA) as cement replacement material. These are waste materials that may not only enhance the properties of concrete but also can serves as a viable method of disposal of waste for sustainability. In addition, a substantial replacement of Ordinary Portland Cement (OPC) with these pozzolans will mean reduction in CO₂ emissions and high energy requirement associated with the production of OPC. This study is aimed at assessing the properties of triadic concrete produced using RHA and WWA as a partial replacement of cement. The effects of partial replacement of OPC with 10% RHA and 5% WWA on compressive and tensile strength of concrete among other properties were investigated. Concrete was produced with nominal mix of 1:2:4 and 0.55 water-cement ratio, prepared, cured and subjected to compressive and tensile strength test at 3, 7, 14, 28 and 90days. The experimental data demonstrate that concrete containing RHA and WWA produced lighter weight in comparison with OPC sample. Results also show that combination of RHA and WWA help to prolong the initial and final setting time by about 10-30% compared to the control sample. Furthermore, compressive strength was increased by 15-30% with 10% RHA and 5% WWA replacement, respectively above the control, RHA and WWA samples. Tensile strength test at the ages of 3, 7, 14, 28 and 90 days reveals that a replacement of 15% RHA and 5% WWA produced samples with the highest tensile capacity compared to the control samples. Thus, it can be concluded that RHA and WWA can be used as partial cement replacement materials in concrete.Keywords: concrete, rice husk ash, wood waste ash, ordinary Portland cement, compressive strength, tensile strength
Procedia PDF Downloads 2594326 Economic Analysis of Cowpea (Unguiculata spp) Production in Northern Nigeria: A Case Study of Kano Katsina and Jigawa States
Authors: Yakubu Suleiman, S. A. Musa
Abstract:
Nigeria is the largest cowpea producer in the world, accounting for about 45%, followed by Brazil with about 17%. Cowpea is grown in Kano, Bauchi, Katsina, Borno in the north, Oyo in the west, and to the lesser extent in Enugu in the east. This study was conducted to determine the input–output relationship of Cowpea production in Kano, Katsina, and Jigawa states of Nigeria. The data were collected with the aid of 1000 structured questionnaires that were randomly distributed to Cowpea farmers in the three states mentioned above of the study area. The data collected were analyzed using regression analysis (Cobb–Douglass production function model). The result of the regression analysis revealed the coefficient of multiple determinations, R2, to be 72.5% and the F ration to be 106.20 and was found to be significant (P < 0.01). The regression coefficient of constant is 0.5382 and is significant (P < 0.01). The regression coefficient with respect to labor and seeds were 0.65554 and 0.4336, respectively, and they are highly significant (P < 0.01). The regression coefficient with respect to fertilizer is 0.26341 which is significant (P < 0.05). This implies that a unit increase of any one of the variable inputs used while holding all other variables inputs constants, will significantly increase the total Cowpea output by their corresponding coefficient. This indicated that farmers in the study area are operating in stage II of the production function. The result revealed that Cowpea farmer in Kano, Jigawa and Katsina States realized a profit of N15,997, N34,016 and N19,788 per hectare respectively. It is hereby recommended that more attention should be given to Cowpea production by government and research institutions.Keywords: coefficient, constant, inputs, regression
Procedia PDF Downloads 4104325 Ketones Emission during Pad Printing Process
Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Oros B. Ivana, Kecić S. Vesna, Djogo Z. Maja
Abstract:
The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2.Keywords: acetone, methyl ethyl ketone, multiple linear regression analysis, pad printing
Procedia PDF Downloads 4204324 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy
Authors: K. Petcharaporn
Abstract:
The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.Keywords: tomato, mold, quality, prediction, transmittance
Procedia PDF Downloads 3624323 Automatic API Regression Analyzer and Executor
Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty
Abstract:
As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.Keywords: automation impact regression, java doc, executor, analyzer, layers
Procedia PDF Downloads 4884322 Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating STP Wastewater
Authors: Hammad Khan, Wookeun Bae
Abstract:
The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~600 mg-NH4+-N/L and biodegradable contents of ~0.35 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to 7.5 and further 7.2, removal rate can be easily controlled as 95%, 75%, and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH effect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation
Procedia PDF Downloads 3124321 Factors Affecting Profitability of Pharmaceutical Company During the COVID-19 Pandemic: An Indonesian Evidence
Authors: Septiany Trisnaningtyas
Abstract:
Purpose: This research aims to examine the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia. A sharp decline in the number of patients coming to the hospital for treatment during the pandemic has an impact on the growth of the pharmaceutical sector and brought major changes in financial position and business performance. Pharmaceutical companies that provide products related to the Covid-19 pandemic can survive and continue to grow. This study investigates the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia associated with the number of Covid-19 cases. Design/methodology/approach: This study uses panel-data regression models to evaluate the influence of the number of Covid-19 confirmed cases on profitability of ninelisted pharmaceuticalcompanies in Indonesia. This research is based on four independent variables that were empirically examined for their relationship with profitability. These variables are liquidity (current ratio), growth rate (sales growth), firm size (total sales), and market power (the Lerner index). Covid-19 case is used as moderating variable. Data of nine pharmaceutical companies listed on the Indonesia Stock Exchange covering the period of 2018–2021 were extracted from companies’ quarterly annual reports. Findings: In the period during Covid-19, company growth (sales growth) and market power (lerner index) have a positive and significant relationship to ROA and ROE. Total of confirmed Covid-19 cases has a positive and significant relationship to ROA and is proven to have a moderating effect between company’s growth (sales growth) to ROA and ROE and market power (Lerner index) to ROA. Research limitations/implications: Due to data availability, this study only includes data from nine listed pharmaceutical companies in Indonesian Stock exchange and quarterly annual reportscovering the period of 2018-2021. Originality/value: This study focuses onpharmaceutical companies in Indonesia during Covid-19 pandemic. Previous study analyzes the data from pharmaceutical companies’ annual reports since 2014 and focus on universal health coverage (national health insurance) implementation from the Indonesian government. This study analyzes the data using fixed effect panel-data regression models to evaluate the influence of Covid-19 confirmed cases on profitability. Pooled ordinary least squares regression and fixed effects were used to analyze the data in previous study. This study also investigate the moderating effect of Covid-19 confirmed cases to profitability in relevant with the pandemic situation.Keywords: profitability, indonesia, pharmaceutical, Covid-19
Procedia PDF Downloads 123