Search results for: modelling
1563 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission
Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola
Abstract:
The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering
Procedia PDF Downloads 3251562 Sedimentary Response to Coastal Defense Works in São Vicente Bay, São Paulo
Authors: L. C. Ansanelli, P. Alfredini
Abstract:
The article presents the evaluation of the effectiveness of two groins located at Gonzaguinha and Milionários Beaches, situated on the southeast coast of Brazil. The effectiveness of these coastal defense structures is evaluated in terms of sedimentary dynamics, which is one of the most important environmental processes to be assessed in coastal engineering studies. The applied method is based on the implementation of the Delft3D numerical model system tools. Delft3D-WAVE module was used for waves modelling, Delft3D-FLOW for hydrodynamic modelling and Delft3D-SED for sediment transport modelling. The calibration of the models was carried out in a way that the simulations adequately represent the region studied, evaluating improvements in the model elements with the use of statistical comparisons of similarity between the results and waves, currents and tides data recorded in the study area. Analysis of the maximum wave heights was carried to select the months with higher accumulated energy to implement these conditions in the engineering scenarios. The engineering studies were performed for two scenarios: 1) numerical simulation of the area considering only the two existing groins; 2) conception of breakwaters coupled at the ends of the existing groins, resulting in two “T” shaped structures. The sediment model showed that, for the simulated period, the area is affected by erosive processes and that the existing groins have little effectiveness in defending the coast in question. The implemented T structures showed some effectiveness in protecting the beaches against erosion and provided the recovery of the portion directly covered by it on the Milionários Beach. In order to complement this study, it is suggested the conception of further engineering scenarios that might recover other areas of the studied region.Keywords: coastal engineering, coastal erosion, Sao Vicente bay, Delft3D, coastal engineering works
Procedia PDF Downloads 1271561 Real Time Data Communication with FlightGear Using Simulink Over a UDP Protocol
Authors: Adil Loya, Ali Haider, Arslan A. Ghaffor, Abubaker Siddique
Abstract:
Simulation and modelling of Unmanned Aero Vehicle (UAV) has gained wide popularity in front of aerospace community. The demand of designing and modelling optimized control system for UAV has increased ten folds since last decade. The reason is next generation warfare is dependent on unmanned technologies. Therefore, this research focuses on the simulation of nonlinear UAV dynamics on Simulink and its integration with Flightgear. There has been lots of research on implementation of optimizing control using Simulink, however, there are fewer known techniques to simulate these dynamics over Flightgear and a tedious technique of acquiring data has been tackled in this research horizon. Sending data to Flightgear is easy but receiving it from Simulink is not that straight forward, i.e. we can only receive control data on the output. However, in this research we have managed to get the data out from the Flightgear by implementation of level 2 s-function block within Simulink. Moreover, the results captured from Flightgear over a Universal Datagram Protocol (UDP) communication are then compared with the attitude signal that were sent previously. This provide useful information regarding the difference in outputs attained from Simulink to Flightgear. It was found that values received on Simulink were in high agreement with that of the Flightgear output. And complete study has been conducted in a discrete way.Keywords: aerospace, flight control, flightgear, communication, Simulink
Procedia PDF Downloads 2861560 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.Keywords: bed topography, FBM, LBM, shallow water, simulations
Procedia PDF Downloads 981559 Hybrid Direct Numerical Simulation and Large Eddy Simulating Wall Models Approach for the Analysis of Turbulence Entropy
Authors: Samuel Ahamefula
Abstract:
Turbulent motion is a highly nonlinear and complex phenomenon, and its modelling is still very challenging. In this study, we developed a hybrid computational approach to accurately simulate fluid turbulence phenomenon. The focus is coupling and transitioning between Direct Numerical Simulation (DNS) and Large Eddy Simulating Wall Models (LES-WM) regions. In the framework, high-order fidelity fluid dynamical methods are utilized to simulate the unsteady compressible Navier-Stokes equations in the Eulerian format on the unstructured moving grids. The coupling and transitioning of DNS and LES-WM are conducted through the linearly staggered Dirichlet-Neumann coupling scheme. The high-fidelity framework is verified and validated based on namely, DNS ability for capture full range of turbulent scales, giving accurate results and LES-WM efficiency in simulating near-wall turbulent boundary layer by using wall models.Keywords: computational methods, turbulence modelling, turbulence entropy, navier-stokes equations
Procedia PDF Downloads 1011558 Top Management Support as an Enabling Factor for Academic Innovation through Knowledge Sharing
Authors: Sawsan J. Al-husseini, Talib A. Dosa
Abstract:
Educational institutions are today facing increasing pressures due to economic, political and social upheaval. This is only exacerbated by the nature of education as an intangible good which relies upon the intellectual assets of the organisation, its staff. Top management support has been acknowledged as having a positive general influence on knowledge management and creativity. However, there is a lack of models linking top management support, knowledge sharing, and innovation within higher education institutions, in general within developing countries, and particularly in Iraq. This research sought to investigate the impact of top management support on innovation through the mediating role of knowledge sharing in Iraqi private HEIs. A quantitative approach was taken and 262 valid responses were collected to test the causal relationships between top management support, knowledge sharing, and innovation. Employing structural equation modelling with AMOS v.25, the research demonstrated that knowledge sharing plays a pivotal role in the relationship between top management support and innovation. The research has produced some guidelines for researchers as well as leaders, and provided evidence to support the use of knowledge sharing to increase innovation within the higher education environment in developing countries, particularly Iraq.Keywords: top management support, knowledge sharing, innovation, structural equation modelling
Procedia PDF Downloads 3261557 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach
Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie
Abstract:
The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.Keywords: ductile failure, cohesive model, GTN model, numerical simulation
Procedia PDF Downloads 1491556 3D Modelling of Fluid Flow in Tunnel Kilns
Authors: Jaber H. Almutairi, Hosny Z. Abou-Ziyan, Issa F. Almesri, Mosab A. Alrahmani
Abstract:
The present work investigates the behavior of fluid flow inside tunnel kilns using 3D-CFD (Computational Fluid Dynamics) simulations. The CFD simulations are carried out with the FLUENT software and validated against experimental results on fluid flow and heat transfer in tunnel kilns. A grid dependency study is conducted in the current work to improve the accuracy of the results. Three turbulence models k–ω, standard k–ε, and RNG k–ε are tested where k–ω model gives the best results in comparison with the experiment. The numerical results reveal an intriguing phenomenon where a long flow separation zone behind the setting is observed under different geometric and operation conditions. It was found that the uniformity of flow distribution can be substantially improved by rearranging the geometrical parameters of brick setting relative to kiln/setting. This improvement of flow distribution plays a critical role to enhance the quality and quantity of the production. It can be concluded that a better design and operation of tunnel kilns in terms of productivity and energy consumption can be obtained by taking into consideration the flow uniformity inside the tunnel kilns using CFD modelling.Keywords: tunnel kilns, flow separation, flow uniformity, computational fluid dynamics
Procedia PDF Downloads 3291555 Dynamic Modelling of Hepatitis B Patient Using Sihar Model
Authors: Alakija Temitope Olufunmilayo, Akinyemi, Yagba Joy
Abstract:
Hepatitis is the inflammation of the liver tissue that can cause whiteness of the eyes (Jaundice), lack of appetite, vomiting, tiredness, abdominal pain, diarrhea. Hepatitis is acute if it resolves within 6 months and chronic if it last longer than 6 months. Acute hepatitis can resolve on its own, lead to chronic hepatitis or rarely result in acute liver failure. Chronic hepatitis may lead to scarring of the liver (Cirrhosis), liver failure and liver cancer. Modelling Hepatitis B may become necessary in order to reduce its spread. So, dynamic SIR model can be used. This model consists of a system of three coupled non-linear ordinary differential equation which does not have an explicit formula solution. It is an epidemiological model used to predict the dynamics of infectious disease by categorizing the population into three possible compartments. In this study, a five-compartment dynamic model of Hepatitis B disease was proposed and developed by adding control measure of sensitizing the public called awareness. All the mathematical and statistical formulation of the model, especially the general equilibrium of the model, was derived, including the nonlinear least square estimators. The initial parameters of the model were derived using nonlinear least square embedded in R code. The result study shows that the proportion of Hepatitis B patient in the study population is 1.4 per 1,000,000 populations. The estimated Hepatitis B induced death rate is 0.0108, meaning that 1.08% of the infected individuals die of the disease. The reproduction number of Hepatitis B diseases in Nigeria is 6.0, meaning that one individual can infect more than 6.0 people. The effect of sensitizing the public on the basic reproduction number is significant as the reproduction number is reduced. The study therefore recommends that programme should be designed by government and non-governmental organization to sensitize the entire Nigeria population in order to reduce cases of Hepatitis B disease among the citizens.Keywords: hepatitis B, modelling, non-linear ordinary differential equation, sihar model, sensitization
Procedia PDF Downloads 901554 Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net
Authors: Taha Benarbia, Kay W. Axhausen, Anugrah Ilahi
Abstract:
Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system.Keywords: electric car-sharing systems, smart mobility, Petri nets modelling, discrete event simulation
Procedia PDF Downloads 1831553 Kinematic Modelling and Task-Based Synthesis of a Passive Architecture for an Upper Limb Rehabilitation Exoskeleton
Authors: Sakshi Gupta, Anupam Agrawal, Ekta Singla
Abstract:
An exoskeleton design for rehabilitation purpose encounters many challenges, including ergonomically acceptable wearing technology, architectural design human-motion compatibility, actuation type, human-robot interaction, etc. In this paper, a passive architecture for upper limb exoskeleton is proposed for assisting in rehabilitation tasks. Kinematic modelling is detailed for task-based kinematic synthesis of the wearable exoskeleton for self-feeding tasks. The exoskeleton architecture possesses expansion and torsional springs which are able to store and redistribute energy over the human arm joints. The elastic characteristics of the springs have been optimized to minimize the mechanical work of the human arm joints. The concept of hybrid combination of a 4-bar parallelogram linkage and a serial linkage were chosen, where the 4-bar parallelogram linkage with expansion spring acts as a rigid structure which is used to provide the rotational degree-of-freedom (DOF) required for lowering and raising of the arm. The single linkage with torsional spring allows for the rotational DOF required for elbow movement. The focus of the paper is kinematic modelling, analysis and task-based synthesis framework for the proposed architecture, keeping in considerations the essential tasks of self-feeding and self-exercising during rehabilitation of partially healthy person. Rehabilitation of primary functional movements (activities of daily life, i.e., ADL) is routine activities that people tend to every day such as cleaning, dressing, feeding. We are focusing on the feeding process to make people independent in respect of the feeding tasks. The tasks are focused to post-surgery patients under rehabilitation with less than 40% weakness. The challenges addressed in work are ensuring to emulate the natural movement of the human arm. Human motion data is extracted through motion-sensors for targeted tasks of feeding and specific exercises. Task-based synthesis procedure framework will be discussed for the proposed architecture. The results include the simulation of the architectural concept for tracking the human-arm movements while displaying the kinematic and static study parameters for standard human weight. D-H parameters are used for kinematic modelling of the hybrid-mechanism, and the model is used while performing task-based optimal synthesis utilizing evolutionary algorithm.Keywords: passive mechanism, task-based synthesis, emulating human-motion, exoskeleton
Procedia PDF Downloads 1371552 Improving Grade Control Turnaround Times with In-Pit Hyperspectral Assaying
Authors: Gary Pattemore, Michael Edgar, Andrew Job, Marina Auad, Kathryn Job
Abstract:
As critical commodities become more scarce, significant time and resources have been used to better understand complicated ore bodies and extract their full potential. These challenging ore bodies provide several pain points for geologists and engineers to overcome, poor handling of these issues flows downs stream to the processing plant affecting throughput rates and recovery. Many open cut mines utilise blast hole drilling to extract additional information to feed back into the modelling process. This method requires samples to be collected during or after blast hole drilling. Samples are then sent for assay with turnaround times varying from 1 to 12 days. This method is time consuming, costly, requires human exposure on the bench and collects elemental data only. To address this challenge, research has been undertaken to utilise hyperspectral imaging across a broad spectrum to scan samples, collars or take down hole measurements for minerals and moisture content and grade abundances. Automation of this process using unmanned vehicles and on-board processing reduces human in pit exposure to ensure ongoing safety. On-board processing allows data to be integrated into modelling workflows with immediacy. The preliminary results demonstrate numerous direct and indirect benefits from this new technology, including rapid and accurate grade estimates, moisture content and mineralogy. These benefits allow for faster geo modelling updates, better informed mine scheduling and improved downstream blending and processing practices. The paper presents recommendations for implementation of the technology in open cut mining environments.Keywords: grade control, hyperspectral scanning, artificial intelligence, autonomous mining, machine learning
Procedia PDF Downloads 1131551 Pattern of Physical Activity and Its Impact on the Quality of Life: A Structural Equation Modelling Analysis
Authors: Ali Maksum
Abstract:
In a number of countries, including Indonesia, the tendency for non-communicable diseases is increasing. As a result, health costs must be paid by the state continues to increase as well. People's lifestyles, including due to lack of physical activity, are thought to have contributed significantly to the problem. This study aims to examine the impact of participation in sports on quality of life, which is reflected in three main indicators, namely health, psychological, and social aspects. The study was conducted in the city of Surabaya and its surroundings, with a total of 490 participants, consisting of 245 men and 245 women with an average age of 45.4 years. Data on physical activity and quality of life were collected by questionnaire and analyzed using structural equation modeling. The test results of the model prove that the value of chi-square = 8,259 with p = .409, RMSEA = .008, NFI = .992, and CFI = 1. This means that the model is compatible with the data. The model explains that physical activity has a significant effect on quality of life. People who exercise regularly are better able to cope with stress, have a lower risk of illness, and have higher pro-social behavior. Therefore, it needs serious efforts from stakeholders, especially the government, to create an ecosystem that allows the growth of movement culture in the community.Keywords: participation, physical activity, quality of life, structural equation modelling
Procedia PDF Downloads 1241550 Using Facebook as an Alternative Learning Tools in Malaysian Higher Learning Institutions: A Structural Equation Modelling Approach
Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmed
Abstract:
Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modelling was employed for data analysis and hypothesis testing. This study findings have provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.Keywords: Learning Management Tool, social networking, education, Malaysia
Procedia PDF Downloads 4241549 The Effects of Transformational Leadership on Process Innovation through Knowledge Sharing
Authors: Sawsan J. Al-Husseini, Talib A. Dosa
Abstract:
Transformational leadership has been identified as the most important factor affecting innovation and knowledge sharing; it leads to increased goal-directed behavior exhibited by followers and thus to enhanced performance and innovation for the organization. However, there is a lack of models linking transformational leadership, knowledge sharing, and process innovation within higher education (HE) institutions in general within developing countries, particularly in Iraq. This research aims to examine the mediating role of knowledge sharing in the transformational leadership and process innovation relationship. A quantitative approach was taken and 254 usable questionnaires were collected from public HE institutions in Iraq. Structural equation modelling with AMOS 22 was used to analyze the causal relationships among factors. The research found that knowledge sharing plays a pivotal role in the relationship between transformational leadership and process innovation, and that transformational leadership would be ideal in an educational context, promoting knowledge sharing activities and influencing process innovation in the public HE in Iraq. The research has developed some guidelines for researchers as well as leaders and provided evidence to support the use of TL to increase process innovation within HE environment in developing countries, particularly in Iraq.Keywords: transformational leadership, knowledge sharing, process innovation, structural equation modelling, developing countries
Procedia PDF Downloads 3361548 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure
Authors: Q. Giraud, J. Gonçalvès, B. Paris
Abstract:
Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media
Procedia PDF Downloads 1741547 Integration of Climatic Factors in the Meta-Population Modelling of the Dynamic of Malaria Transmission, Case of Douala and Yaoundé, Two Cities of Cameroon
Authors: Justin-Herve Noubissi, Jean Claude Kamgang, Eric Ramat, Januarius Asongu, Christophe Cambier
Abstract:
The goal of our study is to analyse the impact of climatic factors in malaria transmission taking into account migration between Douala and Yaoundé, two cities of Cameroon country. We show how variations of climatic factors such as temperature and relative humidity affect the malaria spread. We propose a meta-population model of the dynamic transmission of malaria that evolves in space and time and that takes into account temperature and relative humidity and the migration between Douala and Yaoundé. We also integrate the variation of environmental factors as events also called mathematical impulsion that can disrupt the model evolution at any time. Our modelling has been done using the Discrete EVents System Specification (DEVS) formalism. Our implementation has been done on Virtual Laboratory Environment (VLE) that uses DEVS formalism and abstract simulators for coupling models by integrating the concept of DEVS.Keywords: compartmental models, DEVS, discrete events, meta-population model, VLE
Procedia PDF Downloads 5541546 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret
Procedia PDF Downloads 6681545 Distribution System Modelling: A Holistic Approach for Harmonic Studies
Authors: Stanislav Babaev, Vladimir Cuk, Sjef Cobben, Jan Desmet
Abstract:
The procedures for performing harmonic studies for medium-voltage distribution feeders have become relatively mature topics since the early 1980s. The efforts of various electric power engineers and researchers were mainly focused on handling large harmonic non-linear loads connected scarcely at several buses of medium-voltage feeders. In order to assess the impact of these loads on the voltage quality of the distribution system, specific modeling and simulation strategies were proposed. These methodologies could deliver a reasonable estimation accuracy given the requirements of least computational efforts and reduced complexity. To uphold these requirements, certain analysis assumptions have been made, which became de facto standards for establishing guidelines for harmonic analysis. Among others, typical assumptions include balanced conditions of the study and the negligible impact of impedance frequency characteristics of various power system components. In latter, skin and proximity effects are usually omitted, and resistance and reactance values are modeled based on the theoretical equations. Further, the simplifications of the modelling routine have led to the commonly accepted practice of neglecting phase angle diversity effects. This is mainly associated with developed load models, which only in a handful of cases are representing the complete harmonic behavior of a certain device as well as accounting on the harmonic interaction between grid harmonic voltages and harmonic currents. While these modelling practices were proven to be reasonably effective for medium-voltage levels, similar approaches have been adopted for low-voltage distribution systems. Given modern conditions and massive increase in usage of residential electronic devices, recent and ongoing boom of electric vehicles, and large-scale installing of distributed solar power, the harmonics in current low-voltage grids are characterized by high degree of variability and demonstrate sufficient diversity leading to a certain level of cancellation effects. It is obvious, that new modelling algorithms overcoming previously made assumptions have to be accepted. In this work, a simulation approach aimed to deal with some of the typical assumptions is proposed. A practical low-voltage feeder is modeled in PowerFactory. In order to demonstrate the importance of diversity effect and harmonic interaction, previously developed measurement-based models of photovoltaic inverter and battery charger are used as loads. The Python-based script aiming to supply varying voltage background distortion profile and the associated current harmonic response of loads is used as the core of unbalanced simulation. Furthermore, the impact of uncertainty of feeder frequency-impedance characteristics on total harmonic distortion levels is shown along with scenarios involving linear resistive loads, which further alter the impedance of the system. The comparative analysis demonstrates sufficient differences with cases when all the assumptions are in place, and results indicate that new modelling and simulation procedures need to be adopted for low-voltage distribution systems with high penetration of non-linear loads and renewable generation.Keywords: electric power system, harmonic distortion, power quality, public low-voltage network, harmonic modelling
Procedia PDF Downloads 1591544 Examining the Role of Willingness to Communicate in Cross-Cultural Adaptation in East-Asia
Authors: Baohua Yu
Abstract:
Despite widely reported 'Mainland-Hong Kong conflicts', recent years have witnessed progressive growth in the numbers of Mainland Chinese students in Hong Kong’s universities. This research investigated Mainland Chinese students’ intercultural communication in relation to cross-cultural adaptation in a major university in Hong Kong. The features of intercultural communication examined in this study were competence in the second language (L2) communication and L2 Willingness to Communicate (WTC), while the features of cross-cultural adaptation examined were socio-cultural, psychological and academic adaptation. Based on a questionnaire, structural equation modelling was conducted among a sample of 196 Mainland Chinese students. Results showed that the competence in L2 communication played a significant role in L2 WTC, which had an influential effect on academic adaptation, which was itself identified as a mediator between the psychological adaptation and socio-cultural adaptation. Implications for curriculum design for courses and instructional practice on international students are discussed.Keywords: L2 willingness to communicate, competence in L2 communication, psychological adaptation, socio-cultural adaptation, academic adaptation, structural equation modelling
Procedia PDF Downloads 3551543 Modelling a Distribution Network with a Hybrid Solar-Hydro Power Plant in Rural Cameroon
Authors: Contimi Kenfack Mouafo, Sebastian Klick
Abstract:
In the rural and remote areas of Cameroon, access to electricity is very limited since most of the population is not connected to the main utility grid. Throughout the country, efforts are underway to not only expand the utility grid to these regions but also to provide reliable off-grid access to electricity. The Cameroonian company Solahydrowatt is currently working on the design and planning of one of the first hybrid solar-hydropower plants of Cameroon in Fotetsa, in the western region of the country, to provide the population with reliable access to electricity. This paper models and proposes a design for the low-voltage network with a hybrid solar-hydropower plant in Fotetsa. The modelling takes into consideration the voltage compliance of the distribution network, the maximum load of operating equipment, and most importantly, the ability for the network to operate as an off-grid system. The resulting modelled distribution network does not only comply with the Cameroonian voltage deviation standard, but it is also capable of being operated as a stand-alone network independent of the main utility grid.Keywords: Cameroon, rural electrification, hybrid solar-hydro, off-grid electricity supply, network simulation
Procedia PDF Downloads 1241542 Mathematical Modelling of Drying Kinetics of Cantaloupe in a Solar Assisted Dryer
Authors: Melike Sultan Karasu Asnaz, Ayse Ozdogan Dolcek
Abstract:
Crop drying, which aims to reduce the moisture content to a certain level, is a method used to extend the shelf life and prevent it from spoiling. One of the oldest food preservation techniques is open sunor shade drying. Even though this technique is the most affordable of all drying methods, there are some drawbacks such as contamination by insects, environmental pollution, windborne dust, and direct expose to weather conditions such as wind, rain, hail. However, solar dryers that provide a hygienic and controllable environment to preserve food and extend its shelf life have been developed and used to dry agricultural products. Thus, foods can be dried quickly without being affected by weather variables, and quality products can be obtained. This research is mainly devoted to investigating the modelling of drying kinetics of cantaloupe in a forced convection solar dryer. Mathematical models for the drying process should be defined to simulate the drying behavior of the foodstuff, which will greatly contribute to the development of solar dryer designs. Thus, drying experiments were conducted and replicated five times, and various data such as temperature, relative humidity, solar irradiation, drying air speed, and weight were instantly monitored and recorded. Moisture content of sliced and pretreated cantaloupe were converted into moisture ratio and then fitted against drying time for constructing drying curves. Then, 10 quasi-theoretical and empirical drying models were applied to find the best drying curve equation according to the Levenberg-Marquardt nonlinear optimization method. The best fitted mathematical drying model was selected according to the highest coefficient of determination (R²), and the mean square of the deviations (χ^²) and root mean square error (RMSE) criterial. The best fitted model was utilized to simulate a thin layer solar drying of cantaloupe, and the simulation results were compared with the experimental data for validation purposes.Keywords: solar dryer, mathematical modelling, drying kinetics, cantaloupe drying
Procedia PDF Downloads 1271541 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho
Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa
Abstract:
Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.Keywords: numerical modeling, open pit mine, shear zone, slope stability
Procedia PDF Downloads 2991540 Implementing Building Information Modelling to Attain Lean and Green Benefits
Authors: Ritu Ahuja
Abstract:
Globally the built environment sector is striving to be highly efficient, quality-centred and socially-responsible. Built environment sector is an integral part of the economy and plays an important role in urbanization, industrialization and improved quality of living. The inherent challenges such as excessive material and process waste, over reliance on resources, energy usage, and carbon footprint need to be addressed in order to meet the needs of the economy. It is envisioned that these challenges can be resolved by integration of Lean-Green-Building Information Modelling (BIM) paradigms. Ipso facto, with BIM as a catalyst, this research identifies the operational and tactical connections of lean and green philosophies by providing a conceptual integration framework and underpinning theories. The research has developed a framework for BIM-based organizational capabilities for enhanced adoption and effective use of BIM within architectural organizations. The study was conducted through a sequential mixed method approach focusing on collecting and analyzing both qualitative and quantitative data. The framework developed as part of this study will enable architectural organizations to successfully embrace BIM on projects and gain lean and green benefits.Keywords: BIM, lean, green, AEC organizations
Procedia PDF Downloads 1891539 Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery
Authors: Peña A. Roland R., Lozano P. Jean P.
Abstract:
The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water.Keywords: capillary pressure, numerical simulation, rock compressibility, two-phase flow
Procedia PDF Downloads 1241538 Using Tilted Façade to Reduce Thermal Discomfort in a UK Passivhaus Dwelling for a Warming Climate
Authors: Yahya Lavafpour, Steve Sharples
Abstract:
This study investigated the potential negative impacts of future UK climate change on dwellings. In particular, the risk of overheating was considered for a Passivhaus dwelling in London. The study used dynamic simulation modelling software to investigate the potential use of building geometry to control current and future overheating risks in the dwelling for London climate. Specifically, the focus was on the optimum inclination of a south façade to make use of the building’s shape to self-protect itself. A range of different inclined façades were examined to test their effectiveness in reducing the overheating risk. The research found that implementing a 115° tilted façade could completely eliminate the risk of overheating in current climate, but with some consequence for natural ventilation and daylighting. Future overheating was significantly reduced by the tilted façade. However, geometric considerations could not eradicate completely the risk of overheating particularly by the 2080s. The study also used CFD modelling and sensitivity analysis to investigate the effect of the façade geometry on the wind pressure distributions on and around the building surface. This was done to assess natural ventilation flows for alternative façade inclinations.Keywords: climate change, tilt façade, thermal comfort, passivhaus, overheating
Procedia PDF Downloads 7631537 Effectiveness of Column Geometry in High-Rise Buildings
Authors: Man Singh Meena
Abstract:
Structural engineers are facing different kind of challenges due to innovative & bold ideas of architects who are trying to design every structure with uniqueness. In RCC frame structures different geometry of columns can be used in design and rectangular columns can be placed with different type orientation. The analysis is design of structures can also be carried out by different type of software available i.e., STAAD Pro, ETABS and TEKLA. In recent times high-rise building modeling & analysis is done by ETABS due to its certain features which are superior to other software. The case study in this paper mainly emphasizes on structural behavior of high rise building for different column shape configurations like Circular, Square, Rectangular and Rectangular with 90-degree Rotation and rectangular shape plan. In all these column shapes the areas of columns are kept same to study the effect on design of concrete area is same. Modelling of 20-storeys R.C.C. framed building is done on the ETABS software for analysis. Post analysis of the structure, maximum bending moments, shear forces and maximum longitudinal reinforcement are computed and compared for three different story structures to identify the effectiveness of geometry of column.Keywords: high-rise building, column geometry, building modelling, ETABS analysis, building design, structural analysis, structural optimization
Procedia PDF Downloads 811536 Aerodynamic Analysis of the Airfoil of a VAWT by Using 2D CFD Modelling
Authors: Luis F. Garcia, Julian E. Jaramillo, Jorge L. Chacón
Abstract:
Colombia is a country where the benefits of wind power industry are barely used because of the geography in some areas does not allow the implementation of onshore horizontal axis wind turbines. Furthermore, exist rural areas without access to the electrical grid. Therefore, there is currently a deficit of energy supply in some towns. This research took place in one of those areas (i.e. Chicamocha Canyon-Santander) where the answer to the energy supply problems could be the use of vertical axis wind turbines, which can be used for turbulent flows. Hence, one task of this research is the analysis of the wind resources in the Chicamocha Canyon in order to implement the wind energy. The wind turbines must be designed in such a way that the blades take good advantage of the wind resources in the area of interest. Consequently, in the current research the analysis of two different airfoils (i.e. NACA0018 and DU 06-W-200) through a 2D CFD simulation is carried out by means of a free-software (OpenFOAM). Predicted results using the “Spalart-Allmaras” turbulence model are similar to the wind tunnel data published in the literature. Moreover, global parameters such as dimensionless lift and drag coefficients were calculated. Finally, this research encourages VAWT studies under wind turbulent flows in order to achieve the best use of natural resources in Colombia.Keywords: airfoil, wind turbine, turbulence modelling, Chicamocha, CFD
Procedia PDF Downloads 4871535 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach
Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh
Abstract:
Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling
Procedia PDF Downloads 421534 Design, Modelling, and Fabrication of Bioinspired Frog Robot for Synchronous and Asynchronous Swimming
Authors: Afaque Manzoor Soomro, Faheem Ahmed, Fida Hussain Memon, Kyung Hyun Choi
Abstract:
This paper proposes the bioinspired soft frog robot. All printing technology was used for the fabrication of the robot. Polyjet printing was used to print the front and back limbs, while ultrathin filament was used to print the body of the robot, which makes it a complete soft swimming robot. The dual thrust generation approach has been proposed by embedding the main muscle and antagonistic muscle in all the limbs, which enables it to attain high speed (18 mm/s), and significant control of swimming in dual modes (synchronous and asynchronous modes). To achieve the swimming motion of the frog, the design, motivated by the rigorous modelling and real frog dynamics analysis, enabled the as-developed frog robot (FROBOT) to swim at a significant level of consistency with the real frog. The FROBOT (weighing 65 g) can swim at different controllable frequencies (0.5–2Hz) and can turn in any direction by following custom-made LabVIEW software’s commands which enables it to swim at speed up to 18 mm/s on the surface of deep water (100 cm) with excellent weight balance.Keywords: soft robotics, soft actuator, frog robot, 3D printing
Procedia PDF Downloads 101