Search results for: kinematic and material coupling
7190 A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix
Authors: Nicolas Bigot, M'hamed Boutaous, Nahiene Hamila, Shihe Xin
Abstract:
Composite materials with polymer matrices are widely used in most industrial areas, particularly in aeronautical and automotive ones. Thanks to the development of a high-performance thermoplastic semicrystalline polymer matrix, those materials exhibit more and more efficient properties. The polymer matrix in composite materials can manifest a specific crystalline structure characteristic of crystallization in a fibrous medium. In order to guarantee a good mechanical behavior of structures and to optimize their performances, it is necessary to define realistic mechanical constitutive laws of such materials considering their physical structure. The interaction between fibers and matrix is a key factor in the mechanical behavior of composite materials. Transcrystallization phenomena which develops in the matrix around the fibers constitute the interphase which greatly affects and governs the nature of the fiber-matrix interaction. Hence, it becomes fundamental to quantify its impact on the thermo-mechanical behavior of composites material in relationship with processing conditions. In this work, we propose a numerical model coupling the thermal and crystallization kinetics in long fiber-based composite materials, considering both the spherulitic and transcrystalline types of the induced structures. After validation of the model with comparison to results from the literature and noticing a good correlation, a parametric study has been led on the effects of the thermal kinetics, the fibers volume fractions, the deformation, and the pressure on the crystallization rate in the material, under processing conditions. The ratio of the transcrystallinity is highlighted and analyzed with regard to the thermal kinetics and gradients in the material. Experimental results on the process are foreseen and pave the way to establish a mechanical constitutive law describing, with the introduction of the role on the crystallization rates and types on the thermo-mechanical behavior of composites materials.Keywords: composite materials, crystallization, heat transfer, modeling, transcrystallization
Procedia PDF Downloads 1927189 Shear Surface and Localized Waves in Functionally Graded Piezoactive Electro-Magneto-Elastic Media
Authors: Karen B. Ghazaryan
Abstract:
Recently, the propagation of coupled electromagnetic and elastic waves in magneto-electro-elastic (MEE) structures attracted much attention due to the wide range of application of these materials in smart structures. MEE materials are a class of new artificial composites that consist of simultaneous piezoelectric and piezomagnetic phases. Magneto-electro-elastic composites are built up by combining piezoelectric and piezomagnetic phases to obtain a smart composite that presents not only the electromechanical and magneto-mechanical coupling but also a strong magnetoelectric coupling, which makes such materials highly valuable in technological usage. In the framework of quasi-static approach shear surface and localized waves are considered in magneto-electro-elastic piezo-active structure consisting of functionally graded 6mm hexagonal symmetry group crystals. Assuming that in a functionally graded material the elastic and electromagnetic properties vary in the same proportion in direction perpendicular to the MEE polling direction, special classes of inhomogeneity functions were found, admitting exact solutions for coupled electromagnetic and elastic wave fields. Based on these exact solutions, defining the coupled shear wave field in magneto-electro-elastic composites several modal problems are considered: shear surface waves propagation along surface of a MEE half-space, interfacial wave propagation in a MEE oppositely polarized bi-layer, Love type waves in a functionally graded MEE layer overlying a homogeneous elastic half-space. For the problems under consideration corresponding dispersion equations are deduced analytically in an explicit form and for the BaTiO₃–CoFe₂O₄ crystal numerical results estimating effects of inhomogeneity and piezo effect are carried out.Keywords: surface shear waves, magneto-electro-elastic composites, piezoactive crystals, functionally graded elastic materials
Procedia PDF Downloads 2157188 Grain Size Effect of Durability of Bio-Clogging Treatment
Authors: Tahani Farah, Hanène Souli, Jean-Marie Fleureau, Guillaume Kermouche, Jean-Jacques Fry, Benjamin Girard, Denis Aelbrecht
Abstract:
In this work, the bio-clogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation- restauration. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1", presents grain sizes between 0.4 and 4 mm. The second material called "material 2" is composed of grains with size varying between 1 and 10 mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-restauration for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bio-clogging treatment in this material.Keywords: bio-clogging, granulometry, permeability, nutrition
Procedia PDF Downloads 4067187 Multifunctional Polydopamine-Silver-Polydopamine Nanofilm With Applications in Digital Microfluidics and SERS
Authors: Yilei Xue, Yat-Hing Ham, Wenting Qiu, Wan Chan, Stefan Nagl
Abstract:
Polydopamine (PDA) is a popular material in biological and medical applications due to its excellent biocompatibility, outstanding physicochemical properties, and facile fabrication. In this project, a new sandwich-structured PDA and silver (Ag) hybrid material named PDA-Ag-PDA was synthesized and characterized layer-by-layer, where silver nanoparticles (Ag NPs) are wrapped in PDA coatings, using SEM, AFM, 3D surface metrology, and contact angle meter. The silver loading capacity is positively proportional to the roughness value of the initial PDA film. This designed film was subsequently integrated within a digital microfluidic (DMF) platform coupling with an oxygen sensor layer for on-chip antibacterial assay. The concentration of E. coli was quantified on DMF by real-time monitoring oxygen consumption during E. coli growth with the optical oxygen sensor layer. The PDA-Ag-PDA coating shows an 99.9% reduction in E. coli population under non-nutritive condition with 1-hour treatment and has a strong growth inhibition of E. coliin nutrient LB broth as well. Furthermore, PDA-Ag-PDA film maintaining a low cytotoxicity effect to human cells. After treating with PDA-Ag-PDA film for 24 hours, 82% HEK 293 and 86% HeLa cells were viable. The SERS enhancement factor of PDA-Ag-PDA is estimated to be 1.9 × 104 using Rhodamine 6G (R6G). Multifunctional PDA-Ag-PDA coating provides an alternative platform to conjugate biomolecules and perform biological applications on DMF, in particular, for the adhesive protein and cell study.Keywords: polydopamine, silver nanoparticles, digital microfluidic, optical sensor, antimicrobial assay, SERS
Procedia PDF Downloads 937186 The Analysis of Movement Pattern during Reach and Grasp in Stroke Patients: A Kinematic Approach
Authors: Hyo Seon Choi, Ju Sun Kim, DY Kim
Abstract:
Introduction: This study was aimed to evaluate temporo-spatial patterns during the reach and grasp task in hemiplegic stroke patients and to identify movement pattern according to severity of motor impairment. Method: 29 subacute post-stroke patients were enrolled in this study. The temporo-spatial and kinematic data were obtained during reach and grasp task through 3D motion analysis (VICON). The reach and grasp task was composed of four sub-tasks: reach (T1), transport to mouth (T2), transport back to table (T3) and return (T4). The movement time, joint angle and sum of deviation angles from normative data were compared between affected side and unaffected side. They were also compared between two groups (mild to moderate group: 28~66, severe group: 0~27) divided by upper-Fugl-Meyer Assessment (FMA) scale. Result: In affected side, total time and durations of all four tasks were significantly longer than those in unaffected side (p < 0.001). The affected side demonstrated significant larger shoulder abduction, shoulder internal rotation, wrist flexion, wrist pronation, thoracic external rotation and smaller shoulder flexion during reach and grasp task (p < 0.05). The significant differences between mild to moderate group and severe group were observed in total duration, durations of T1, T2, and T3 in reach and grasp task (p < 0.01). The severe group showed significant larger shoulder internal rotation during T2 (p < 0.05) and wrist flexion during T2, T3 (p < 0.05) than mild to moderate group. In range of motion during each task, shoulder abduction-adduction during T2 and T3, shoulder internal-external rotation during T2, elbow flexion-extension during T1 showed significant difference between two groups (p < 0.05). The severe group had significant larger total deviation angles in shoulder internal-external rotation and wrist extension-flexion during reach and grasp task (p < 0.05). Conclusion: This study suggests that post-stroke hemiplegic patients have an unique temporo-spatial and kinematic patterns during reach and grasp task, and the movement pattern may be related to affected upper limb severity. These results may be useful to interpret the motion of upper extremity in stroke patients.Keywords: Fugl-Meyer Assessment (FMA), motion analysis, reach and grasp, stroke
Procedia PDF Downloads 2387185 Software Component Identification from Its Object-Oriented Code: Graph Metrics Based Approach
Authors: Manel Brichni, Abdelhak-Djamel Seriai
Abstract:
Systems are increasingly complex. To reduce their complexity, an abstract view of the system can simplify its development. To overcome this problem, we propose a method to decompose systems into subsystems while reducing their coupling. These subsystems represent components. Consisting of an existing object-oriented systems, the main idea of our approach is based on modelling as graphs all entities of an oriented object source code. Such modelling is easy to handle, so we can apply restructuring algorithms based on graph metrics. The particularity of our approach consists in integrating in addition to standard metrics, such as coupling and cohesion, some graph metrics giving more precision during the components identication. To treat this problem, we relied on the ROMANTIC approach that proposed a component-based software architecture recovery from an object oriented system.Keywords: software reengineering, software component and interfaces, metrics, graphs
Procedia PDF Downloads 5017184 Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications
Authors: Suleyman Ogul Ertugrul, Mustafa Turgut, Serkan Inandı, Mustafa Gorkem Coban, Mustafa Kıgılı, Ali Mert, Oguzhan Kesmez, Murat Ozancı, Caglar Uyulan
Abstract:
In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles.Keywords: FSAE, suspension system, Adams Car, kinematic
Procedia PDF Downloads 517183 Using 3-Glycidoxypropyltrimethoxysilane Functionalized Silica Nanoparticles to Improve Flexural Properties of E-Glass/Epoxy Grid-Stiffened Composite Panels
Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh
Abstract:
Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. Also, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures.Keywords: isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties, energy absorption
Procedia PDF Downloads 2487182 Theoretical Study on the Visible-Light-Induced Radical Coupling Reactions Mediated by Charge Transfer Complex
Authors: Lishuang Ma
Abstract:
Charge transfer (CT) complex, also known as Electron donor-acceptor (EDA) complex, has received attentions increasingly in the field of synthetic chemistry community, due to the CT complex can absorb the visible light through the intermolecular charge transfer excited states, various of catalyst-free photochemical transformations under mild visible-light conditions. However, a number of fundamental questions are still ambiguous, such as the origin of visible light absorption, the photochemical and photophysical properties of the CT complex, as well as the detailed mechanism of the radical coupling pathways mediated by CT complex. Since these are critical factors for target-specific design and synthesis of more new-type CT complexes. To this end, theoretical investigations were performed in our group to answer these questions based on multiconfigurational perturbation theory. The photo-induced fluoroalkylation reactions are mediated by CT complexes, which are formed by the association of an acceptor of perfluoroalkyl halides RF−X (X = Br, I) and a suitable donor molecule such as β-naphtholate anion, were chosen as a paradigm example in this work. First, spectrum simulations were carried out by both CASPT2//CASSCF/PCM and TD-DFT/PCM methods. The computational results showed that the broadening spectra in visible light range (360-550nm) of the CT complexes originate from the 1(σπ*) excitation, accompanied by an intermolecular electron transfer, which was also found closely related to the aggregate states of the donor and acceptor. Moreover, from charge translocation analysis, the CT complex that showed larger charge transfer in the round state would exhibit smaller charge transfer in excited stated of 1(σπ*), causing blue shift relatively. Then, the excited-state potential energy surface (PES) was calculated at CASPT2//CASSCF(12,10)/ PCM level of theory to explore the photophysical properties of the CT complexes. The photo-induced C-X (X=I, Br) bond cleavage was found to occur in the triplet state, which is accessible through a fast intersystem crossing (ISC) process that is controlled by the strong spin-orbit coupling resulting from the heavy iodine and bromine atoms. Importantly, this rapid fragmentation process can compete and suppress the backward electron transfer (BET) event, facilitating the subsequent effective photochemical transformations. Finally, the reaction pathways of the radical coupling were also inspected, which showed that the radical chain propagation pathway could easy to accomplish with a small energy barrier no more than 3.0 kcal/mol, which is the key factor that promote the efficiency of the photochemical reactions induced by CT complexes. In conclusion, theoretical investigations were performed to explore the photophysical and photochemical properties of the CT complexes, as well as the mechanism of radical coupling reactions mediated by CT complex. The computational results and findings in this work can provide some critical insights into mechanism-based design for more new-type EDA complexesKeywords: charge transfer complex, electron transfer, multiconfigurational perturbation theory, radical coupling
Procedia PDF Downloads 1437181 Using 3-Glycidoxypropyltrimethoxysilane Functionalized SiO2 Nanoparticles to Improve Flexural Properties of Glass Fibers/Epoxy Grid-Stiffened Composite Panels
Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh
Abstract:
Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures, which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components, which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane-coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, considerable energy absorption was observed after the primary failure related to the load peak. In addition, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures.Keywords: isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties
Procedia PDF Downloads 2437180 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed; and, the scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.Keywords: computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity
Procedia PDF Downloads 1617179 Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design
Authors: S. J. M. Mohd Saleh, S. Guo
Abstract:
Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage.Keywords: aircraft design, aircraft structures, classical lamination theory, composite structures, laminate theory, structural design, thin-walled beam theory, wing box design
Procedia PDF Downloads 2327178 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic
Procedia PDF Downloads 1637177 Multiscale Hub: An Open-Source Framework for Practical Atomistic-To-Continuum Coupling
Authors: Masoud Safdari, Jacob Fish
Abstract:
Despite vast amount of existing theoretical knowledge, the implementation of a universal multiscale modeling, analysis, and simulation software framework remains challenging. Existing multiscale software and solutions are often domain-specific, closed-source and mandate a high-level of experience and skills in both multiscale analysis and programming. Furthermore, tools currently existing for Atomistic-to-Continuum (AtC) multiscaling are developed with the assumptions such as accessibility of high-performance computing facilities to the users. These issues mentioned plus many other challenges have reduced the adoption of multiscale in academia and especially industry. In the current work, we introduce Multiscale Hub (MsHub), an effort towards making AtC more accessible through cloud services. As a joint effort between academia and industry, MsHub provides a universal web-enabled framework for practical multiscaling. Developed on top of universally acclaimed scientific programming language Python, the package currently provides an open-source, comprehensive, easy-to-use framework for AtC coupling. MsHub offers an easy to use interface to prominent molecular dynamics and multiphysics continuum mechanics packages such as LAMMPS and MFEM (a free, lightweight, scalable C++ library for finite element methods). In this work, we first report on the design philosophy of MsHub, challenges identified and issues faced regarding its implementation. MsHub takes the advantage of a comprehensive set of tools and algorithms developed for AtC that can be used for a variety of governing physics. We then briefly report key AtC algorithms implemented in MsHub. Finally, we conclude with a few examples illustrating the capabilities of the package and its future directions.Keywords: atomistic, continuum, coupling, multiscale
Procedia PDF Downloads 1777176 Causality, Special Relativity and Non-existence of Material Particles of Zero Rest Mass
Authors: Mohammad Saleem, Mujahid Kamran
Abstract:
It is shown that causality, the principle that cause must precede effect, leads inter alia, to highly significant result that the velocity of a material particle cannot be even equal to that of light. Consequently, combined with special relativity, it leads to the conclusion that material particles of zero rest mass cannot exist in nature. Thus, causality, a principle without which nature would be incomprehensible, combined with special relativity, forbids the existence of material particles of zero rest mass. For instance, the neutrinos, as is now known, are material particles of non-zero rest mass. The situation changes when we consider the gauge particles. In fact, when the principle of causality was proposed, the concept of gauge particles had not yet been introduced. Now we know that photon, a gauge particle with zero rest mass does exist in nature. Therefore, principle of causality, as generally stated, is valid only for material particles. For gauge particles, in order to make the statement of causality consistent with experiment, it has to be modified: The cause should either precede or be simultaneous with the effect. Combined with special relativity, it allows gauge particles of zero rest mass.Keywords: causality, gauge particles, material particles, special relativity
Procedia PDF Downloads 5017175 Assessment of High Frequency Solidly Mounted Resonator as Viscosity Sensor
Authors: Vinita Choudhary
Abstract:
Solidly Acoustic Resonators (SMR) based on ZnO piezoelectric material operating at a frequency of 3.96 GHz and 6.49% coupling factor are used to characterize liquids with different viscosities. This behavior of the sensor is analyzed using Finite Element Modeling. Device architectures encapsulate bulk acoustic wave resonators with MO/SiO₂ Bragg mirror reflector and the silicon substrate. The proposed SMR is based on the mass loading effect response of the sensor to the change in the resonant frequency of the resonator that is caused by the increased density due to the absorption of liquids (water, acetone, olive oil) used in theoretical calculation. The sensitivity of sensors ranges from 0.238 MHz/mPa.s to 83.33 MHz/mPa.s, supported by the Kanazawa model. Obtained results are also compared with previous works on BAW viscosity sensors.Keywords: solidly mounted resonator, bragg mirror, kanazawa model, finite element model
Procedia PDF Downloads 827174 Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel
Authors: Yiğit Gürler, İbrahim Şimşek, Müge Savaştaer, Ayberk Karakuş, Alper Taşdemirci
Abstract:
316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process.Keywords: 316L, mechanical characterization, metal forming, Ls-Dyna
Procedia PDF Downloads 3327173 Synthesis of Pd Nanoparticles Confined in Graphene Oxide Framework as Nano Catalyst with Improved Activity and Recyclability in Suzuki-Miyaura Cross-Coupling Reaction
Authors: Thuy Phuong Nhat Tran, Ashutosh Thakur, Toshiaki Taniike
Abstract:
Recently, covalently linked graphene oxide frameworks (GOFs) have attracted considerable attention in gas absorbance and water purification as well-defined microporous materials. In spite of their potential advantages such as a controllable pore dimension, adjustable hydrophobicity, and structural stability, these materials have been scarcely employed in heterogeneous catalysis. Here we demonstrate a novel and facile method to synthesize Pd nanoparticles (NPs) confined in a GOF (Pd@GOF). The GOF with uniform interlayer space was obtained by the intercalation of diboronic acid between graphene oxide layers. It was found that Pd NPs were generated inside the graphitic gallery spaces of the GOF, and thus, formed Pd NPs were well-dispersed with a narrow particle size distribution. The synthesized Pd@GOF emerged as an efficient nanocatalyst based on its superior performance (product yield and recyclability) toward Suzuki-Miyaura cross-coupling reaction in both polar and apolar solvents, which has been hardly observed for previously reported graphene-based Pd nanocatalysts. Furthermore, the rational comparison of the catalytic performance between two kinds of Pd@GOF (Pd NPs encapsulated in a diboronic ester-intercalated GOF and in a monoboronic ester-intercalated GOF) firmly confirmed the essential role of a rigid framework design in the stabilization of Pd NPs. Based on these results, the covalently assembled GOF was proposed as a promising scaffold for hosting noble metal NPs to construct desired metal@GOF nanocatalysts with improved activity and durability.Keywords: graphene oxide framework, palladium nanocatalyst, pore confinement, Suzuki-Miyaura cross-coupling reaction
Procedia PDF Downloads 1367172 Controlling Excitons Complexes in Two Dimensional MoS₂ Monolayers
Authors: Arslan Usman, Abdul Sattar, Hamid Latif, Afshan Ashfaq, Muhammad Rafique, Martin Koch
Abstract:
Two-dimensional materials have promising applications in optoelectronic and photonics; MoS₂ is the pioneer 2D material in the family of transition metal dichalcogenides. Its optical, optoelectronic, and structural properties are of practical importance along with its exciton dynamics. Exciton, along with exciton complexes, plays a vital role in realizing quantum devices. MoS₂ monolayers were synthesized using chemical vapour deposition (CVD) technique on SiO₂ and hBN substrates. Photoluminescence spectroscopy (PL) was used to identify the monolayer, which also reflects the substrate based peak broadening due to screening effects. In-plane and out of plane characteristic vibrational modes E¹₂g and A₁g, respectively, were detected in a different configuration on the substrate. The B-excitons and trions showed a dominant feature at low temperatures due to electron-phonon coupling effects, whereas their energies are separated by 100 meV.Keywords: 2D materials, photoluminescence, AFM, excitons
Procedia PDF Downloads 1447171 A Meso Macro Model Prediction of Laminated Composite Damage Elastic Behaviour
Authors: A. Hocine, A. Ghouaoula, S. M. Medjdoub, M. Cherifi
Abstract:
The present paper proposed a meso–macro model describing the mechanical behaviour composite laminates of staking sequence [+θ/-θ]s under tensil loading. The behaviour of a layer is ex-pressed through elasticity coupled to damage. The elastic strain is due to the elasticity of the layer and can be modeled by using the classical laminate theory, and the laminate is considered as an orthotropic material. This means that no coupling effect between strain and curvature is considered. In the present work, the damage is associated to cracking of the matrix and parallel to the fibers and it being taken into account by the changes in the stiffness of the layers. The anisotropic damage is completely described by a single scalar variable and its evolution law is specified from the principle of maximum dissipation. The stress/strain relationship is investigated in plane stress loading.Keywords: damage, behavior modeling, meso-macro model, composite laminate, membrane loading
Procedia PDF Downloads 4767170 Assessment of Efficiency of Underwater Undulatory Swimming Strategies Using a Two-Dimensional CFD Method
Authors: Dorian Audot, Isobel Margaret Thompson, Dominic Hudson, Joseph Banks, Martin Warner
Abstract:
In competitive swimming, after dives and turns, athletes perform underwater undulatory swimming (UUS), copying marine mammals’ method of locomotion. The body, performing this wave-like motion, accelerates the fluid downstream in its vicinity, generating propulsion with minimal resistance. Through this technique, swimmers can maintain greater speeds than surface swimming and take advantage of the overspeed granted by the dive (or push-off). Almost all previous work has considered UUS when performed at maximum effort. Critical parameters to maximize UUS speed are frequently discussed; however, this does not apply to most races. In only 3 out of the 16 individual competitive swimming events are athletes likely to attempt to perform UUS with the greatest speed, without thinking of the cost of locomotion. In the other cases, athletes will want to control the speed of their underwater swimming, attempting to maximise speed whilst considering energy expenditure appropriate to the duration of the event. Hence, there is a need to understand how swimmers adapt their underwater strategies to optimize the speed within the allocated energetic cost. This paper develops a consistent methodology that enables different sets of UUS kinematics to be investigated. These may have different propulsive efficiencies and force generation mechanisms (e.g.: force distribution along with the body and force magnitude). The developed methodology, therefore, needs to: (i) provide an understanding of the UUS propulsive mechanisms at different speeds, (ii) investigate the key performance parameters when UUS is not performed solely for maximizing speed; (iii) consistently determine the propulsive efficiency of a UUS technique. The methodology is separated into two distinct parts: kinematic data acquisition and computational fluid dynamics (CFD) analysis. For the kinematic acquisition, the position of several joints along the body and their sequencing were either obtained by video digitization or by underwater motion capture (Qualisys system). During data acquisition, the swimmers were asked to perform UUS at a constant depth in a prone position (facing the bottom of the pool) at different speeds: maximum effort, 100m pace, 200m pace and 400m pace. The kinematic data were input to a CFD algorithm employing a two-dimensional Large Eddy Simulation (LES). The algorithm adopted was specifically developed in order to perform quick unsteady simulations of deforming bodies and is therefore suitable for swimmers performing UUS. Despite its approximations, the algorithm is applied such that simulations are performed with the inflow velocity updated at every time step. It also enables calculations of the resistive forces (total and applied to each segment) and the power input of the modeled swimmer. Validation of the methodology is achieved by comparing the data obtained from the computations with the original data (e.g.: sustained swimming speed). This method is applied to the different kinematic datasets and provides data on swimmers’ natural responses to pacing instructions. The results show how kinematics affect force generation mechanisms and hence how the propulsive efficiency of UUS varies for different race strategies.Keywords: CFD, efficiency, human swimming, hydrodynamics, underwater undulatory swimming
Procedia PDF Downloads 2197169 Positive Effect of Manipulated Virtual Kinematic Intervention in Individuals with Traumatic Stiff Shoulder: Pilot Study
Authors: Isabella Schwartz, Ori Safran, Naama Karniel, Michal Abel, Adina Berko, Martin Seyres, Tamir Tsoar, Sigal Portnoy
Abstract:
Virtual Reality allows to manipulate the patient’s perception, thereby providing a motivational addition to real-time biofeedback exercises. We aimed to test the effect of manipulated virtual kinematic intervention on measures of active and passive Range of Motion (ROM), pain, and disability level in individuals with traumatic stiff shoulder. In a double-blinded study, patients with stiff shoulder following proximal humerus fracture and non-operative treatment were randomly divided into a non-manipulated feedback group (NM-group; N=6) and a manipulated feedback group (M-group; N=7). The shoulder ROM, pain, and the Disabilities of the Arm, Shoulder and Hand (DASH) scores were tested at baseline and after the 6 sessions, during which the subjects performed shoulder flexion and abduction in front of a graphic visualization of the shoulder angle. The biofeedback provided to the NM-group was the actual shoulder angle and the feedback provided to the M-group was manipulated so that 10° were constantly subtracted from the actual angle detected by the motion capture system. The M-group showed greater improvement in the active flexion ROM, with median and interquartile range of 197.1 (140.5-425.0) compared to 142.5 (139.1-151.3) for the NM-group (p=.046). Also, the M-group showed greater improvement in the DASH scores, with median and interquartile range of 67.7 (52.8-86.2) compared to 89.7 (83.8-98.3) for the NM-group (p=.022). Manipulated intervention is beneficial in individuals with traumatic stiff shoulder and should be further tested for other populations with orthopedic injuries.Keywords: virtual reality, biofeedback, shoulder pain, range of motion
Procedia PDF Downloads 1257168 Geological and Geotechnical Investigation of a Landslide Prone Slope Along Koraput- Rayagada Railway Track Odisha, India: A Case Study
Authors: S. P. Pradhan, Amulya Ratna Roul
Abstract:
A number of landslides are occurring during the rainy season along Rayagada-Koraput Railway track for past three years. The track was constructed about 20 years ago. However, the protection measures are not able to control the recurring slope failures now. It leads to a loss to Indian Railway and its passengers ultimately leading to wastage of time and money. The slopes along Rayagada-Koraput track include both rock and soil slopes. The rock types include mainly Khondalite and Charnockite whereas soil slopes are mainly composed of laterite ranging from less weathered to highly weathered laterite. The field studies were carried out in one of the critical slope. Field study was followed by the kinematic analysis to assess the type of failure. Slake Durability test, Uniaxial Compression test, specific gravity test and triaxial test were done on rock samples to calculate and assess properties such as weathering index, unconfined compressive strength, density, cohesion, and friction angle. Following all the laboratory tests, rock mass rating was calculated. Further, from Kinematic analysis and Rock Mass Ratingbasic, Slope Mass Rating was proposed for each slope. The properties obtained were used to do the slope stability simulations using finite element method based modelling. After all the results, suitable protection measures, to prevent the loss due to slope failure, were suggested using the relation between Slope Mass Rating and protection measures.Keywords: landslides, slope stability, rock mass rating, slope mass rating, numerical simulation
Procedia PDF Downloads 1837167 Detection of Nanotoxic Material Using DNA Based QCM
Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na
Abstract:
Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nanotoxic material, qcm, frequency, in situ sensing
Procedia PDF Downloads 4217166 Fish Oil and Its Methyl Ester as an Alternate Fuel in the Direct Injection Diesel Engine
Authors: Pavan Pujar
Abstract:
Mackerel Fish oil was used as the raw material to produce the biodiesel in this study. The raw oil (RO) was collected from discarded fish products. This oil was filtered and heated to 110oC and made it moisture free. The filtered and moisture free RO was transesterified to produce biodiesel. The experimental results showed that oleic acid and lauric acid were the two major components of the fish oil biodiesel (FOB). Palmitic acid and linoleic acid were found approximately same in the quantity. The fuel properties kinematic viscosity, flash point, fire point, specific gravity, calorific value, cetane number, density, acid value, saponification value, iodine value, cloud point, pour point, ash content, Cu strip corrosion, carbon residue, API gravity were determined for FOB. A comparative study of the properties was carried out with RO and Neat diesel (ND). It was found that Cetane number was 59 for FOB which was more than RO, which showed 57. Blends (B20, B40, B60, B80: example: B20: 20% FOB + 80% ND) of FOB and ND were prepared on volume basis and comparative study was carried out with ND and FOB. Performance parameters BSFE, BSEC, A:F Ratio, Break thermal efficiency were analyzed and it was found that complete replacement of neat diesel (ND) is possible without any engine modifications.Keywords: fish oil biodiesel, raw oil, blends, performance parameters
Procedia PDF Downloads 4137165 Residual Affects of Humic Matter from Sub-Bituminous in Binding Aluminium at Oxisol to Increase Production of Upland Rice
Authors: Herviyanti, Gusnidar, M. Harianti
Abstract:
The objective of this research were: a) using low-rank coal (subbituminous) as main humate material sources because this material will not be anthracite, and cannot using to be an energy sources b) to examine residual effects of humic matter from subbituminous which was combined with P fertilizers to adsorp Al and Fe metal, improving soil fertility, and increasing P fertilizing efficiency and Oxisol productivity. Therefore, optimalization crop productivity of upland rice can be achieved. The experiment was designed using a 3 x 4 factorial with 3 replications in randomly groups design. The 1st factor was 3 ways incubating humate material with P-fertilizer, which are: I1 = Incubation of humate material 1 week, then incubation P-fertilizers 1 week; I2 = Incubation of humate materials and P fertilizers directly into the soil for 2 weeks; and I3 = humate material and P fertilizer mixed for 1 week, then incubation to the soil for 1 week. The 2nd factor was residual effects of humate material and P-fertilizer combination which are 4 doses H1 = 400 ppm (0.8 Mg/ha) + 100% R; H2 = 400 ppm + 75% R; H3 = 800 ppm (1.6 Mg/ha) + 100% R,; and H4 = 800 ppm + 75% R. The 2nd year research results showed that the best treatment was founded residue effect of 800 ppm humate material and 100% R P-fertilizer doses in I3 way incubation that is equal to 6.19 t ha-1 upland rice yield. However, this result is almost the same as residual effects of 800 ppm humate material + 75% R P-fertilizer doses and upland rice yield the 1st year. It was concluded that addition of humate material can given the efficiency of P-fertilizer using up to 25% until the 2nd season planted.Keywords: humate materials, P-fertilizer, subbituminous, upland rice
Procedia PDF Downloads 3897164 Development and Characterization of a Bio-Sourced Composite Material Based on Phase Change Material and Hemp Shives
Authors: Hachmi Toifane, Pierre Tittelein, Anh Dung Tran Le, Laurent Zalewsi
Abstract:
This study introduces a composite material composed of bio-sourced phase-change material (PCM) of plant origin combined with hemp shives, developed in response to environmental challenges in the construction sector. The state of the art emphasizes the low thermal storage capacity of bio-based materials and highlights increasing need for developing sustainable materials that offer optimal thermal, mechanical, and hydric performances. The combining of PCM's thermal properties and hygric properties of hemp shives results in a material that combines lightness, strength, and hygrothermal regulation. Various formulations are being assessed and compared to conventional hemp concrete. Thermal characterization includes the measurements of thermal conductivity and numerical simulations to evaluate the thermal storage capacity. The results indicate that the addition of PCM significantly enhances the material's thermal storage capacity, positioning this one as a promising, eco-friendly solution for sustainable construction and for improving the energy efficiency of buildings.Keywords: hemp composite, bio-sourced phase change material, thermal storage, hemp shives
Procedia PDF Downloads 457163 Accuracy/Precision Evaluation of Excalibur I: A Neurosurgery-Specific Haptic Hand Controller
Authors: Hamidreza Hoshyarmanesh, Benjamin Durante, Alex Irwin, Sanju Lama, Kourosh Zareinia, Garnette R. Sutherland
Abstract:
This study reports on a proposed method to evaluate the accuracy and precision of Excalibur I, a neurosurgery-specific haptic hand controller, designed and developed at Project neuroArm. Having an efficient and successful robot-assisted telesurgery is considerably contingent on how accurate and precise a haptic hand controller (master/local robot) would be able to interpret the kinematic indices of motion, i.e., position and orientation, from the surgeon’s upper limp to the slave/remote robot. A proposed test rig is designed and manufactured according to standard ASTM F2554-10 to determine the accuracy and precision range of Excalibur I at four different locations within its workspace: central workspace, extreme forward, far left and far right. The test rig is metrologically characterized by a coordinate measuring machine (accuracy and repeatability < ± 5 µm). Only the serial linkage of the haptic device is examined due to the use of the Structural Length Index (SLI). The results indicate that accuracy decreases by moving from the workspace central area towards the borders of the workspace. In a comparative study, Excalibur I performs on par with the PHANToM PremiumTM 3.0 and more accurate/precise than the PHANToM PremiumTM 1.5. The error in Cartesian coordinate system shows a dominant component in one direction (δx, δy or δz) for the movements on horizontal, vertical and inclined surfaces. The average error magnitude of three attempts is recorded, considering all three error components. This research is the first promising step to quantify the kinematic performance of Excalibur I.Keywords: accuracy, advanced metrology, hand controller, precision, robot-assisted surgery, tele-operation, workspace
Procedia PDF Downloads 3367162 The Continuously Supported Infinity Rail Subjected to a Moving Complex Bogie System
Authors: Vladimir Stojanović, Marko D. Petković
Abstract:
The vibration of a complex bogie system that moves on along the high order shear deformable beam on a viscoelastic foundation is studied. The complex bogie system has been modeled by elastically connected rigid bars on an identical supports. Elastic coupling between bars is introduced to simulate rigidly or flexibly (transversal or/and rotational) connection. Identical supports are modeled as a system of attached spring and dashpot to the bar on one side and interact with the beam through the concentrated mass on the other side. It is assumed that the masses and the beam are always in contact. New analytically determined critical velocity of the system is presented. It is analyzed the case when the complex bogie system exceeds the minimum phase velocity of waves in the beam when the vibration of the system may become unstable. Effect of an elastic coupling between bars on the stability of the system has been analyzed. The instability regions are found for the complex bogie system by applying the principle of the argument and D-decomposition method.Keywords: Reddy-Bickford beam, D-decomposition method, principle of argument, critical velocity
Procedia PDF Downloads 3067161 Material Fracture Dynamic of Vertical Axis Wind Turbine Blade
Authors: Samir Lecheb, Ahmed Chellil, Hamza Mechakra, Brahim Safi, Houcine Kebir
Abstract:
In this paper we studied fracture and dynamic behavior of vertical axis wind turbine blade, the VAWT is a historical machine, it has many properties, structure, advantage, component to be able to produce the electricity. We modeled the blade design then imported to Abaqus software for analysis the modes shapes, frequencies, stress, strain, displacement and stress intensity factor SIF, after comparison we chose the idol material. Finally, the CTS test of glass epoxy reinforced polymer plates to obtain the material fracture toughness Kc.Keywords: blade, crack, frequency, material, SIF
Procedia PDF Downloads 549