Search results for: incremental mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1308

Search results for: incremental mining

1068 Surface Roughness in the Incremental Forming of Drawing Quality Cold Rolled CR2 Steel Sheet

Authors: Zeradam Yeshiwas, A. Krishnaia

Abstract:

The aim of this study is to verify the resulting surface roughness of parts formed by the Single-Point Incremental Forming (SPIF) process for an ISO 3574 Drawing Quality Cold Rolled CR2 Steel. The chemical composition of drawing quality Cold Rolled CR2 steel is comprised of 0.12 percent of carbon, 0.5 percent of manganese, 0.035 percent of sulfur, 0.04 percent phosphorous, and the remaining percentage is iron with negligible impurities. The experiments were performed on a 3-axis vertical CNC milling machining center equipped with a tool setup comprising a fixture and forming tools specifically designed and fabricated for the process. The CNC milling machine was used to transfer the tool path code generated in Mastercam 2017 environment into three-dimensional motions by the linear incremental progress of the spindle. The blanks of Drawing Quality Cold Rolled CR2 steel sheets of 1 mm of thickness have been fixed along their periphery by a fixture and hardened high-speed steel (HSS) tools with a hemispherical tip of 8, 10 and 12mm of diameter were employed to fabricate sample parts. To investigate the surface roughness, hyperbolic-cone shape specimens were fabricated based on the chosen experimental design. The effect of process parameters on the surface roughness was studied using three important process parameters, i.e., tool diameter, feed rate, and step depth. In this study, the Taylor-Hobson Surtronic 3+ surface roughness tester profilometer was used to determine the surface roughness of the parts fabricated using the arithmetic mean deviation (Rₐ). In this instrument, a small tip is dragged across a surface while its deflection is recorded. Finally, the optimum process parameters and the main factor affecting surface roughness were found using the Taguchi design of the experiment and ANOVA. A Taguchi experiment design with three factors and three levels for each factor, the standard orthogonal array L9 (3³) was selected for the study using the array selection table. The lowest value of surface roughness is significant for surface roughness improvement. For this objective, the ‘‘smaller-the-better’’ equation was used for the calculation of the S/N ratio. The finishing roughness parameter Ra has been measured for the different process combinations. The arithmetic means deviation (Rₐ) was measured via the experimental design for each combination of the control factors by using Taguchi experimental design. Four roughness measurements were taken for a single component and the average roughness was taken to optimize the surface roughness. The lowest value of Rₐ is very important for surface roughness improvement. For this reason, the ‘‘smaller-the-better’’ Equation was used for the calculation of the S/N ratio. Analysis of the effect of each control factor on the surface roughness was performed with a ‘‘S/N response table’’. Optimum surface roughness was obtained at a feed rate of 1500 mm/min, with a tool radius of 12 mm, and with a step depth of 0.5 mm. The ANOVA result shows that step depth is an essential factor affecting surface roughness (91.1 %).

Keywords: incremental forming, SPIF, drawing quality steel, surface roughness, roughness behavior

Procedia PDF Downloads 62
1067 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects

Authors: Victor Radich, Tania Basso, Regina Moraes

Abstract:

Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.

Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring

Procedia PDF Downloads 85
1066 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 423
1065 Exposure Assessment for Worker Exposed to Heavy Metals during Road Marking Operations

Authors: Yin-Hsuan Wu, Perng-Jy Tsai, Ying-Fang Wang, Shun-Hui Chung

Abstract:

The present study was conducted to characterize exposure concentrations, concentrations deposited on the different respiratory regions, and resultant health risks associated with heavy metal exposures for road marking workers. Road marking workers of three similar exposure groups (SEGs) were selected, including the paint pouring worker, marking worker, and preparing worker. Personal exposure samples were collected using an inhalable dust sampler (IOM), and the involved particle size distribution samples were estimated using an eight-stage Marple personal cascade impactor during five working days. In total, 25 IOM samples and 20 Marple samples were collected. All collected samples were analyzed for their heavy metal contents using the ICP/MS. The resultant heavy metal particle size distributions were also used to estimate the fractions of particle deposited on the head airways (Chead), tracheobronchial (Cthorac) and alveolar regions (Cresp) of the exposed workers. In addition, Pb and Cr were selected to estimate the incremental cancer risk, and Zn, Ti, and Mo were selected to estimate the corresponding non-cancer risk in the present study. Results show that three heavy metals, including Pb, Cr, and Ti, were found with the highest concentrations for the SEG of the paint pouring worker (=0.585±2.98, 0.307±1.71, 0.902±2.99 μg/m³, respectively). For the fraction of heavy metal particle deposited on the respiratory tract, both alveolar and head regions were found with the highest values (=23-43% and 39-61%, respectively). For both SEGs of the paint pouring and marking, 51% of Cr, 59-61% of Zn, and 48-51% of Ti were found to be deposited on the alveolar region, and 41-43% of Pb was deposited on the head region. Finally, the incremental cancer risk for the SEGs of the paint pouring, marking, and preparing were found as 1.08×10⁻⁵, 2.78×10⁻⁶, and 2.20×10⁻⁶, respectively. In addition, the estimated non-cancer risk for the above three SEGs was found to be consistently less than unity. In conclusion, though the estimated non-cancer risk was less than unity, all resultant incremental cancer risk was greater than 10⁻⁶ indicating the abatement of workers’ exposure is necessary. It is suggested that strategies, including placing on the molten kettle, substitution the currently used paints for less heavy metal containing paints, and wearing fume protecting personal protective equipment can be considered in the future from reducing the worker’s exposure aspect.

Keywords: health risk assessment, heavy metal, respiratory track deposition, road marking

Procedia PDF Downloads 169
1064 A Method for Reduction of Association Rules in Data Mining

Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa

Abstract:

The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.

Keywords: data mining, association rules, rules reduction, artificial intelligence

Procedia PDF Downloads 160
1063 The Significance of Picture Mining in the Fashion and Design as a New Research Method

Authors: Katsue Edo, Yu Hiroi

Abstract:

T Increasing attention has been paid to using pictures and photographs in research since the beginning of the 21th century in social sciences. Meanwhile we have been studying the usefulness of Picture mining, which is one of the new ways for a these picture using researches. Picture Mining is an explorative research analysis method that takes useful information from pictures, photographs and static or moving images. It is often compared with the methods of text mining. The Picture Mining concept includes observational research in the broad sense, because it also aims to analyze moving images (Ochihara and Edo 2013). In the recent literature, studies and reports using pictures are increasing due to the environmental changes. These are identified as technological and social changes (Edo et.al. 2013). Low price digital cameras and i-phones, high information transmission speed, low costs for information transferring and high performance and resolution of the cameras of mobile phones have changed the photographing behavior of people. Consequently, there is less resistance in taking and processing photographs for most of the people in the developing countries. In these studies, this method of collecting data from respondents is often called as ‘participant-generated photography’ or ‘respondent-generated visual imagery’, which focuses on the collection of data and its analysis (Pauwels 2011, Snyder 2012). But there are few systematical and conceptual studies that supports it significance of these methods. We have discussed in the recent years to conceptualize these picture using research methods and formalize theoretical findings (Edo et. al. 2014). We have identified the most efficient fields of Picture mining in the following areas inductively and in case studies; 1) Research in Consumer and Customer Lifestyles. 2) New Product Development. 3) Research in Fashion and Design. Though we have found that it will be useful in these fields and areas, we must verify these assumptions. In this study we will focus on the field of fashion and design, to determine whether picture mining methods are really reliable in this area. In order to do so we have conducted an empirical research of the respondents’ attitudes and behavior concerning pictures and photographs. We compared the attitudes and behavior of pictures toward fashion to meals, and found out that taking pictures of fashion is not as easy as taking meals and food. Respondents do not often take pictures of fashion and upload their pictures online, such as Facebook and Instagram, compared to meals and food because of the difficulty of taking them. We concluded that we should be more careful in analyzing pictures in the fashion area for there still might be some kind of bias existing even if the environment of pictures have drastically changed in these years.

Keywords: empirical research, fashion and design, Picture Mining, qualitative research

Procedia PDF Downloads 363
1062 The Affective Motivation of Women Miners in Ghana

Authors: Adesuwa Omorede, Rufai Haruna Kilu

Abstract:

Affective motivation (motivation that is emotionally laden usually related to affect, passion, emotions, moods) in the workplace stimulates individuals to reinforce, persist and commit to their task, which leads to the individual and organizational performance. This leads individuals to reach goals especially in situations where task are highly challenging and hostile. In such situations, individuals are more disposed to be more creative, innovative and see new opportunities from the loopholes in their workplace. However, when individuals feel displaced and less important, an adverse reaction may suffice which may be detrimental to the organization and its performance. One sector where affective motivation is eminently present and relevant, is the mining industry. Due to its intense work environment; mostly dominated by men and masculinity cultures; and deliberate exclusion of women in this environment which, makes the women working in these environments to feel marginalized. In Ghana, the mining industry is mostly seen as a very physical environment especially underground and mostly considerd as 'no place for a woman'. Despite the fact that these women feel less 'needed' or 'appreciated' in such environments, they still have to juggle between intense work shifts; face violence and other health risks with their families, which put a strain on their affective motivational reaction. Beyond these challenges, however, several mining companies in Ghana today are working towards providing a fair and equal working situation for both men and women miners, by recognizing them as key stakeholders, as well as including them in the stages of mining projects from the planning and designing phase to the evaluation and implementation stage. Drawing from the psychology and gender literature, this study takes a narrative approach to identify and understand the shifting gender dynamics within the mine works in Ghana, occasioning a change in background disposition of miners, which leads to more women taking up mine jobs in the country. In doing so, a qualitative study was conducted using semi-structured interviews from Ghana. Several women working within the mining industries in Ghana shared their experiences and how they felt and still feel in their workplace. In addition, archival documents were gathered to support the findings. The results suggest a change in enrolment regimes in a mining and technology university in Ghana, making room for a more gender equal enrolments in the university. A renowned university that train and feed mine work professional into the industry. The results further acknowledge gender equal and diversity recruitment policies and initiatives among the mining companies of Ghana. This study contributes to the psychology and gender literature by highlighting the hindrances women face in the mining industry as well as highlighting several of their affective reactions towards gender inequality. The study also provides several suggestions for decision makers in the mining industry of what can be done in the future to reduce the gender inequality gap within the industry.

Keywords: affective motivation, gender shape shifting, mining industry, women miners

Procedia PDF Downloads 301
1061 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining

Procedia PDF Downloads 121
1060 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 433
1059 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 274
1058 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 353
1057 Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement

Authors: Chao Xu

Abstract:

Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result.

Keywords: vulnerability, probability seismic demand analysis, ground motion intensity measure, sufficiency, efficiency, inelastic time history analysis

Procedia PDF Downloads 354
1056 The Morphogenesis of an Informal Settlement: An Examination of Street Networks through the Informal Development Stages Framework

Authors: Judith Margaret Tymon

Abstract:

As cities struggle to incorporate informal settlements into the fabric of urban areas, the focus has often been on the provision of housing. This study explores the underlying structure of street networks, with the goal of understanding the morphogenesis of informal settlements through the lens of the access network. As the stages of development progress from infill to consolidation and eventually, to a planned in-situ settlement, the access networks retain the form of the core segments; however, a majority of street patterns are adapted to a grid design to support infrastructure in the final upgraded phase. A case study is presented to examine the street network in the informal settlement of Gobabis Namibia as it progresses from its initial stages to a planned, in-situ, and permanently upgraded development. The Informal Development Stages framework of foundation, infill, and consolidation, as developed by Dr. Jota Samper, is utilized to examine the evolution of street networks. Data is gathered from historical Google Earth satellite images for the time period between 2003 and 2022. The results demonstrate that during the foundation through infill stages, incremental changes follow similar patterns, with pathways extended, lengthened, and densified as housing is created and the settlement grows. In the final stage of consolidation, the resulting street layout is transformed to support the installation of infrastructure; however, some elements of the original street patterns remain. The core pathways remain intact to accommodate the installation of infrastructure and the creation of housing plots, defining the shape of the settlement and providing the basis of the urban form. The adaptations, growth, and consolidation of the street network are critical to the eventual formation of the spatial layout of the settlement. This study will include a comparative analysis of findings with those of recent research performed by Kamalipour, Dovey, and others regarding incremental urbanism within informal settlements. Further comparisons will also include studies of street networks of well-established urban centers that have shown links between the morphogenesis of access networks and the eventual spatial layout of the city. The findings of the study can be used to guide and inform strategies for in-situ upgrading and can contribute to the sustainable development of informal settlements.

Keywords: Gobabis Namibia, incremental urbanism, informal development stages, informal settlements, street networks

Procedia PDF Downloads 64
1055 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 62
1054 Lessons from Farmers Performing Agroforestry for Reclamation of Gold Mine Spoils in Colombia

Authors: Bibiana Betancur-Corredor, Juan Carlos Loaiza, Manfred Denich, Christian Borgemeister

Abstract:

Alluvial gold mining generates a vast amount of deposits that cover the natural soil and negatively impacts riverbeds and valleys, causing loss of livelihood opportunities for farmers of these regions. In Colombia, more than 79,000 ha are affected by alluvial gold mining, therefore developing strategies to return this land to productivity is of crucial importance for the country. A novel restoration strategy has been created by a mining company, where the land is restored through the establishment of agroforestry systems, in which agricultural crops and livestock are combined to complement reforestation in the area. The purpose of this study is to capture the knowledge of farmers who perform agroforestry in areas with deposits created by alluvial gold mining activities. Semi structured interviews were conducted with farmers with regard to the following: indicators of soil fertility, management practices, soil heterogeneity, pest outbreaks and weeds. In order to compare the perceptions of soil fertility of farmers with physicochemical properties of soils, the farmers were asked to identify spots within their farms that have exhibited good and poor yields. Soil samples were collected in order to correlate farmer’s perceptions with soil physicochemical properties. The findings suggest that the main challenge that farmers face is the identification of fertile soil for crop establishment. They identify the fertile soil through visually analyzing soil color and compaction as well as the use of spontaneous growth of specific plants as indicator of soil fertility. For less fertile areas, nitrogen fixing plants are used as green manure to restore soil fertility for crop establishment. The findings of this study imply that if gold mining is followed by reclamation practices that involve the successful establishment of productive farmlands, agricultural productivity of these lands might improve, increasing food security of the affected communities.

Keywords: agroforestry, knowledge, mining, restoration

Procedia PDF Downloads 233
1053 Main Cause of Children's Deaths in Indigenous Wayuu Community from Department of La Guajira: A Research Developed through Data Mining Use

Authors: Isaura Esther Solano Núñez, David Suarez

Abstract:

The main purpose of this research is to discover what causes death in children of the Wayuu community, and deeply analyze those results in order to take corrective measures to properly control infant mortality. We consider important to determine the reasons that are producing early death in this specific type of population, since they are the most vulnerable to high risk environmental conditions. In this way, the government, through competent authorities, may develop prevention policies and the right measures to avoid an increase of this tragic fact. The methodology used to develop this investigation is data mining, which consists in gaining and examining large amounts of data to produce new and valuable information. Through this technique it has been possible to determine that the child population is dying mostly from malnutrition. In short, this technique has been very useful to develop this study; it has allowed us to transform large amounts of information into a conclusive and important statement, which has made it easier to take appropriate steps to resolve a particular situation.

Keywords: malnutrition, data mining, analytical, descriptive, population, Wayuu, indigenous

Procedia PDF Downloads 159
1052 Building an Integrated Relational Database from Swiss Nutrition National Survey and Swiss Health Datasets for Data Mining Purposes

Authors: Ilona Mewes, Helena Jenzer, Farshideh Einsele

Abstract:

Objective: The objective of the study was to integrate two big databases from Swiss nutrition national survey (menuCH) and Swiss health national survey 2012 for data mining purposes. Each database has a demographic base data. An integrated Swiss database is built to later discover critical food consumption patterns linked with lifestyle diseases known to be strongly tied with food consumption. Design: Swiss nutrition national survey (menuCH) with approx. 2000 respondents from two different surveys, one by Phone and the other by questionnaire along with Swiss health national survey 2012 with 21500 respondents were pre-processed, cleaned and finally integrated to a unique relational database. Results: The result of this study is an integrated relational database from the Swiss nutritional and health databases.

Keywords: health informatics, data mining, nutritional and health databases, nutritional and chronical databases

Procedia PDF Downloads 112
1051 Designing Supplier Partnership Success Factors in the Coal Mining Industry

Authors: Ahmad Afif, Teuku Yuri M. Zagloel

Abstract:

Sustainable supply chain management is a new pattern that has emerged recently in industry and companies. The procurement process is one of the key factors for efficiency in supply chain management practices. Partnership is one of the procurement strategies for strategic items. The success factors of the partnership must be determined to avoid things that endanger the financial and operational status of the company. The current supplier partnership research focuses on the selection of general criteria and sustainable supplier selection. Currently, there is still limited research on the success factors of supplier partnerships that focus on strategic items in the coal mining industry. Meanwhile, the procurement of coal mining has its own characteristics, and there are regulations related to the procurement of goods. Therefore, this research was conducted to determine the categories of goods that are included in the strategic items and to design the success factors of supplier partnerships. The main factors studied are general, financial, production, reputation, synergies, and sustainable. The research was conducted using the Kraljic method to determine the categories of goods that are included in the strategic items. To design a supplier partnership success factor using the Hybrid Multi Criteria Decision Making method. Integrated Fuzzy AHP-Fuzzy TOPSIS is used to determine the weight of the success factors of supplier partnerships and to rank suppliers on the factors used.

Keywords: supplier, partnership, strategic item, success factors, and coal mining industry

Procedia PDF Downloads 130
1050 Agriculture Water Quality Evaluation in Minig Basin

Authors: Ben Salah Nahla

Abstract:

The problem of water in Tunisia affects the quality and quantity. Tunisia is in a situation of water shortage. It was estimated that 4.6 Mm3/an. Moreover, the quality of water in Tunisia is also mediocre. In fact, 50% of the water has a high salinity (> 1.5g/l). There are several parameters which affect water quality such as sodium, fluoride. An excess of this parameter may induce some human health. Furthermore, the mining basin area has a problem of industrial waste. This problem may affect the water quality of the groundwater. Therefore, the purpose of this work is to assess the water quality in Basin Mining and the impact of fluorine. For this research, some water samples were done in the field and specific water analysis was implemented in the laboratory. Sampling is carried out on eight drilling in the area of the mining region. In the following, we will look at water view composition, physical and chemical quality. A physical-chemical analysis of water from a survey of the Mining area of Tunisia was performed and showed an excess for the following items: fluorine, sodium, sulfate. So many chemicals may be present in water. However, only a small number of them immediately concern in terms of health in all circumstances. Fluorine (F) is one particular chemical that is considered both necessary for the human body, but an excess of the rate of this chemical causes serious diseases. Sodium fluoride and sodium silicofluoride are more soluble and may spread in animals and plants where their toxicity largest organizations. The more complex particles such as cryolite and fluorite, almost insoluble, are more stable and less toxic. Thereafter, we will study the problem of excess fluorine in the water. The latter intended for human consumption must always comply with the limits for microbiological quality parameters and physical-chemical parameters defined by European standards (1.5 mg/l) and Tunisian (2 mg/l).

Keywords: water, minier basin, fluorine, silicofluoride

Procedia PDF Downloads 582
1049 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach

Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim

Abstract:

De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantation

Keywords: De novo malignancy, bilirubin, data mining, transplantation

Procedia PDF Downloads 105
1048 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 76
1047 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents

Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino

Abstract:

In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.

Keywords: column-filter, mercury, mining, polysulfide, water treatment

Procedia PDF Downloads 149
1046 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research

Authors: Carla Silva

Abstract:

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.

Keywords: data mining, research analysis, investment decision-making, educational research

Procedia PDF Downloads 358
1045 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia

Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai

Abstract:

Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.

Keywords: coal mine, risk, trace elements, soil

Procedia PDF Downloads 260
1044 Challenges Affecting the Livelihoods of Small-Scale, Aggregate Miners, Vhembe District, Limpopo Province, South Africa

Authors: Ndivhudzannyi Rembuluwani, Francis Dacosta, Emmanuel Mhlongo

Abstract:

The small-scale rock aggregate sector of the mining industry is a major source of employment for a significant number of people, particularly in remote rural areas, where alternative livelihoods are rare. It contributes to local economy by generating income and producing major and essential materials for the building, construction, and other industries. However, the sector is confronted with many challenges that hamper productivity and growth. The problems that confront this sector includes: health and safety, environmental impacts, low production and low adherence to mining legislations. This study investigated the challenges confronting selected small-scale rock aggregate mines in the Vhembe District of Limpopo province of South Africa, assesses the health, safety, low production and environmental impacts associated with aggregate production and to develop an integrated approach of addressing the multi-faceted challenges.

Keywords: health and safety, legislative framework, productivity, rock aggregate, small-scale mining

Procedia PDF Downloads 503
1043 Radio-Frequency Identification (RFID) Based Smart Helmet for Coal Miners

Authors: Waheeda Jabbar, Ali Gul, Rida Noor, Sania Kurd, Saba Gulzar

Abstract:

Hundreds of miners die from mining accidents each year due to poisonous gases found underground mining areas. This paper proposed an idea to protect the precious lives of mining workers. A supervising system is designed which is based on ZigBee wireless technique along with the smart protective helmets to detect real-time surveillance and it gives early warnings on presence of different poisonous gases in order to save mineworkers from any danger caused by these poisonous gases. A wireless sensor network is established using ZigBee wireless technique by integrating sensors on the helmet, apart from this helmet have embedded heartbeat sensor to detect the pulse rate and be aware of the physical or mental strength of a mineworker to increase the potential safety. Radio frequency identification (RFID) technology is used to find the location of workers. A ZigBee based base station is set-upped to control the communication. The idea is implemented and results are verified through experiment.

Keywords: Arduino, gas sensor (MQ7), RFID, wireless ZigBee

Procedia PDF Downloads 455
1042 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 138
1041 Impact of Gold Mining on Crop Production, Livelihood and Environmental Sustainability in West Africa in the Context of Water-Energy-Food Nexus

Authors: Yusif Habib

Abstract:

The Volta River Basin (VRB) is a transboundary resource shared by Six (6) the West African States. It’s utilization spans across irrigation, hydropower generation, domestic/household water use, transportation, industrial processing, among others. Simultaneously, mineral resources such as gold are mined within the VRB catchment. Typically, the extraction/mining operation is earth-surface excavation; known as Artisanal and Small-scale mining. We developed a conceptual framework in the context of Water-Energy-Food (WEF) Nexus to delineate the trade-offs and synergies between the mineral extractive operation’s impact on Agricultural systems, specifically, cereal crops (e.g. Maize, Millet, and Rice) and the environment (water and soil quality, deforestation, etc.) on the VRB. Thus, the study examined the trade-offs and synergies through the WEF nexus lens to explore the extent of an eventual overarching mining preference for gold exploration with high economic returns as opposed to the presumably low yearly harvest and household income from food crops production to inform intervention prioritization. Field survey (household, expert, and stakeholder consultation), bibliometric analysis/literature review, scenario, and simulation models, including land-use land cover (LULC) analyses, were conducted. The selected study area(s) in Ghana was the location where the mineral extractive operation’s presence and impact are widespread co-exist with the Agricultural systems. Overall, the study proposes mechanisms of the virtuous cycle through FEW Nexus instead of the presumably existing vicious cycle to inform decision making and policy implementation.

Keywords: agriculture, environmental sustainability, gold Mining, synergies, trade-off, water-energy-food nexus

Procedia PDF Downloads 163
1040 Pilot Study of Determining the Impact of Surface Subsidence at The Intersection of Cave Mining with the Surface Using an Electrical Impedance Tomography

Authors: Ariungerel Jargal

Abstract:

: Cave mining is a bulk underground mining method, which allows large low-grade deposits to be mined underground. This method involves undermining the orebody to make it collapse under its own weight into a series of chambers from which the ore extracted. It is a useful technique to extend the life of large deposits previously mined by open pits, and it is a method increasingly proposed for new mines around the world. We plan to conduct a feasibility study using Electrical impedance tomography (EIT) technology to show how much subsidence there is at the intersection with the cave mining surface. EIT is an imaging technique which uses electrical measurements at electrodes attached on the body surface to yield a cross-sectional image of conductivity changes within the object. EIT has been developed in several different applications areas as a simpler, cheaper alternative to many other imaging methods. A low frequency current is injected between pairs of electrodes while voltage measurements are collected at all other electrode pairs. In the difference EIT, images are reconstructed of the change in conductivity distribution (σ) between the acquisition of the two sets of measurements. Image reconstruction in EIT requires the solution of an ill-conditioned nonlinear inverse problem on noisy data, typically requiring make simpler assumptions or regularization. It is noted that the ratio of current to voltage represents a complex value according to Ohm’s law, and that it is theoretically possible to re-express EIT. The results of the experiment were presented on the simulation, and it was concluded that it is possible to conduct further real experiments. Drill a certain number of holes in the top wall of the cave to attach the electrodes, flow a current through them, and measure and acquire the potential through these electrodes. Appropriate values should be selected depending on the distance between the holes, the frequency and duration of the measurements, the surface characteristics and the size of the study area using an EIT device.

Keywords: impedance tomography, cave mining, soil, EIT device

Procedia PDF Downloads 126
1039 Generating Insights from Data Using a Hybrid Approach

Authors: Allmin Susaiyah, Aki Härmä, Milan Petković

Abstract:

Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.

Keywords: data mining, insight mining, natural language generation, pre-trained language models

Procedia PDF Downloads 119