Search results for: emotion mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1486

Search results for: emotion mining

1246 Evaluating 8D Reports Using Text-Mining

Authors: Benjamin Kuester, Bjoern Eilert, Malte Stonis, Ludger Overmeyer

Abstract:

Increasing quality requirements make reliable and effective quality management indispensable. This includes the complaint handling in which the 8D method is widely used. The 8D report as a written documentation of the 8D method is one of the key quality documents as it internally secures the quality standards and acts as a communication medium to the customer. In practice, however, the 8D report is mostly faulty and of poor quality. There is no quality control of 8D reports today. This paper describes the use of natural language processing for the automated evaluation of 8D reports. Based on semantic analysis and text-mining algorithms the presented system is able to uncover content and formal quality deficiencies and thus increases the quality of the complaint processing in the long term.

Keywords: 8D report, complaint management, evaluation system, text-mining

Procedia PDF Downloads 315
1245 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy

Authors: John Dorrell, Matthew Ambrosia, Abilash

Abstract:

This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.

Keywords: bitcoin, mining, economics, energy

Procedia PDF Downloads 33
1244 Exploring Fear in Moral Life: Implications for Education

Authors: Liz Jackson

Abstract:

Fear is usually considered as a basic emotion. In society, it is normally cast as undesirable, but also as partly unavoidable. Fear can be said to underlie courage or be required for courage, or it can be understood as its foil. Fear is not normally promoted (intentionally) in education, or treated as something that should be cultivated in schools or in society. However, fear is a basic, to some extent unavoidable emotion, related to truly fearsome things in the world. Fear is also understood to underlie anxiety. Fear is seen as basically disruptive to education, while from a psychological view it is an ordinary state. that cannot be avoided altogether. Despite calls to diminish this negative and mixed feeling in education and society, it can be regarded as socially and personally valuable, and psychologically functional in some situations. One should not take for granted the goodness of fear. However, it can be productive to explore its moral worth, and uses and abuses. Such uncomfortable feelings and experiences can be cultivated and explored via educational and other societal influences, in ways that can benefit a person and their relations with others in the world, while they can also be detrimental.

Keywords: virtue ethics, philosophy of education, moral philosophy, fear

Procedia PDF Downloads 142
1243 Analysis of Causality between Defect Causes Using Association Rule Mining

Authors: Sangdeok Lee, Sangwon Han, Changtaek Hyun

Abstract:

Construction defects are major components that result in negative impacts on project performance including schedule delays and cost overruns. Since construction defects generally occur when a few associated causes combine, a thorough understanding of defect causality is required in order to more systematically prevent construction defects. To address this issue, this paper uses association rule mining (ARM) to quantify the causality between defect causes, and social network analysis (SNA) to find indirect causality among them. The suggested approach is validated with 350 defect instances from concrete works in 32 projects in Korea. The results show that the interrelationships revealed by the approach reflect the characteristics of the concrete task and the important causes that should be prevented.

Keywords: causality, defect causes, social network analysis, association rule mining

Procedia PDF Downloads 367
1242 The Impact of Online Games, Massively Multiplayer Online Game towards Undergraduate Students in Malaysia

Authors: Rubijesmin Abdul Latif, Norshakirah Abdul Aziz, Mohd Taufik Abdul Jalil

Abstract:

This paper focuses on the impact of online games among Malaysian undergraduate students. The purpose of this study is to investigate whether online games (especially MMOGs) impacted students positively or vice versa; focusing on three elements (time management, social life, and emotion). A total of 83 respondents comprised from 14 Malaysia universities, randomly selected undergraduate students who play MMOGs (casual and hardcore gamers i.e. addiction to MMOGs) were involved in this study. The results showed that MMOGs have only negative impact on students capabilities in time management, meanwhile as for the elements social life and emotion, MMOGs do not affect them negatively.

Keywords: internet game addiction, online games, MMOGs, impact, undergraduate students

Procedia PDF Downloads 583
1241 Surveyed Emotional Responses to Musical Chord Progressions Imbued with Binaural Pulsations

Authors: Jachin Pousson, Valdis Bernhofs

Abstract:

Applications of the binaural sound experience are wide-ranged. This paper focuses on the interaction between binaural tones and human emotion with an aim to apply the resulting knowledge artistically. For the purpose of this study, binaural music is defined as musical arrangements of sound which are made of combinations of binaural difference tones. Here, the term ‘binaural difference tone’ refers to the pulsating tone heard within the brain which results from listening to slightly differing audio frequencies or pure pitches in each ear. The frequency or tempo of the pulsations is the sum of the precise difference between the frequencies two tones and is measured in beats per second. Polyrhythmic pulsations that can be heard within combinations of these differences tones have shown to be able to entrain or tune brainwave patterns to frequencies which have been linked to mental states which can be characterized by different levels of attention and mood.

Keywords: binaural auditory pulsations, brainwave entrainment, emotion, music composition

Procedia PDF Downloads 175
1240 Design and Development of Data Mining Application for Medical Centers in Remote Areas

Authors: Grace Omowunmi Soyebi

Abstract:

Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.

Keywords: data mining, medical record system, systems programming, computing

Procedia PDF Downloads 209
1239 Improved FP-Growth Algorithm with Multiple Minimum Supports Using Maximum Constraints

Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam

Abstract:

Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FP-growth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.

Keywords: association rules, FP-growth, multiple minimum supports, Weka tool

Procedia PDF Downloads 485
1238 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
1237 The Role of Attachment and Dyadic Coping in Shaping Relational Intimacy

Authors: Anna Wendolowska, Dorota Czyzowska

Abstract:

An intimate relationship is a significant factor that influences romantic partners’ well-being. In the face of stress, avoidant partners often employ a defense-against-intimacy strategy, leading to reduced relationship satisfaction, intimacy, interdependence, and longevity. Dyadic coping can buffer the negative effects of stress on relational satisfaction. Emotional competence mediates the relationship between insecure attachment and intimacy. In the current study, the link between attachment, different forms of dyadic coping, and various aspects of relationship satisfaction was examined. Both partners completed the attachment style questionnaire, the well matching couple questionnaire, and the dyadic coping inventory. The data was analyzed using the actor–partner interdependence model. The results highlighted a negative association between insecure-avoidant attachment style and intimacy. The actor effects of avoidant attachment on relational intimacy for women and for men were significant, whilst the partner effects for both spouses were not significant. The emotion-focused common dyadic coping moderated the relationship between avoidance of attachment and the partner's sense of intimacy. After controlling for the emotion-focused common dyadic coping, the actor effect of attachment on intimacy for men was slightly weaker, and the actor effect for women turned out to be insignificant. The emotion-focused common dyadic coping weakened the negative association between insecure attachment and relational intimacy. The impact of adult attachment and dyadic coping significantly contributes to subjective relational well-being.

Keywords: adult attachment, dyadic coping, relational intimacy, relationship satisfaction

Procedia PDF Downloads 161
1236 The Effects of Online Video Gaming on Creativity

Authors: Chloe Shu-Hua Yeh

Abstract:

Effects of videogame play on players cognitive abilities is a growing research field in the recent decades, however, little is known about how ‘out-of-school’ use of videogame influences creativity. This interdisciplinary research explores the cognitive and emotional effects of two different types of online videogames (an action videogame and a non-action videogame) on subsequent creativity performances using a within-participant design study with 36 participants. Results showed that after playing the action game participants performed higher originality, elaboration and flexibility than after playing the causal game. The results explored effects of emotional states elicited during playing the games suggesting that arousal may be a significant emotional factor which influence subsequent creativity performance. The cognitive and emotional effects of videogame were discussed followed with implications for emotion-creativity-videogame play research, game designers, educational practitioners and parents.

Keywords: attentional breadth, creativity, emotion, videogame play

Procedia PDF Downloads 530
1235 A Theoretical Model for Pattern Extraction in Large Datasets

Authors: Muhammad Usman

Abstract:

Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.

Keywords: association rule mining, data mining, data warehouses, visualization of association rules

Procedia PDF Downloads 223
1234 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 273
1233 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 143
1232 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification

Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar

Abstract:

Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.

Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings

Procedia PDF Downloads 174
1231 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 50
1230 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems

Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang

Abstract:

The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.

Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes

Procedia PDF Downloads 611
1229 Text Mining Techniques for Prioritizing Pathogenic Mutations in Protein Families Known to Misfold or Aggregate

Authors: Khaleel Saleh Al-Rababah

Abstract:

Amyloid fibril forming regions, which are known as protein aggregates, in sequences of some protein families are associated with a number of diseases known as amyloidosis. Mutations play a role in forming fibrils by accelerating the fibril formation process. In this paper we want to extract diseases that caused by those mutations as a result of the impact of the mutations on structural and functional properties of the aggregated protein. We propose a text mining system, to automatically extract mutations, diseases and relations between mutations and diseases. We presented an algorithm based on finite state to cluster mutations found in the same sentence as a sentence could contain different mutation cause different diseases. Also, we presented a co reference algorithm that enables cross-link sentences.

Keywords: amyloid, amyloidosis, co reference, protein, text mining

Procedia PDF Downloads 525
1228 Rewashing for Gold: Optimizing Mine Plan for Effective Closure

Authors: O. D. Eniowo

Abstract:

“Rewashing” as it is commonly called, involves the process of scooping out and washing chunks of mud from a closed alluvial gold mine site with the purpose of extracting any leftover gold deposits in the site. It is usually carried out by illegal miners who infiltrate closed mine sites with the goal of scavenging for any leftover gold deposits. Expectedly, the practice gives little or no regard for environmental protection. This paper examines the process of “rewashing” in a mining community in Nigeria. It then discusses the looming danger it portends for health, safety, and the environment. The study draws lessons from these occurrences to examine and discuss fit-for-purpose mine closure plans that could be adopted by gold mines in Nigeria and other sub-Saharan African countries.

Keywords: mine planning, mine closure, illegal mining, artisanal mining, environmental sustainability

Procedia PDF Downloads 30
1227 Valorization of Mining Waste (Sand of Djemi Djema) from the Djbel Onk Mine (Eastern Algeria)

Authors: Rachida Malaoui, Leila Arabet , Asma Benbouza

Abstract:

The use of mining waste rock as a material for construction is one of the biggest concerns grabbing the attention of many mining countries. As these materials are abandoned, more effective solutions have been made to offset some of the building materials, and to avoid environmental pollution. The sands of the Djemi Djema deposit mines of the Djebel Onk mines are sedimentary materials of several varieties of layers with varying thicknesses and are worth far more than 300m deep. The sands from the Djemi Djema business area are medium to coarse and are discharged and accumulated, generating a huge estimated quantity of more than 77424250 tonnes. This state of "resource" is of great importance so as to be oriented towards the fields of public works and civil engineering after having reached the acceptable properties of this resource

Keywords: reuse, sands, shear tests, waste rock

Procedia PDF Downloads 146
1226 A General Strategy for Noise Assessment in Open Mining Industries

Authors: Diego Mauricio Murillo Gomez, Enney Leon Gonzalez Ramirez, Hugo Piedrahita, Jairo Yate

Abstract:

This paper proposes a methodology for the management of noise in open mining industries based on an integral concept, which takes into consideration occupational and environmental noise as a whole. The approach relies on the characterization of sources, the combination of several measurements’ techniques and the use of acoustic prediction software. A discussion about the difference between frequently used acoustic indicators such as Leq and LAV is carried out, aiming to establish common ground for homologation. The results show that the correct integration of this data not only allows for a more robust technical analysis but also for a more strategic route of intervention as several departments of the company are working together. Noise control measurements can be designed to provide a healthy acoustic surrounding in which the exposure workers but also the outdoor community is benefited.

Keywords: environmental noise, noise control, occupational noise, open mining

Procedia PDF Downloads 269
1225 An Improved Parallel Algorithm of Decision Tree

Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng

Abstract:

Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.

Keywords: classification, Gini index, parallel data mining, pruning ahead

Procedia PDF Downloads 123
1224 Exploring the Suitability and Benefits of Two Different Mindfulness-Based Interventions with Marginalized Female Youth

Authors: Samaneh Abedini, Diana Coholic

Abstract:

The transition from adolescence into adulthood involves many changes that result in increased vulnerability to psychological challenges. This developmental stage can be especially stressful for female youth living in underserviced regions. If mental health problems are left untreated in socially marginalized youth, these challenges can extend into adulthood. We know that a lack of access to mental health services and supports can influence adolescents’ psycho-social development and well-being, while resilience and emotion regulation can help them cope with these challenges. Feasible therapeutic programs can play a significant role in assisting youth in developing these characteristics and skills. Mindfulness-Based Cognitive Therapy for Children (MBCT-C) and Holistic Art-Based Program (HAP) are two examples of mindfulness-based interventions (MBIs) that address emotion regulation, coping strategies, and resilience in marginalized youth. While each program’s beneficial effects have been documented, there is a lack of research comparing MBIs with youth, within underserviced geographical locations, and across different cultures. In this study, the sample was 42 female youth between the ages of 12 and 17 years from Iran. 42 female youth from the Elm o Honar High School, located in rural parts of Iran, Isfahan province, have been enrolled in the study. The participants were assigned to one of the MBIs (three MBCT-C experimental groups (n=20) and three HAP experimental groups (n=22)). All participants completed measures including the Child and Youth Resilience Measure-28 (CYRM-28), Child and Adolescent Mindfulness Measure (CAMM), and Difficulties in Emotion Regulation Scale (DERS) at baseline and post-intervention. At the end of intervention, the MBCT-C and HAP experimental groups showed significant changes in resilience and emotion regulation. However, the changes in resilience in HAP groups were not significant; the participants in MBCT-C experimental groups showed significant improvement in resilience. The study provided initial evidence that mindfulness-based intervention can be potentially beneficial for improving mental health status in marginalized Iranian female youth living in the middle east culture.

Keywords: benefits, female, marginalized, mindfulness, youth

Procedia PDF Downloads 89
1223 Hydro Geochemistry and Water Quality in a River Affected by Lead Mining in Southern Spain

Authors: Rosendo Mendoza, María Carmen Hidalgo, María José Campos-Suñol, Julián Martínez, Javier Rey

Abstract:

The impact of mining environmental liabilities and mine drainage on surface water quality has been investigated in the hydrographic basin of the La Carolina mining district (southern Spain). This abandoned mining district is characterized by the existence of important mineralizations of sulfoantimonides of Pb - Ag, and sulfides of Cu - Fe. All surface waters reach the main river of this mining area, the Grande River, which ends its course in the Rumblar reservoir. This waterbody is intended to supply 89,000 inhabitants, as well as irrigation and livestock. Therefore, the analysis and control of the metal(loid) concentration that exists in these surface waters is an important issue because of the potential pollution derived from metallic mining. A hydrogeochemical campaign consisting of 20 water sampling points was carried out in the hydrographic network of the Grande River, as well as two sampling points in the Rumbler reservoir and at the main tailings impoundment draining to the river. Although acid mine drainage (pH below 4) is discharged into the Grande river from some mine adits, the pH values in the river water are always neutral or slightly alkaline. This is mainly the result of a dilution process of the small volumes of mine waters by net alkaline waters of the river. However, during the dry season, the surface waters present high mineralization due to a constant discharge from the abandoned flooded mines and a decrease in the contribution of surface runoff. The concentrations of dissolved Cd and Pb in the water reach values of 2 and 81 µg/l, respectively, exceeding the limit established by the Environmental Quality Standard for surface water. In addition, the concentrations of dissolved As, Cu, and Pb in the waters of the Rumblar reservoir reached values of 10, 20, and 11 µg/l, respectively. These values are higher than the maximum allowable concentration for human consumption, a circumstance that is especially alarming.

Keywords: environmental quality, hydrogeochemistry, metal mining, surface water

Procedia PDF Downloads 143
1222 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 23
1221 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 65
1220 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 118
1219 Heavy Metal Pollution of the Soils around the Mining Area near Shamlugh Town (Armenia) and Related Risks to the Environment

Authors: G. A. Gevorgyan, K. A. Ghazaryan, T. H. Derdzyan

Abstract:

The heavy metal pollution of the soils around the mining area near Shamlugh town and related risks to human health were assessed. The investigations showed that the soils were polluted with heavy metals that can be ranked by anthropogenic pollution degree as follows: Cu>Pb>As>Co>Ni>Zn. The main sources of the anthropogenic metal pollution of the soils were the copper mining area near Shamlugh town, the Chochkan tailings storage facility and the trucks transferring are from the mining area. Copper pollution degree in some observation sites was unallowable for agricultural production. The total non-carcinogenic chronic hazard index (THI) values in some places, including observation sites in Shamlugh town, were above the safe level (THI<1) for children living in this territory. Although the highest heavy metal enrichment degree in the soils was registered in case of copper, the highest health risks to humans especially children were posed by cobalt which is explained by the fact that heavy metals have different toxicity levels and penetration characteristics.

Keywords: Armenia, copper mine, heavy metal pollution of soil, health risks

Procedia PDF Downloads 416
1218 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising

Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri

Abstract:

Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.

Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing

Procedia PDF Downloads 589
1217 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia

Authors: Erika Ruíz, Luis Amaya, Diego Carreño

Abstract:

The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).

Keywords: location routing problem, logistic, mining collection, model

Procedia PDF Downloads 217