Search results for: electrophoretic light scattering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3920

Search results for: electrophoretic light scattering

3680 Design and Construction of Models of Sun Tracker or Sun Tracking System for Light Transmission

Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei

Abstract:

This article introduces devices that can transfer sunlight to buildings that do not have access to direct sunlight during the day. The transmission and reflection of sunlight are done through the movement of movable mirrors. The focus of this article is on two models of sun tracker systems designed and built by the Macad team. In fact, this article will reveal the distinction between the two Macad devices and the previously built competitor device. What distinguishes the devices built by the Macad team from the competitor's device is the different mode of operation and the difference in the location of the sensors. Given that the devices have the same results, the Macad team has tried to reduce the defects of the competitor's device as much as possible. The special feature of the second type of device built by the Macad team has enabled buildings with different construction positions to use sun tracking systems. This article will also discuss diagrams of the path of sunlight transmission and more details of the device. It is worth mentioning that fixed mirrors are also placed next to the main devices. So that the light shining on the first device is reflected to these mirrors, this light is guided within the light receiver space and is transferred to the different parts around by steel sheets built in the light receiver space, and finally, these spaces benefit from sunlight.

Keywords: design, construction, mechatronic device, sun tracker system, sun tracker, sunlight

Procedia PDF Downloads 47
3679 Experimental Characterization of the Color Quality and Error Rate for an Red, Green, and Blue-Based Light Emission Diode-Fixture Used in Visible Light Communications

Authors: Juan F. Gutierrez, Jesus M. Quintero, Diego Sandoval

Abstract:

An important feature of LED technology is the fast on-off commutation, which allows data transmission. Visible Light Communication (VLC) is a wireless method to transmit data with visible light. Modulation formats such as On-Off Keying (OOK) and Color Shift Keying (CSK) are used in VLC. Since CSK is based on three color bands uses red, green, and blue monochromatic LED (RGB-LED) to define a pattern of chromaticities. This type of CSK provides poor color quality in the illuminated area. This work presents the design and implementation of a VLC system using RGB-based CSK with 16, 8, and 4 color points, mixing with a steady baseline of a phosphor white-LED, to improve the color quality of the LED-Fixture. The experimental system was assessed in terms of the Color Rendering Index (CRI) and the Symbol Error Rate (SER). Good color quality performance of the LED-Fixture was obtained with an acceptable SER. The laboratory setup used to characterize and calibrate an LED-Fixture is described.

Keywords: VLC, indoor lighting, color quality, symbol error rate, color shift keying

Procedia PDF Downloads 78
3678 Seed Germination and Recovery Responses of Suaeda Heterophylla to Abiotic Stresses

Authors: Abdul Hameed, Muhammad Zaheer Ahmed, Salman Gulzar, Bilquees Gul, Jan Alam, Ahmad K. Hegazy, Abdel Rehman A. Alatar, M. Ajmal Khan

Abstract:

Seed germination and recovery from salt stress of an annual halophyte Suaeda heterophylla (Kar. and Kir.) Bunge to different iso-osmotic concentrations (0, -0.46, -0.92, -1.38, -1.84, and -2.30 MPa) of NaCl and PEG-6000 at 15/25, 20/30 and 25/35°C in both 12-h temperature and light regimes and in complete darkness were studied. Maximum number of seeds germinated in distilled water and increase in concentrations of both NaCl and PEG-6000 decreased germination at all temperature regimes, light and dark conditions, with higher inhibition in NaCl than PEG-6000. Recovery of germination and viability of seeds were lower in NaCl than PEG-6000 both in the light and dark. Moderate alternate temperatures (20/30°C) and 12-h photoperiod were found to be the optimal for seed germination and recovery. Better seed germination of S. heterophylla when osmotic potential caused both by NaCl and PEG 6000 is lower, temperature regime of 20/30°C and light regime is for 12 h.

Keywords: seed germination, abiotic stresses, Suaeda heterophylla, molecular biology

Procedia PDF Downloads 407
3677 Distributed Acoustic Sensing Signal Model under Static Fiber Conditions

Authors: G. Punithavathy

Abstract:

The research proposes a statistical model for the distributed acoustic sensor interrogation units that broadcast a laser pulse into the fiber optics, where interactions within the fiber determine the localized acoustic energy that causes light reflections known as backscatter. The backscattered signal's amplitude and phase can be calculated using explicit equations. The created model makes amplitude signal spectrum and autocorrelation predictions that are confirmed by experimental findings. Phase signal characteristics that are useful for researching optical time domain reflectometry (OTDR) system sensing applications are provided and examined, showing good agreement with the experiment. The experiment was successfully done with the use of Python coding. In this research, we can analyze the entire distributed acoustic sensing (DAS) component parts separately. This model assumes that the fiber is in a static condition, meaning that there is no external force or vibration applied to the cable, that means no external acoustic disturbances present. The backscattered signal consists of a random noise component, which is caused by the intrinsic imperfections of the fiber, and a coherent component, which is due to the laser pulse interacting with the fiber.

Keywords: distributed acoustic sensing, optical fiber devices, optical time domain reflectometry, Rayleigh scattering

Procedia PDF Downloads 55
3676 The Development and Testing of Greenhouse Comprehensive Environment Control System

Authors: Mohammed Alrefaie, Yaser Miaji

Abstract:

Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented.

Keywords: greenhouse, control system, light intensity, comprehensive environment

Procedia PDF Downloads 460
3675 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light

Authors: W. Y. Zhu, X. L. Yan, Y. Zhou

Abstract:

Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.

Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide

Procedia PDF Downloads 334
3674 Anti-DNA Antibodies from Patients with Schizophrenia Hydrolyze DNA

Authors: Evgeny A. Ermakov, Lyudmila P. Smirnova, Valentina N. Buneva

Abstract:

Schizophrenia associated with dysregulation of neurotransmitter processes in the central nervous system and disturbances in the humoral immune system resulting in the formation of antibodies (Abs) to the various components of the nervous tissue. Abs to different neuronal receptors and DNA were detected in the blood of patients with schizophrenia. Abs hydrolyzing DNA were detected in pool of polyclonal autoantibodies in autoimmune and infectious diseases, such catalytic Abs were named abzymes. It is believed that DNA-hydrolyzing abzymes are cytotoxic, cause nuclear DNA fragmentation and induce cell death by apoptosis. Abzymes with DNAase activity are interesting because of the mechanism of formation and the possibility of use as diagnostic markers. Therefore, in our work we have set following goals: to determine the level anti-DNA Abs in the serum of patients with schizophrenia and to study DNA-hydrolyzing activity of IgG of patients with schizophrenia. Materials and methods: In our study there were included 41 patients with a verified diagnosis of paranoid or simple schizophrenia and 24 healthy donors. Electrophoretically and immunologically homogeneous IgGs were obtained by sequential affinity chromatography of the serum proteins on protein G-Sepharose and gel filtration. The levels of anti-DNA Abs were determined using ELISA. DNA-hydrolyzing activity was detected as the level of supercoiled pBluescript DNA transition in circular and linear forms, the hydrolysis products were analyzed by agarose electrophoresis followed by ethidium bromide stain. To correspond the registered catalytic activity directly to the antibodies we carried out a number of strict criteria: electrophoretic homogeneity of the antibodies, gel filtration (acid shock analysis) and in situ activity. Statistical analysis was performed in ‘Statistica 9.0’ using the non-parametric Mann-Whitney test. Results: The sera of approximately 30% of schizophrenia patients displayed a higher level of Abs interacting with single-stranded (ssDNA) and double-stranded DNA (dsDNA) compared with healthy donors. The average level of Abs interacting with ssDNA was only 1.1-fold lower than that for interacting with dsDNA. IgG of patient with schizophrenia were shown to possess DNA hydrolyzing activity. Using affinity chromatography, electrophoretic analysis of isolated IgG homogeneity, gel filtration in acid shock conditions and in situ DNAse activity analysis we proved that the observed activity is intrinsic property of studied antibodies. We have shown that the relative DNAase activity of IgG in patients with schizophrenia averaged 55.4±32.5%, IgG of healthy donors showed much lower activity (average of 9.1±6.5%). It should be noted that DNAase activity of IgG in patients with schizophrenia with a negative symptoms was significantly higher (73.3±23.8%), than in patients with positive symptoms (43.3±33.1%). Conclusion: Anti-DNA Abs of patients with schizophrenia not only bind DNA, but quite efficiently hydrolyze the substrate. The data show a correlation with the level of DNase activity and leading symptoms of patients with schizophrenia.

Keywords: anti-DNA antibodies, abzymes, DNA hydrolysis, schizophrenia

Procedia PDF Downloads 303
3673 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes

Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon

Abstract:

Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.

Keywords: all-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide

Procedia PDF Downloads 204
3672 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-doped with Bismuth and Zinc

Authors: B.Benalioua, I.Benyamina, A.Bentouami, B.Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, Zn co-doped TiO2 treated at 670°C for 2 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi-Zn-TiO2 (670°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-Zn-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 70 minutes, whereas with the P25-TiO2 discoloration is achieved after 120 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping

Procedia PDF Downloads 285
3671 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-Doped with Sulfur and Nitrogen

Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the S, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material S-N-TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the S-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of S-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic S-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping

Procedia PDF Downloads 338
3670 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging

Authors: Chang Liu, John Nash, Stephen D. Prior

Abstract:

This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, the aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infrared video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.

Keywords: unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video

Procedia PDF Downloads 305
3669 Photocatalytic Degradation of Bisphenol A Using ZnO Nanoparticles as Catalyst under UV/Solar Light: Effect of Different Parameters and Kinetic Studies

Authors: Farida Kaouah, Chahida Oussalah, Wassila Hachi, Salim Boumaza, Mohamed Trari

Abstract:

A catalyst of ZnO nanoparticles was used in the photocatalytic process of treatment for potential use towards bisphenol A (BPA) degradation in an aqueous solution. To achieve this study, the effect of parameters such as the catalyst dose, initial concentration of BPA and pH on the photocatalytic degradation of BPA was studied. The results reveal that the maximum degradation (more than 93%) of BPA occurred with ZnO catalyst in 120 min of stirring at natural pH (7.1) under solar light irradiation. It was found that chemical oxygen demand (COD) reduction takes place at a faster rate under solar light as compared to that of UV light. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed a Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of bisphenol A from wastewater.

Keywords: bisphenol A, photocatalytic degradation, sunlight, zinc oxide, Langmuir–Hinshelwood model, chemical oxygen demand

Procedia PDF Downloads 131
3668 Optical Repeater Assisted Visible Light Device-to-Device Communications

Authors: Samrat Vikramaditya Tiwari, Atul Sewaiwar, Yeon-Ho Chung

Abstract:

Device-to-device (D2D) communication is considered a promising technique to provide wireless peer-to-peer communication services. Due to increasing demand on mobile services, available spectrum for radio frequency (RF) based communications becomes scarce. Recently, visible light communications (VLC) has evolved as a high speed wireless data transmission technology for indoor environments with abundant available bandwidth. In this paper, a novel VLC based D2D communication that provides wireless peer-to-peer communication is proposed. Potential low operating power devices for an efficient D2D communication over increasing distance of separation between devices is analyzed. Optical repeaters (OR) are also proposed to enhance the performance in an environment where direct D2D communications yield degraded performance. Simulation results show that VLC plays an important role in providing efficient D2D communication up to a distance of 1 m between devices. It is also found that the OR significantly improves the coverage distance up to 3.5 m.

Keywords: visible light communication, light emitting diode, device-to-device, optical repeater

Procedia PDF Downloads 457
3667 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: carbon dioxide, emission modeling, light rail, microscopic model, traffic flow

Procedia PDF Downloads 117
3666 Flip-Chip Bonding for Monolithic of Matrix-Addressable GaN-Based Micro-Light-Emitting Diodes Array

Authors: Chien-Ju Chen, Chia-Jui Yu, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu

Abstract:

A 64 × 64 GaN-based micro-light-emitting diode array (μLEDA) with 20 μm in pixel size and 40 μm in pitch by flip-chip bonding (FCB) is demonstrated in this study. Besides, an underfilling (UF) technology is applied to the process for improving the uniformity of device. With those configurations, good characteristics are presented, operation voltage and series resistance of a pixel in the 450 nm flip chip μLEDA are 2.89 V and 1077Ω (4.3 mΩ-cm²) at 25 A/cm², respectively. The μLEDA can sustain higher current density compared to conventional LED, and the power of the device is 9.5 μW at 100 μA and 0.42 mW at 20 mA.

Keywords: GaN, micro-light-emitting diode array(μLEDA), flip-chip bonding, underfilling

Procedia PDF Downloads 395
3665 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System

Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae

Abstract:

Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.

Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy

Procedia PDF Downloads 281
3664 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces

Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur

Abstract:

In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.

Keywords: aerodynamic, bi-dimensional, vegetation, synergistic

Procedia PDF Downloads 250
3663 The Effect of Irradiation Distance on Microhardness of Hybrid Resin Composite Polymerization Using Light-Emitting Diodes

Authors: Deli Mona, Rafika Husni

Abstract:

The aim of this research is to evaluate the effect of lighting distance on surface hardness of light composite resin. We held laboratory experimental research with post-test only group design. The samples used are 30 disc-like hybrid composite resins with the diameter is 6 mm and the thickness is 2 mm, lighted by an LED for 20 seconds. They were divided into 3 groups, and every group was consisted by 10 samples, which were 0 mm, 2 mm, and 5 mm lighting distance group. Every samples group was treated with hardness test, Vicker Hardness Test, then analyzed with one-way ANOVA test to evaluate the effect of lighting distance differences on surface hardness of light composite resin. Statistic test result shown hardness mean change of composite renin between 0 mm and 2 mm lighting distance with 0.00 significance (p<0.05), between 0 mm and 5 mm lighting distance with 0.00 significance (p<0.05), and 2 mm and 5 mm lighting distance with 0.05 significance (p<0.05). According to the result of this research, we concluded that the further lighting distance, the more surface hardness decline of hybrid composite resin.

Keywords: composite resin hybrid, tip distance, microhardness, light curing LED

Procedia PDF Downloads 321
3662 Grading of Emulsified Agarwood Oil Using Gel Electrophoresis Technique

Authors: Y. T. Boon, M. N. Naim, R. Zakaria, N. F. Abu Bakar, N. Ahmad, I. W. Lenggoro

Abstract:

In this study, encapsulation of agarwood oil with non-ionic surfactant, Tween 80 was prepared at critical micelle concentration of 0.0167 % v/v to produce the most stable nano-emulsion in aqueous. The encapsulation has minimized the bioactive compounds degradation in various pH conditions thus prolong their shelf life and maintained its initial oil grade. The oil grading of the prepared samples were conducted using the gel electrophoresis instead of using common analytical industrial grading such as gas chromatography- mass spectrometry (GC- MS). The grading method was chosen due to their unique zeta potential value after the encapsulation process. This paper demonstrates the feasibility of applying the electrophoresis principles to separate the encapsulated agarwood oil or grading of the emulsified agarwood oil. The results indicated that the grading process are potential to be further investigate based on their droplet size and zeta potential value at various pH condition when the droplet were migrate through polyacrylamide gel.

Keywords: electrophoretic mobility, essential oil, nanoemulsion, polyacrylamide gel electrophoresis, tween 80, zeta potential

Procedia PDF Downloads 353
3661 Freeform Lens System for Collimation SERS irradiation Radiation Produced by Biolayers which Deposit on High Quality Resonant System

Authors: Iuliia Riabenko, Konstantin Beloshenko, Sergey Shulga, Valeriy Shulga

Abstract:

An optical system has been developed consisting of a TIR lens and an aspherical surface designed to collect Stokes radiation from biomolecules. The freeform material is SYLGARD-184, which provides a low level of noise associated with the luminescence of the substrate. The refractive index of SYLGARD-184 is 1.4028 for a wavelength of 632 nm, the Abbe number is 72, these material parameters make it possible to design the desired shape for the wavelength range of 640-700 nm. The system consists of a TIR lens, inside which is placed a high-quality resonant system consisting of a biomolecule and a metal colloid. This system can be described using the coupled oscillator model. The laser excitation radiation was fed through the base of the TIR lens. The sample was mounted inside the TIR lens at a distance of 8 mm from the base. As a result of Raman scattering of laser radiation, a Stokes bend appeared from the biolayer. The task of this work was that it was necessary to collect this radiation emitted at a 4π steradian angle. For this, an internal aspherical surface was used, which made it possible to defocus the beam emanating from the biolayer and direct its radiation to the borders of the TIR lens at the Brewster angle. The collated beam of Stokes radiation contains 97% of the energy scattered by the biolayer. Thus, a simple scheme was proposed for collecting and collimating the Stokes radiation of biomolecules.

Keywords: TIR lens, freeform material, raman scattering, biolayer, brewster angle

Procedia PDF Downloads 118
3660 Study of Pathogenicity and Characterization of Fusarium oxysporum f.sp. albedinis by Isozymes Systemes

Authors: Abouamama Sidaoui, Noureddine Karkachi, Mebrouk Kihal

Abstract:

The characteristics of Fusarium oxysporium f.sp. albedinis (Foa) isolates were investigated using electrophoretic studies of isozymes systems (esterase and phosphatase). All the (F.o.a) isolates were pathogenic to the date palm seedlings cultivar Deglet Nour, but they did not induce any disease symptoms on control plants. Fusarium sp. isolated from soil did not show aggression against these seedlings. The isoenzymes profiles revealed polymorphic bands. The data were subjected to analysis with the JMP method. The isolates were delineated into two main groups A and B which were divided into sub-groups. 19 isolates create the group A, and four isolates (E1, E2, E3 and M15A) formed the group B. Analysis of isozyme banding patterns was found to be a reliable marker technology, efficient, and effective tools to find the genetic variability among isolates isolated in different geographical areas.

Keywords: genetic diversity, Fusarium oxysporium f. sp. albedinis, isozyme analysis, pathogenicity

Procedia PDF Downloads 192
3659 Early Detection of Instability in Emulsions via Diffusing Wave Spectroscopy

Authors: Coline Bretz, Andrea Vaccaro, Dario Leumann

Abstract:

The food, personal care, and cosmetic industries are seeing increased consumer demand for more sustainable and innovative ingredients. When developing new formulations incorporating such ingredients, stability is one of the first criteria that must be assessed, and it is thus of great importance to have a method that can detect instabilities early and quickly. Diffusing Wave Spectroscopy (DWS) is a light scattering technique that probes the motion,i.e., the mean square displacement (MSD), of colloids, such as nanoparticles in a suspension or droplets in emulsions. From the MSD, the rheological properties of the surrounding medium can be determined via the so-called microrheology approach. In the case of purely viscous media, it is also possible to obtain information about particle size. DWS can thus be used to monitor the size evolution of particles, droplets, or bubbles in aging dispersions, emulsions, or foams. In the context of early instability detection in emulsions, DWS offers considerable advantages, as the samples are measured in a contact-free manner, using only small quantities of samples loaded in a sealable cuvette. The sensitivity and rapidity of the technique are key to detecting and following the ageing of emulsions reliably. We present applications of DWS focused on the characterization of emulsions. In particular, we demonstrate the ability to record very subtle changes in the structural properties early on. We also discuss the various mechanisms at play in the destabilization of emulsions, such as coalescence or Ostwald ripening, and how to identify them through this technique.

Keywords: instrumentation, emulsions, stability, DWS

Procedia PDF Downloads 46
3658 Rare-Earth Ions Doped Zirconium Oxide Layers for Optical and Photovoltaic Applications

Authors: Sylwia Gieraltowska, Lukasz Wachnicki, Bartlomiej S. Witkowski, Marek Godlewski

Abstract:

Oxide layers doped with rare-earth (RE) ions in optimized way can absorb short (ultraviolet light), which will be converted to visible light by so-called down-conversion. Down-conversion mechanisms are usually exploited to modify the incident solar spectrum. In down conversion, multiple low-energy photons are generated to exploit the energy of one incident high-energy photon. These RE-doped oxide materials have attracted a great deal of attention from researchers because of their potential for optical manipulation in optical devices (detectors, temperature sensors, and compact solid-state lasers, light-emitting diodes), bio-analysis, medical therapy, display technologies, and light harvesting (such as in photovoltaic cells). The zirconium dioxide (ZrO2) doped RE ions (Eu, Tb, Ce) multilayer structures were tested as active layers, which can convert short wave emission to light in the visible range (the down-conversion mechanism). For these applications original approach of deposition ZrO2 layers using the Atomic Layer Deposition (ALD) method and doping these layers with RE ions using the spin-coating technique was used. ALD films are deposited at relatively low temperature (well below 250°C). This can be an effective method to achieve the white-light emission and to improve on this way light conversion efficiency, by an extension of absorbed spectral range by a solar cell material. Photoluminescence (PL), X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM) measurement are analyzed. The research was financially supported by the National Science Centre (decision No. DEC-2012/06/A/ST7/00398 and DEC- 2013/09/N/ST5/00901).

Keywords: ALD, oxide layers, photovoltaics, thin films

Procedia PDF Downloads 247
3657 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 196
3656 An Integrated Modular Approach Based Simulation of Cold Heavy Oil Production

Authors: Hamidreza Sahaleh

Abstract:

In this paper, the authors display an incorporated secluded way to deal with quantitatively foresee volumetric sand generation and improved oil recuperation. This model is in light of blend hypothesis with erosion mechanics, in which multiphase hydrodynamics and geo-mechanics are coupled in a predictable way by means of principal unknowns, for example, saturation, pressure, porosity, and formation displacements. Foamy oil is demonstrated as a scattering of gas bubbles caught in the oil, where these gas air bubbles keep up a higher repository weight. A secluded methodology is then received to adequately exploit the current propelled standard supply and stress-strain codes. The model is actualized into three coordinated computational modules, i.e. erosion module, store module, and geo-mechanics module. The stress, stream and erosion mathematical statements are understood independently for every time addition, and the coupling terms (porosity, penetrability, plastic shear strain, and so on) are gone among them and iterated until certain union is accomplished on a period step premise. The framework is capable regarding its abilities, yet practical in terms of computer requirements and maintenance. Numerical results of field studies are displayed to show the capacities of the model. The impacts of foamy oil stream and sand generation are additionally inspected to exhibit their effect on the upgraded hydrocarbon recuperation.

Keywords: oil recuperation, erosion mechanics, foamy oil, erosion module.

Procedia PDF Downloads 247
3655 Photocatalytic Degradation of Phenol by Fe-Doped Tio2 under Solar Simulated Light

Authors: Mohamed Gar Alalm, Shinichi Ookawara, Ahmed Tawfik

Abstract:

In the present work, photocatalytic oxidation of phenol by iron (Fe+2) doped titanium dioxide (TiO2) was studied. The source of irradiation was solar simulated light under measured UV flux. The effect of light intensity, pH, catalyst loading, and initial concentration of phenol were investigated. The maximum removal of phenol at optimum conditions was 78%. The optimum pH was 5.3. The most effective degradation occurred when the catalyst dosage was 600 mg/L. increasing the initial concentration of phenol decreased the degradation efficiency due to the deactivation of active sites by additional intermediates. Phenol photocatalytic degradation moderately fitted to the pseudo-first order kinetic equation approximated from Langmuir–Hinshelwood model.

Keywords: phenol, photocatalytic, solar, titanium dioxide

Procedia PDF Downloads 377
3654 Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations

Authors: Shreya Srivastava, Sushovan Ghosh, Sagnik Dey

Abstract:

Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES.

Keywords: aerosol Radiative forcing (ARF), aerosol composition, single scattering albedo (SSA), CERES

Procedia PDF Downloads 33
3653 Effect of Light Spectra, Light Intensity, and HRT on the Co-Production of Phycoerythrin and Exopolysaccharides from Poprhyridium Marinum

Authors: Rosaria Tizzani, Tomas Morosinotto, Fabrizio Bezzo, Eleonora Sforza

Abstract:

Red microalga Porphyridium marinum CCAP 13807/10 has the potential to produce a broad range of commercially valuable chemicals such as PhycoErytrin (PE) and sulphated ExoPolySaccharides (EPS). Multiple abiotic factors influence the growth of Porphyridium sp., e.g. the wavelength of the light source and different cultivation strategies (one or two steps, batch, semi-, and continuous regime). The microalga of interest is cultivated in a two-step system. First, the culture grows photoautotrophically in a controlled bioreactor with pH-dependent CO2 injection, temperature monitoring, light intensity, and LED wavelength remote control in a semicontinuous mode. In the second step, the harvested biomass is subjected to mixotrophic conditions to enhance further growth. Preliminary tests have been performed to define the suitable media, salinity, pH, and organic carbon substrate to obtain the highest biomass productivity. Dynamic light and operational conditions (e.g. HRT) are evaluated to achieve high biomass production, high PE accumulation in the biomass, and high EPS release in the medium. Porphyridium marinum is able to chromatically adapt the photosynthetic apparatus to efficiently exploit the full light spectra composition. The effect of specific narrow LED wavelengths (white W, red R, green G, blue B) and a combination of LEDs (WR, WB, WG, BR, BG, RG) are identified to understand the phenomenon of chromatic adaptation under photoautotrophic conditions. The effect of light intensity, residence time, and light quality are investigated to define optimal operational strategies for full scale commercial applications. Production of biomass, phycobiliproteins, PE, EPS, EPS sulfate content, EPS composition, Chlorophyll-a, and pigment content are monitored to determine the effect of LED wavelength on the cultivation Porphyridium marinum in order to optimize the production of these multiple, highly valuable bioproducts of commercial interest.

Keywords: red microalgae, LED, exopolysaccharide, phycoerythrin

Procedia PDF Downloads 88
3652 Development of Non-Intrusive Speech Evaluation Measure Using S-Transform and Light-Gbm

Authors: Tusar Kanti Dash, Ganapati Panda

Abstract:

The evaluation of speech quality and intelligence is critical to the overall effectiveness of the Speech Enhancement Algorithms. Several intrusive and non-intrusive measures are employed to calculate these parameters. Non-Intrusive Evaluation is most challenging as, very often, the reference clean speech data is not available. In this paper, a novel non-intrusive speech evaluation measure is proposed using audio features derived from the Stockwell transform. These features are used with the Light Gradient Boosting Machine for the effective prediction of speech quality and intelligibility. The proposed model is analyzed using noisy and reverberant speech from four databases, and the results are compared with the standard Intrusive Evaluation Measures. It is observed from the comparative analysis that the proposed model is performing better than the standard Non-Intrusive models.

Keywords: non-Intrusive speech evaluation, S-transform, light GBM, speech quality, and intelligibility

Procedia PDF Downloads 235
3651 The TiO2 Refraction Film for CsI Scintillator

Authors: C. C. Chen, C. W. Hun, C. J. Wang, C. Y. Chen, J. S. Lin, K. J. Huang

Abstract:

Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. When the incidence light irradiate from air (R=1.0) to CsI’s first surface (R=1.84) the first refraction happen, the first refraction continue into TiO2 film (R=2.88) and produces the low angle of the second refraction. Then the second refraction continue into AAO wall (R=1.78) and produces the third refraction after refractions between CsI and AAO wall (R=1.78) produce the fourth refraction. The incidence light after through CsI and TiO2 film refractions arrive to the CsI second surface. Therefore, the TiO2 film can has shorter refraction path of incidence light and increase the photo-electron conversion efficiency.

Keywords: cesium iodide, anodic aluminum oxide (AAO), TiO2, refraction, X-ray

Procedia PDF Downloads 405