Search results for: dynamic explicit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4392

Search results for: dynamic explicit

4152 Impact of Dynamic Capabilities on Knowledge Management Processes

Authors: Farzad Yavari, Fereydoun Ohadi

Abstract:

Today, with the development and growth of technology and extreme environmental changes, organizations need to identify opportunities and create creativity and innovation in order to be able to maintain or improve their position in competition with others. In this regard, it is necessary that the resources and assets of the organization are coordinated and reviewed in accordance with the orientation of the strategy. One of the competitive advantages of the present age is knowledge management, which is to equip the organization with the knowledge of the day and disseminate among employees and use it in the development of products and services. Therefore, in the forthcoming research, the impact of dynamic capabilities components (sense, seize, and reconfiguration) has been investigated on knowledge management processes (acquisition, integration and knowledge utilization) in the MAPNA Engineering and Construction Company using a field survey and applied research method. For this purpose, a questionnaire was filled out in the form of 15 questions for dynamic components and 15 questions for measuring knowledge management components and distributed among 46 employees of the knowledge management organization. Validity of the questionnaire was evaluated through content validity and its reliability with Cronbach's coefficient. Pearson correlation test and structural equation technique were used to analyze the data. The results of the research indicate a positive significant correlation between the components of dynamic capabilities and knowledge management.

Keywords: dynamic capabilities, knowledge management, sense capability, seize capability, reconfigurable capability, knowledge acquisition, knowledge integrity, knowledge utilization

Procedia PDF Downloads 121
4151 Modelling the Art Historical Canon: The Use of Dynamic Computer Models in Deconstructing the Canon

Authors: Laura M. F. Bertens

Abstract:

There is a long tradition of visually representing the art historical canon, in schematic overviews and diagrams. This is indicative of the desire for scientific, ‘objective’ knowledge of the kind (seemingly) produced in the natural sciences. These diagrams will, however, always retain an element of subjectivity and the modelling methods colour our perception of the represented information. In recent decades visualisations of art historical data, such as hand-drawn diagrams in textbooks, have been extended to include digital, computational tools. These tools significantly increase modelling strength and functionality. As such, they might be used to deconstruct and amend the very problem caused by traditional visualisations of the canon. In this paper, the use of digital tools for modelling the art historical canon is studied, in order to draw attention to the artificial nature of the static models that art historians are presented with in textbooks and lectures, as well as to explore the potential of digital, dynamic tools in creating new models. To study the way diagrams of the canon mediate the represented information, two modelling methods have been used on two case studies of existing diagrams. The tree diagram Stammbaum der neudeutschen Kunst (1823) by Ferdinand Olivier has been translated to a social network using the program Visone, and the famous flow chart Cubism and Abstract Art (1936) by Alfred Barr has been translated to an ontological model using Protégé Ontology Editor. The implications of the modelling decisions have been analysed in an art historical context. The aim of this project has been twofold. On the one hand the translation process makes explicit the design choices in the original diagrams, which reflect hidden assumptions about the Western canon. Ways of organizing data (for instance ordering art according to artist) have come to feel natural and neutral and implicit biases and the historically uneven distribution of power have resulted in underrepresentation of groups of artists. Over the last decades, scholars from fields such as Feminist Studies, Postcolonial Studies and Gender Studies have considered this problem and tried to remedy it. The translation presented here adds to this deconstruction by defamiliarizing the traditional models and analysing the process of reconstructing new models, step by step, taking into account theoretical critiques of the canon, such as the feminist perspective discussed by Griselda Pollock, amongst others. On the other hand, the project has served as a pilot study for the use of digital modelling tools in creating dynamic visualisations of the canon for education and museum purposes. Dynamic computer models introduce functionalities that allow new ways of ordering and visualising the artworks in the canon. As such, they could form a powerful tool in the training of new art historians, introducing a broader and more diverse view on the traditional canon. Although modelling will always imply a simplification and therefore a distortion of reality, new modelling techniques can help us get a better sense of the limitations of earlier models and can provide new perspectives on already established knowledge.

Keywords: canon, ontological modelling, Protege Ontology Editor, social network modelling, Visone

Procedia PDF Downloads 128
4150 Enhancement Dynamic Cars Detection Based on Optimized HOG Descriptor

Authors: Mansouri Nabila, Ben Jemaa Yousra, Motamed Cina, Watelain Eric

Abstract:

Research and development efforts in intelligent Advanced Driver Assistance Systems (ADAS) seek to save lives and reduce the number of on-road fatalities. For traffic and emergency monitoring, the essential but challenging task is vehicle detection and tracking in reasonably short time. This purpose needs first of all a powerful dynamic car detector model. In fact, this paper presents an optimized HOG process based on shape and motion parameters fusion. Our proposed approach mains to compute HOG by bloc feature from foreground blobs using configurable research window and pathway in order to overcome the shortcoming in term of computing time of HOG descriptor and improve their dynamic application performance. Indeed we prove in this paper that HOG by bloc descriptor combined with motion parameters is a very suitable car detector which reaches in record time a satisfactory recognition rate in dynamic outside area and bypasses several popular works without using sophisticated and expensive architectures such as GPU and FPGA.

Keywords: car-detector, HOG, motion, computing time

Procedia PDF Downloads 323
4149 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: impulsive loaded plates, dynamic analysis, ABAQUS, material nonlinearity

Procedia PDF Downloads 523
4148 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes

Authors: Radhwan Yousif Sedik Al-Jawadi

Abstract:

Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.

Keywords: chromosome injection, dynamic schema, genetic algorithm, similarity and dissimilarity

Procedia PDF Downloads 349
4147 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach

Authors: Elias K. Maragos, Petros E. Maravelakis

Abstract:

In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.

Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs

Procedia PDF Downloads 162
4146 Static and Dynamic Analysis of Microcantilever Beam

Authors: S. B. Kerur, B. S. Murgayya

Abstract:

The development of micro and nano particle is challenging task and the study of the behavior of material at the micro level is gaining importance as their behavior at micro/nano level is different. These micro particle are being used as a sensing element to measure and detects the hazardous chemical, gases, explosives and biological agents. In the present study, finite element method is used for static and dynamic analysis of simple and composite cantilever beams of different shapes. The present FE model is validated with available analytical results and various parameters like shape, materials properties, damped and undamped conditions are considered for the numerical study. The results show the effects of shape change on the natural frequency and as these are used with fluid for chemical applications, the effect of damping due to viscous nature of fluid are simulated by considering different damping coefficient effect on the dynamic behavior of cantilever beams. The obtained results show the effect of these parameters can be effectively utilized based on system requirements.

Keywords: micro, FEM, dynamic, cantilever beam

Procedia PDF Downloads 384
4145 Dynamic Synthesis of a Flexible Multibody System

Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui

Abstract:

This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.

Keywords: dynamic response, evolutionary genetic algorithm, flexible bodies, optimization

Procedia PDF Downloads 321
4144 Stress Study in Implants Dental

Authors: M. Benlebna, B. Serier, B. Bachir Bouiadjra, S. Khalkhal

Abstract:

This study focuses on the mechanical behavior of a dental prosthesis subjected to dynamic loads chewing. It covers a three-dimensional analysis by the finite element method, the level of distribution of equivalent stresses induced in the bone between the implants (depending on the number of implants). The studied structure, consisting of a braced, implant and mandibular bone is subjected to dynamic loading of variable amplitude in three directions corrono-apical, mesial-distal and bucco-lingual. These efforts simulate those of mastication. We show that compared to the implantation of a single implant, implantology using two implants promotes the weakening of the bones. This weakness is all the more likely that the implants are located in close proximity to one another.

Keywords: stress, bone, dental implant, distribution, stress levels, dynamic, effort, interaction, prosthesis

Procedia PDF Downloads 404
4143 Appearance and Magnitude of Dynamic Pressure in Micro-Scale of Subsonic Airflow around Symmetric Objects

Authors: Shehret Tilvaldyev, Jorge Flores-Garay, Alfredo Villanueva, Erwin Martinez, Lazaro Rico

Abstract:

The efficiency of modern transportation is severely compromised by the prevalence of turbulent drag. The high level of turbulent skin-friction occurring, e.g., on the surface of an aircraft, automobiles or the carriage of a high-speed train, is responsible for excess fuel consumption and increased carbon emissions. The environmental, political, and economic pressure to improve fuel efficiency and reduce carbon emissions associated with transportation means that reducing turbulent skin-friction drag is a pressing engineering problem. The dynamic pressure of subsonic airflow around solid objects creates lift, but also induces drag force. This paper is presenting the results of laboratory experiments, investigating appearance and magnitude of dynamic pressure in micro scale of subsonic air flow around right cylinder and symmetrical airfoil.

Keywords: airflow, dynamic pressure, micro scale, symmetric object

Procedia PDF Downloads 383
4142 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads

Authors: Jia-Jang Wu

Abstract:

The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.

Keywords: moving load, moving substructure, dynamic responses, forced vibration responses

Procedia PDF Downloads 352
4141 Investigating the Dynamic Response of the Ballast

Authors: Osama Brinji, Wing Kong Chiu, Graham Tew

Abstract:

Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.

Keywords: ballast, dynamic response, sleeper, stability

Procedia PDF Downloads 501
4140 Performance Investigation of UAV Attitude Control Based on Modified PI-D and Nonlinear Dynamic Inversion

Authors: Ebrahim Hassan Kapeel, Ahmed Mohsen Kamel, Hossan Hendy, Yehia Z. Elhalwagy

Abstract:

Interest in autopilot design has been raised intensely as a result of recent advancements in Unmanned Aerial vehicles (UAVs). Due to the enormous number of applications that UAVs can achieve, the number of applied control theories used for them has increased in recent years. These small fixed-wing UAVs are suffering high non-linearity, sensitivity to disturbances, and coupling effects between their channels. In this work, the nonlinear dynamic inversion (NDI) control lawisdesigned for a nonlinear small fixed-wing UAV model. The NDI is preferable for varied operating conditions, there is no need for a scheduling controller. Moreover, it’s applicable for high angles of attack. For the designed flight controller validation, a nonlinear Modified PI-D controller is performed with our model. A comparative study between both controllers is achieved to evaluate the NDI performance. Simulation results and analysis are proposed to illustrate the effectiveness of the designed controller based on NDI.

Keywords: UAV dynamic model, attitude control, nonlinear PID, dynamic inversion

Procedia PDF Downloads 111
4139 Developing a Systems Dynamics Model for Security Management

Authors: Kuan-Chou Chen

Abstract:

This paper will demonstrate a simulation model of an information security system by using the systems dynamic approach. The relationships in the system model are designed to be simple and functional and do not necessarily represent any particular information security environments. The purpose of the paper aims to develop a generic system dynamic information security system model with implications on information security research. The interrelated and interdependent relationships of five primary sectors in the system dynamic model will be presented in this paper. The integrated information security systems model will include (1) information security characteristics, (2) users, (3) technology, (4) business functions, and (5) policy and management. Environments, attacks, government and social culture will be defined as the external sector. The interactions within each of these sectors will be depicted by system loop map as well. The proposed system dynamic model will not only provide a conceptual framework for information security analysts and designers but also allow information security managers to remove the incongruity between the management of risk incidents and the management of knowledge and further support information security managers and decision makers the foundation for managerial actions and policy decisions.

Keywords: system thinking, information security systems, security management, simulation

Procedia PDF Downloads 431
4138 Investigation of Arson Fire Incident in Textile Garment Building Using Fire Dynamic Simulation

Authors: Mohsin Ali Shaikh, Song Weiguo, Muhammad Kashan Surahio, Usman Shahid, Rehmat Karim

Abstract:

This study investigated a catastrophic arson fire incident that occurred at a textile garment building in Karachi, Pakistan. Unfortunately, a catastrophic event led to the loss of 262 lives and caused 55 severe injuries. The primary objective is to analyze the aspects of the fire incident and understand the causes of arson fire disasters. The study utilized Fire Dynamic Simulation (F.D.S) was employed to simulate fire propagation, visibility, harmful gas concentration, fire temperature, and numerical results. The analysis report has determined the specific circumstances that created the unpleasant incident in the present study. The significance of the current findings lies in their potential to prevent arson fires, improve fire safety measures, and the development of safety plans in building design. The fire dynamic simulation findings can serve as a theoretical basis for the investigation of arson fires and evacuation planning in textile garment buildings.

Keywords: investigation, fire arson incident, textile garment, fire dynamic simulation (FDS)

Procedia PDF Downloads 91
4137 Distance Protection Performance Analysis

Authors: Abdelsalam Omar

Abstract:

This paper presents simulation-based case study that indicate the need for accurate dynamic modeling of distance protection relay. In many cases, a static analysis based on current and voltage phasors may be sufficient to assess the performance of distance protection. There are several circumstances under which such a simplified study does not provide the depth of analysis necessary to obtain accurate results, however. This letter present study of the influences of magnetizing inrush and power swing on the performance of distance protection relay. One type of numerical distance protection relay has been investigated: 7SA511. The study has been performed in order to demonstrate the relay response when dynamic model of distance relay is utilized.

Keywords: distance protection, magnitizing inrush, power swing, dynamic model of protection relays, simulatio

Procedia PDF Downloads 489
4136 The Acute Effects of a Warm-Up Including Different Dynamic Stretching on Hamstring Stiffness, Flexibility, and Strength

Authors: Che Hsiu Chen, Kuo Wei Tseng, Zih Jian Huang, Hon Wen Cheng

Abstract:

A typical warm-up contains both stretching exercises and jogging. The static stretching prior to training or competition may cause detrimental effects to athletic performance. However, it is unclear whether different types of dynamic stretching exercises had different acute effects on knee flexors stiffness, flexibility, and strength. The purpose of this study was to analyze the knee flexors stiffness, flexibility, and strength gains after dynamic straight leg raise (DSLR) and dynamic modified toe-touch (MTT) stretching. Sixteen healthy university active men (height 176.27 ± 4.03 cm; weight 72.27 ± 8.90 kg; age 22.09 ± 2.31 years). After 5 minutes (8km/h) of running subjects performed 2 randomly ordered stretching protocols: DSLR and MTT stretching protocols. There were a total of six, 30 seconds bouts of dynamic stretching (15 repetitions) with 30seconds rest between bouts. The outcome measures were maximal voluntary isokinetic concentric hamstring strength (60°/s), muscle flexibility test by passive straight leg raise (PSLR), active straight leg raise (ASLR), and muscle stiffness using ultrasound Acoustic Radiation Forced Impulse (ARFI) elastography before and immediately after stretching. The muscle stiffness and concentric strength decreased significantly (p < .05), the flexibility no significant change after DSLR protocol (p > .05). The concentric strength decreased significantly (p < .05), the flexibility and muscle stiffness no significant change after MTT protocol (p > .05), whereas no significant differences were found for the DSLR and MTT. Our findings suggest that dynamic stretching (30s x 6 bouts) resulted in change in muscle stiffness or may be induced slack in the musculotendinous unit thereby, reducing force production. Therefore, 30s x 6 bouts of dynamic stretching adversely affects efforts of hamstring muscle maximal concentric strength.

Keywords: sport injury, ultrasound, eccentric exercise, performance

Procedia PDF Downloads 286
4135 Circular Raft Footings Strengthened by Stone Columns under Dynamic Harmonic Loads

Authors: R. Ziaie Moayed, A. Mahigir

Abstract:

Stone column technique has been successfully employed to improve the load-settlement characteristics of foundations. A series of finite element numerical analyses of harmonic dynamic loading have been conducted on strengthened raft footing to study the effects of single and group stone columns on settlement of circular footings. The settlement of circular raft footing that improved by single and group of stone columns are studied under harmonic dynamic loading. This loading is caused by heavy machinery foundations. A detailed numerical investigation on behavior of single column and group of stone columns is carried out by varying parameters like weight of machinery, loading frequency and period. The result implies that presence of single and group of stone columns enhanced dynamic behavior of the footing so that the maximum and residual settlement of footing significantly decreased. 

Keywords: finite element analysis, harmonic loading, settlement, stone column

Procedia PDF Downloads 372
4134 A Literature Review on Sustainability Appraisal Methods for Highway Infrastructure Projects

Authors: S. Kaira, S. Mohamed, A. Rahman

Abstract:

Traditionally, highway infrastructure projects are initiated based on their economic benefits, thereafter environmental, social and governance impacts are addressed discretely for the selected project from a set of pre-determined alternatives. When opting for cost-benefit analysis (CBA), multi-criteria decision-making (MCDM) has been used as the default assessment tool. But this tool has been critiqued as it does not mimic the real-world dynamic environment. Indeed, it is because of the fact that public sector projects like highways have to experience intense exposure to dynamic environments. Therefore, it is essential to appreciate the impacts of various dynamic factors (factors that change or progress with the system) on project performance. Thus, this paper presents various sustainability assessment tools that have been globally developed to determine sustainability performance of infrastructure projects during the design, procurement and commissioning phase. Indeed, identification of the current gaps in the available assessment methods provides a potential to add prominent part of knowledge in the field of ‘road project development systems and procedures’ that are generally used by road agencies.

Keywords: dynamic impact factors, micro and macro factors, sustainability assessment framework, sustainability performance

Procedia PDF Downloads 140
4133 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.

Keywords: wavelet transform, computational error, computational duration, strong ground motion data

Procedia PDF Downloads 378
4132 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks

Authors: Zeyad Abdelmageid, Xianbin Wang

Abstract:

Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.

Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead

Procedia PDF Downloads 121
4131 Service-Based Application Adaptation Strategies: A Survey

Authors: Sahba Paktinat, Afshin Salajeghe, Mir Ali Seyyedi, Yousef Rastegari

Abstract:

Service Oriented Architecture (SOA) allows modeling of dynamic interaction between incongruous providers, which enables governing the development of complex applications. However, implementation of SOA comes with some challenges, including its adaptability and robustness. Dynamism is inherent to the nature of service-based applications and of their running environment. These factors lead to necessity for dynamic adaptation. In this paper, we try to describe basics and main structure of SOA adaptation process with a conceptual view to this issue. In this survey, we will review the relevant adaptation approaches. This paper allows studying how different approaches deal with service oriented architecture adaptation life-cycle and provides basic guidelines for their analysis, evaluation and comparison.

Keywords: context-aware, dynamic adaptation, quality of services, service oriented architecture, service based application

Procedia PDF Downloads 456
4130 Dynamic Capability: An Exploratory Study Applied to Social Enterprise in South East Asia

Authors: Atiwat Khatpibunchai, Taweesak Kritjaroen

Abstract:

A social enterprise is the innovative hybrid organizations where its ultimate goal is to generate revenue and use it as a fund to solve the social and environmental problem. Although the evidence shows the clear value of economic, social and environmental aspects, the limitations of most of the social enterprises are the expanding impact of social and environmental aspects through the normal market mechanism. This is because the major sources of revenues of social enterprises derive from the business advocates who merely wish to support society and environment by using products and services of social enterprises rather than expect the satisfaction and the distinctive advantage of products and services. Thus, social enterprises cannot reach the achievement as other businesses do. The relevant concepts from the literature review revealed that dynamic capability is the ability to sense, integrate and reconfigure internal resources and utilize external resources to adapt to changing environments, create innovation and achieve competitive advantage. The objective of this research is to study the influence of dynamic capability that affects competitive advantage and sustainable performance, as well as to determine important elements of dynamic capability. The researchers developed a conceptual model from the related concepts and theories of dynamic capability. A conceptual model will support and show the influence of dynamic capability on competitive advantage and sustainable performance of social enterprises. The 230 organizations in South-East Asia served as participants in this study. The results of the study were analyzed by the structural equation model (SEM) and it was indicated that research model is consistent with empirical research. The results also demonstrated that dynamic capability has a direct and indirect influence on competitive advantage and sustainable performance. Moreover, it can be summarized that dynamic capability consists of the five elements: 1) the ability to sense an opportunity; 2) the ability to seize an opportunity; 3) the ability to integrate resources; 4) the ability to absorb resources; 5) the ability to create innovation. The study recommends that related sectors can use this study as a guideline to support and promote social enterprises. The focus should be pointed to the important elements of dynamic capability that are the development of the ability to transform existing resources in the organization and the ability to seize opportunity from changing market.

Keywords: dynamic capability, social enterprise, sustainable competitive advantage, sustainable performance

Procedia PDF Downloads 252
4129 Dynamic Pricing With Demand Response Managment in Smart Grid: Stackelberg Game Approach

Authors: Hasibe Berfu Demi̇r, Şakir Esnaf

Abstract:

In the past decade, extensive improvements have been done in electrical grid infrastructures. It is very important to make plans on supply, demand, transmission, distribution and pricing for the development of the electricity energy sector. Based on this perspective, in this study, Stackelberg game approach is proposed for demand participation management (DRM), which has become an important component in the smart grid to effectively reduce power generation costs and user bills. The purpose of this study is to examine electricity consumption from a dynamic pricing perspective. The results obtained were compared with the current situation and the results were interpreted.

Keywords: lectricity, stackelberg, smart grid, demand response managment, dynamic pricing

Procedia PDF Downloads 98
4128 Numerical Evaluation of the Degradation of Shear Modulus and Damping Evolution of Soils in the Eastern Region of Algiers Using Geophysical and Geotechnical Tests

Authors: Mohamed Khiatine, Ramdane Bahar

Abstract:

The research performed during the last years has revealed that the seismic response of the soilis significantly non linear and hysteresis to the deformationsitundergoes during earthquakes and notably during violent shaking. This nonlinear behavior of soils can be characterized by curves showing the evolution of shearmodulus and damping versus distortion. Also, in this context, geotechnical seismic engineering problems often require the characterization of dynamic soil properties over a wide range of deformation. This determination of dynamic soil properties is key to predict the seismic response of soils for important civil engineering structures. This communication discusses a numerical analysis method for evaluating the nonlinear dynamic properties of soils in Algeriausing the FLAC2D software and the database resulting from geophysical and geotechnical studies when laboratory dynamic tests are not available. The nonlinear model proposed by Ramberg-Osgood and limited by the Mohr-coulomb criterion is used.

Keywords: degradation, shear modulus, damping, ramberg-osgood, numerical analysis.

Procedia PDF Downloads 107
4127 Numerical Modelling of Skin Tumor Diagnostics through Dynamic Thermography

Authors: Luiz Carlos Wrobel, Matjaz Hribersek, Jure Marn, Jurij Iljaz

Abstract:

Dynamic thermography has been clinically proven to be a valuable diagnostic technique for skin tumor detection as well as for other medical applications such as breast cancer diagnostics, diagnostics of vascular diseases, fever screening, dermatological and other applications. Thermography for medical screening can be done in two different ways, observing the temperature response under steady-state conditions (passive or static thermography), and by inducing thermal stresses by cooling or heating the observed tissue and measuring the thermal response during the recovery phase (active or dynamic thermography). The numerical modelling of heat transfer phenomena in biological tissue during dynamic thermography can aid the technique by improving process parameters or by estimating unknown tissue parameters based on measured data. This paper presents a nonlinear numerical model of multilayer skin tissue containing a skin tumor, together with the thermoregulation response of the tissue during the cooling-rewarming processes of dynamic thermography. The model is based on the Pennes bioheat equation and solved numerically by using a subdomain boundary element method which treats the problem as axisymmetric. The paper includes computational tests and numerical results for Clark II and Clark IV tumors, comparing the models using constant and temperature-dependent thermophysical properties, which showed noticeable differences and highlighted the importance of using a local thermoregulation model.

Keywords: boundary element method, dynamic thermography, static thermography, skin tumor diagnostic

Procedia PDF Downloads 107
4126 Formal Implementation of Routing Information Protocol Using Event-B

Authors: Jawid Ahmad Baktash, Tadashi Shiroma, Tomokazu Nagata, Yuji Taniguchi, Morikazu Nakamura

Abstract:

The goal of this paper is to explore the use of formal methods for Dynamic Routing, The purpose of network communication with dynamic routing is sending a massage from one node to others by using pacific protocols. In dynamic routing connections are possible based on protocols of Distance vector (Routing Information Protocol, Border Gateway protocol), Link State (Open Shortest Path First, Intermediate system Intermediate System), Hybrid (Enhanced Interior Gateway Routing Protocol). The responsibility for proper verification becomes crucial with Dynamic Routing. Formal methods can play an essential role in the Routing, development of Networks and testing of distributed systems. Event-B is a formal technique consists of describing rigorously the problem; introduce solutions or details in the refinement steps to obtain more concrete specification, and verifying that proposed solutions are correct. The system is modeled in terms of an abstract state space using variables with set theoretic types and the events that modify state variables. Event-B is a variant of B, was designed for developing distributed systems. In Event-B, the events consist of guarded actions occurring spontaneously rather than being invoked. The invariant state properties must be satisfied by the variables and maintained by the activation of the events.

Keywords: dynamic rout RIP, formal method, event-B, pro-B

Procedia PDF Downloads 403
4125 Iterative Dynamic Programming for 4D Flight Trajectory Optimization

Authors: Kawser Ahmed, K. Bousson, Milca F. Coelho

Abstract:

4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution.

Keywords: 4D waypoint navigation, iterative dynamic programming, obstacle avoidance, trajectory optimization

Procedia PDF Downloads 163
4124 Using Dynamic Bayesian Networks to Characterize and Predict Job Placement

Authors: Xupin Zhang, Maria Caterina Bramati, Enrest Fokoue

Abstract:

Understanding the career placement of graduates from the university is crucial for both the qualities of education and ultimate satisfaction of students. In this research, we adapt the capabilities of dynamic Bayesian networks to characterize and predict students’ job placement using data from various universities. We also provide elements of the estimation of the indicator (score) of the strength of the network. The research focuses on overall findings as well as specific student groups including international and STEM students and their insight on the career path and what changes need to be made. The derived Bayesian network has the potential to be used as a tool for simulating the career path for students and ultimately helps universities in both academic advising and career counseling.

Keywords: dynamic bayesian networks, indicator estimation, job placement, social networks

Procedia PDF Downloads 380
4123 Evaluating Seismic Earth Pressure Effects on Building Lateral Stability: Sensitivity to Retention Height Differences and Sloped Site Conditions

Authors: Rod Davis, Sara Saminfar

Abstract:

Earthquakes can induce dynamic earth pressures on retaining walls, which are in addition to the static earth pressures. This raises questions about how to effectively combine the seismic lateral earth pressure with other loads on buildings, including static lateral earth pressure. When basement walls retain soil with differing exterior grades on opposite sides, the seismic increment of active earth pressure should be considered. Additionally, buildings situated on sloped sites with stepped retention may experience unique dynamic effects due to soil-structure interactions, potentially amplifying the lateral pressures exerted on the retaining walls and influencing the building's response during seismic events. To account for the dynamic effects of the retained soil on the building's responses, it is essential to interconnect the building structure with the surrounding soil to facilitate their interaction as the embedded structure and the surrounding soil move together during an earthquake. Consequently, a finite element model of the building is developed, with the rigid retaining walls and restrained to the floor diaphragms. This paper aims to explore the dynamic effects of retained soil on the lateral stability of buildings and the sensitivity of the building's responses to differences in the retained heights on opposite sides of the building basement. Furthermore, the results are compared with those from a sloped site to evaluate the impact of stepped retention on dynamic soil pressure. These findings will help establish a minimum threshold for differences in retained heights on opposite sides of a building that necessitates the inclusion of dynamic soil pressure in the building's lateral stability analysis.

Keywords: dynamic earth pressures, soil-structure interaction, stepped retention, building retention

Procedia PDF Downloads 7