Search results for: artificial market
5210 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 1135209 The Real Estate Market Sustainability Concept and Its Implementation in Management of Real Estate Companies
Authors: Linda Kauškale, Ineta Geipele
Abstract:
Due to the rapidly changing external environment, portfolio management strategies became closely interconnected with real estate industry development and macroeconomic development tendencies. The aim of the research is to analyze sustainable real estate market development influencing factors, with particular focus on its economic and management aspects that influences real estate investment decisions as well. Scientific literature and article analysis, data analysis, expert evaluation, and other quantitative and qualitative research methods were used in the research. Developed real estate market sustainability model and index analysis approach can be applied by investors and real estate companies in real estate asset management and can help in risk minimization activities in international entrepreneurship. Future research directions have been identified in the research as well.Keywords: indexes, investment decisions, real estate market, sustainability
Procedia PDF Downloads 3635208 Volatility Spillover Among the Stock Markets of South Asian Countries
Authors: Tariq Aziz, Suresh Kumar, Vikesh Kumar, Sheraz Mustafa, Jhanzeb Marwat
Abstract:
The paper provides an updated version of volatility spillover among the equity markets of South Asian countries, including Pakistan, India, Srilanka, and Bangladesh. The analysis uses both symmetric and asymmetric Generalized Autoregressive Conditional Heteroscedasticity models to investigate volatility persistence and leverage effect. The bivariate EGARCH model is used to test for volatility transmission between two equity markets. Weekly data for the period February 2013 to August 2019 is used for empirical analysis. The findings indicate that the leverage effect exists in the equity markets of all the countries except Bangladesh. The volatility spillover from the equity market of Bangladesh to all other countries is negative and significant whereas the volatility of the equity market of Sri-Lanka does influence the volatility of any other country’s equity market. Indian equity market influence only the volatility of the Sri-Lankan equity market; and there is bidirectional volatility spillover between the equity markets of Pakistan and Bangladesh. The findings are important for policy-makers and international investors.Keywords: volatility spillover, volatility persistence, garch, egarch
Procedia PDF Downloads 1425207 Herb's Market Development for Capability Poverty Alleviation: Case Study of Bagh- E- Narges Village under Komak Charity's Support
Authors: Seyedeh Afsoon Mohseni
Abstract:
The importance of the approach to the poverty definition is revealed regarding to it’s effect on the nature of planning poverty alleviation programs. This research employs the capability deprivation approach to alleviate rural poverty and seeks to develop herb’s market to alleviate capability poverty with an NGO’s intervene, Komak charity foundation. This research has employed qualitative approach; the data were collected through field observations, review of documents and interviews. Subsequently they were analyses by thematic analysis method. According to the findings, Komak charity can provide the least sustenance of the rural poor and alleviate capability poverty emergence through Herb’s market development of the village. Employing the themes, the market development is planned in two phases of empirical production and product development. Komak charity can intervene as a facilitator by providing micro credits, cooperative and supervising. Furthermore, planning on education and raising participation are prerequisites for the efficiency of the plan.Keywords: capability poverty, Herb's market development, NGO, Komak charity foundation
Procedia PDF Downloads 4425206 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 3895205 The Impact of the European Single Market on the Austrian Economy
Authors: Reinhard Neck, Guido Schäfer
Abstract:
In this paper, we explore the macroeconomic effects of the European Single Market on Austria by simulating the McKibbin-Sachs Global Model. Global interdependence and the impact of long-run effects on short-run adjustments are taken into account. We study the sensitivity of the results with respect to different assumptions concerning monetary and fiscal policies for the countries and regions of the world economy. The consequences of different assumptions about budgetary policies in Austria are also investigated. The simulation results are contrasted with ex-post evaluations of the actual impact of Austria’s membership in the Single Market. As a result, it can be concluded that the Austrian participation in the European Single Market entails considerable long-run gains for the Austrian economy with nearly no adverse side-effects on any macroeconomic target variable.Keywords: macroeconomics, European Union, simulation, sensitivity analysis
Procedia PDF Downloads 2795204 Attitude of University Students in the Use of Artificial Intelligence
Authors: Ricardo Merlo, María González, Zully Rivero, Laura González
Abstract:
This exploratory work was to know the perception of the use of artificial intelligence (AI) that university students have during their passage through the classroom. The significance of using AI in education, the degree of interest, knowledge acquisition, and how it would influence an interactive resource for acquiring skills were explored. Within this framework, a test with 30 items was designed and administered to 800 volunteer first-year university students of natural and exact sciences. Based on a randomized pilot test, it was validated with Cronbach's Alpha coefficient. Subsequently, the descriptive statistics of the sample used allowed us to observe the preponderance of the dimensions that constitute the attitude construct. Then, the factorial analysis by dimensions contributed to discern about the students' habits according to the knowledge acquired and the emotions put into play in the topics developed in the classroom.Keywords: attitude, artificial intelligence, didactics, teaching
Procedia PDF Downloads 475203 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks
Procedia PDF Downloads 2965202 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 4265201 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence
Authors: Seyed Sobhan Alvani, Mohammad Gohari
Abstract:
By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.Keywords: traffic index, population growth rate, cities wideness, artificial neural network
Procedia PDF Downloads 465200 Three Issues for Integrating Artificial Intelligence into Legal Reasoning
Authors: Fausto Morais
Abstract:
Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning
Procedia PDF Downloads 1485199 A Simulation of Land Market through Agent-Based Modeling
Authors: Zilin Zhang
Abstract:
Agent-based simulation has become a popular method of exploring the behavior of all kinds of urban systems. The city clearly is viewed as such a system. Many urban evolution processes, such as the development or the transaction of a piece of land, can be modeled with a set of rules. Such modeling approaches can be used to gain insight into urban-development and land market transactions in the real world. Our work contributes to such type of research by modeling the transactions of lands in a city and its surrounding suburbs. By replicating the demand and supply needs in the land market, we are able to demonstrate the different transaction patterns in three types of residential areas - downtown, city-suburban, and further suburban areas. In addition, we are also able to compare the vital roles of different activation conditions play in generating the various transaction patterns of the land market at the macro level. We use this simulation to loosely test our hypotheses about the nature of activation regimes by the replication of the Zi traders’ model. In the end, we hope our analytical results can be useful for city planners and policymakers to develop rational city plans and policies for shaping sustainable urban development.Keywords: simulation, agent-based modeling, housing market, city
Procedia PDF Downloads 935198 Recent Developments in Artificial Intelligence and Information Communications Technology
Authors: Dolapo Adeyemo
Abstract:
Technology can be designed specifically for geriatrics and persons with disabilities or ICT accessibility solutions. Both solutions stand to benefit from advances in Artificial intelligence, which are computer systems that perform tasks that require human intelligence. Tasks such as decision making, visual perception, speech recognition, and even language translation are useful in both situation and will provide significant benefits to people with temporarily or permanent disabilities. This research’s goal is to review innovations focused on the use of artificial intelligence that bridges the accessibility gap in technology from a user-centered perspective. A mixed method approach that utilized a comprehensive review of academic literature on the subject combined with semi structure interviews of users, developers, and technology product owners. The internet of things and artificial intelligence technology is creating new opportunities in the assistive technology space and proving accessibility to existing technology. Device now more adaptable to the needs of the user by learning the behavior of users as they interact with the internet. Accessibility to devices have witnessed significant enhancements that continue to benefit people with disabilities. Examples of other advances identified are prosthetic limbs like robotic arms supported by artificial intelligence, route planning software for the visually impaired, and decision support tools for people with disabilities and even clinicians that provide care.Keywords: ICT, IOT, accessibility solutions, universal design
Procedia PDF Downloads 895197 On Reliability of a Credit Default Swap Contract during the EMU Debt Crisis
Authors: Petra Buzkova, Milos Kopa
Abstract:
Reliability of the credit default swap market had been questioned repeatedly during the EMU debt crisis. The article examines whether this development influenced sovereign EMU CDS prices in general. We regress the CDS market price on a model risk neutral CDS price obtained from an adopted reduced form valuation model in the 2009-2013 period. We look for a break point in the single-equation and multi-equation econometric models in order to show the changes in relations between CDS market and model prices. Our results differ according to the risk profile of a country. We find that in the case of riskier countries, the relationship between the market and model price changed when market participants started to question the ability of CDS contracts to protect their buyers. Specifically, it weakened after the change. In the case of less risky countries, the change happened earlier and the effect of a weakened relationship is not observed.Keywords: chow stability test, credit default swap, debt crisis, reduced form valuation model, seemingly unrelated regression
Procedia PDF Downloads 2655196 The Possible Application of Artificial Intelligence in Hungarian Court Practice
Authors: László Schmidt
Abstract:
In the context of artificial intelligence, we need to pay primary and particular attention to ethical principles not only in the design process but also during the application process. According to the European Commission's Ethical Guidelines, AI must have three main characteristics: it must be legal, ethical and stabil. We must never lose sight of the ethical principles because we risk that this new technology will not help democratic decision-making under the rule of law, but will, on the contrary, destroy it. The rapid spread and use of artificial intelligence poses an enormous challenge to both lawmaking and law enforcement. On legislation because AI permeates many areas of our daily lives that the legislator must regulate. We can see how challenging it is to regulate e.g., selfdriving cars/taxis/vans etc. Not to mention, more recently, cryptocurrencies and Chat GPT, the use of which also requires legislative intervention, from copyright to scientific use and even law of succession. Artificial intelligence also poses an extraordinary challenge to law enforcement. In criminal cases, police and prosecutors can make great use of AI in investigations, e.g. in forensics, DNA samples, reconstruction, identification, etc. But it can also be of great help in the detection of crimes committed in cyberspace. In criminal or civil court proceedings, AI can also play a major role in the evaluation of evidence and proof. For example, a photo or video or audio recording could be immediately revealed as genuine or fake. Likewise, the authenticity or falsification of a document could be determined much more quickly and cheaply than with current procedure (expert witnesses). Neither the current Hungarian Civil Procedure Act nor the Criminal Procedure Act allows the use of artificial intelligence in the evidentiary process. However, this should be changed. To use this technology in court proceedings would be very useful. The procedures would be faster, simpler, and therefore cheaper. Artificial intelligence could also replace much of the work of expert witnesses. Its introduction into judicial procedures would certainly be justified, but with due respect for human rights, the right to a fair trial and other democratic and rule of law guarantees.Keywords: artificial intelligence, judiciary, Hungarian, court practice
Procedia PDF Downloads 815195 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5525194 Categorization of Cattle Farmers Based on Market Participation in Adamawa State, Nigeria
Authors: Mohammed Ibrahim Girei
Abstract:
Adamawa state is one the major producers of both crop and animals in Nigeria. Agricultural production serves as the major means livelihood of the people in the state. However, the agricultural activities of the farmers in the state are at subsistence level. However integration of these small scale farmers in local, national and international market is paramount importance. The paper was designed to categorize farmers based on market participation among the cattle farmers in Adamawa state, Nigeria. The multistage sampling procedure was employed. To achieve this procedure, structured questionnaires were used to collect data from 400 respondents. The data were analyzed using the descriptive statistics. The result revealed that the majority of market participants were net sellers (78.51 %) (Sales greater than purchase), net buyers were (purchase greater than sales) 12.95 % and only 9% were autarkic (sales equal purchase). The study recommends that Government should provide more effective security services in cattle farming communities, which is very important as the market participants in the study area were net sellers (producers), it will help in addressing the problem of cattle rustling and promote more investment in cattle industry. There is a need to establish a standard cattle market, veterinary services and grazing reserves in the area so that to facilitate the cattle production and marketing system in the area and to meet up with the challenging of livestock development as a result of rapid human population growth in developing countries like Nigeria.Keywords: categories, cattle, farmers, market, participation
Procedia PDF Downloads 1325193 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators
Authors: Andrea Bellucci, Martina Tofi
Abstract:
The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers
Procedia PDF Downloads 3025192 Application of Artificial Intelligence in EOR
Authors: Masoumeh Mofarrah, Amir NahanMoghadam
Abstract:
Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way.Keywords: artificial intelligence, EOR, neural networks, expert systems
Procedia PDF Downloads 4915191 Artificial Intelligence Approach to Manage Human Resources Information System Process in the Construction Industry
Authors: Ahmed Emad Ahmed
Abstract:
This paper aims to address the concept of human resources information systems (HRIS) and how to link it to new technologies such as artificial intelligence (AI) to be implemented in two human resources processes. A literature view has been collected to cover the main points related to HRIS, AI, and BC. A study case has been presented by generating a random HRIS to apply some AI operations to it. Then, an algorithm was applied to the database to complete some human resources processes, including training and performance appraisal, using a pre-trained AI model. After that, outputs and results have been presented and discussed briefly. Finally, a conclusion has been introduced to show the ability of new technologies such as AI and ML to be applied to the human resources management processes.Keywords: human resources new technologies, HR artificial intelligence, HRIS AI models, construction AI HRIS
Procedia PDF Downloads 1755190 Risk and Impact of the COVID-19 Crisis on Real Estate
Authors: Tahmina Akhter
Abstract:
In the present work, we make a study of the repercussions of the pandemic generated by Covid-19 in the real estate market, this disease has affected almost all sectors of the economy across different countries in the world, including the real estate markets. This documentary research, basically focused on the years 2021 and 2022, as we seek to focus on the strongest time of the pandemic. We carried out the study trying to take into account the repercussions throughout the world and that is why the data we analyze takes into account information from all continents as possible. Particularly in the US, Europe and China where the Covid-19 impact has been of such proportions that it has fundamentally affected the housing market for middle-class housing. In addition, a risk has been generated, the investment of this market, due to the fact that companies in the sector have generated losses in certain cases; in the Chinese case, Evergrande, one of the largest companies in the sector, fell into default.Keywords: COVID-19, real estate market, statistics, pandemic
Procedia PDF Downloads 885189 Artificial Neural Network Speed Controller for Excited DC Motor
Authors: Elabed Saud
Abstract:
This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller
Procedia PDF Downloads 7295188 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence
Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar
Abstract:
This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves
Procedia PDF Downloads 1985187 Artificial Habitat Mapping in Adriatic Sea
Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi
Abstract:
The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder
Procedia PDF Downloads 2615186 The Usage of Artificial Intelligence in Instagram
Authors: Alanod Alqasim, Yasmine Iskandarani, Sita Algethami, Jawaher alzughaiby
Abstract:
This study focuses on the usage of AI (Artificial Intelligence) systems and features on the Instagram application and how it influences user experience and satisfaction. The aim is to evaluate the techniques and current capabilities, restrictions, and potential future directions of AI in an Instagram application. Following a concise explanation of the core concepts underlying AI usage on Instagram. To answer this question, 19 randomly selected users were asked to complete a 9-question survey on their experience and satisfaction with the app's features (Filters, user preferences, translation tool) and authenticity. The results revealed that there were three prevalent allegations. These declarations include that Instagram has an extremely attractive user interface; secondly, Instagram creates a strong sense of community; and lastly, Instagram has an important influence on mental health.Keywords: AI (Artificial Intelligence), instagram, features, satisfaction, experience
Procedia PDF Downloads 855185 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.Keywords: time estimation, machine learning, Artificial neural network, project design phase
Procedia PDF Downloads 995184 Artificial Intelligence and Cybernetics in Bertrand Russell’s Philosophy
Authors: Djoudi Ali
Abstract:
In this article, we shall expose some of the more interesting interactions of philosophy and cybernetics, some philosophical issues arising in cybernetic systems, and some questions in philosophy of our daily life related to the artificial intelligence. Many of these are fruitfully explored in the article..This article will shed light also on the importance of science and technology in our life and what are the main problems of misusing the latest technologies known under artificial intelligence and cybernatics acoording to Bertrand Russell’s point of view; then to analyse his project of reforms inculding science progress risks , the article show also the whole aspect of the impact of technology on peace , nature and on individual daily behavior, we shall discuss all issues and defies imposing by this new era , The article will invest in showing what Russell will suggest to eliminate or to slow down the dangers of these changes and what are the main solutions to protect the indiviual’s rights and responsiblities In this article, We followed a different methodology, like analysis method and sometimes the historical or descriptive method, without forgetting criticizing some conclusions when it is logically needed In the end, we mentioned what is supposed to be solutions suggested by Bertrand Russell that should be taken into considerations during the next decades and how to protect our ennvironement and the human being of any risk of disappearingKeywords: artificial intelligence, technology, cybernetics, sience
Procedia PDF Downloads 1285183 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 1745182 The Use of Artificial Intelligence to Harmonization in the Lawmaking Process
Authors: Supriyadi, Andi Intan Purnamasari, Aminuddin Kasim, Sulbadana, Mohammad Reza
Abstract:
The development of the Industrial Revolution Era 4.0 brought a significant influence in the administration of countries in all parts of the world, including Indonesia, not only in the administration and economic sectors but the ways and methods of forming laws should also be adjusted. Until now, the process of making laws carried out by the Parliament with the Government still uses the classical method. The law-making process still uses manual methods, such as typing harmonization of regulations, so that it is not uncommon for errors to occur, such as writing errors, copying articles and so on, things that require a high level of accuracy and relying on inventory and harmonization carried out manually by humans. However, this method often creates several problems due to errors and inaccuracies on the part of officers who harmonize laws after discussion and approval; this has a very serious impact on the system of law formation in Indonesia. The use of artificial intelligence in the process of forming laws seems to be justified and becomes the answer in order to minimize the disharmony of various laws and regulations. This research is normative research using the Legislative Approach and the Conceptual Approach. This research focuses on the question of how to use Artificial Intelligence for Harmonization in the Lawmaking Process.Keywords: artificial intelligence, harmonization, laws, intelligence
Procedia PDF Downloads 1655181 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model
Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili
Abstract:
Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.Keywords: artificial neural network, cement, circular economy, concrete, by products
Procedia PDF Downloads 116