Search results for: acoustic streaming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 572

Search results for: acoustic streaming

332 Application of Acoustic Emissions Related to Drought Can Elicit Antioxidant Responses and Capsaicinoids Content in Chili Pepper Plants

Authors: Laura Helena Caicedo Lopez, Luis Miguel Contreras Medina, Ramon Gerardo Guevara Gonzales, Juan E. Andrade

Abstract:

In this study, we evaluated the effect of three different hydric stress conditions: Low (LHS), medium (MHS), and high (HHS) on capsaicinoid content and enzyme regulation of C. annuum plants. Five main peaks were detected using a 2 Hz resolution vibrometer laser (Polytec-B&K). These peaks or “characteristic frequencies” were used as acoustic emissions (AEs) treatment, transforming these signals into audible sound with the frequency (Hz) content of each hydric stress. Capsaicinoids (CAPs) are the main, secondary metabolites of chili pepper plants and are known to increase during hydric stress conditions or short drought-periods. The AEs treatments were applied in two plant stages: the first one was in the pre-anthesis stage to evaluate the genes that encode the transcription of enzymes responsible for diverse metabolic activities of C. annuum plants. For example, the antioxidant responses such as peroxidase (POD), superoxide dismutase (Mn-SOD). Also, phenyl-alanine ammonia-lyase (PAL) involved in the biosynthesis of the phenylpropanoid compounds. The chalcone synthase (CHS) related to the natural defense mechanisms and species-specific aquaporin (CAPIP-1) that regulate the flow of water into and out of cells. The second stage was at 40 days after flowering (DAF) to evaluate the biochemical effect of AEs related to hydric stress on capsaicinoids production. These two experiments were conducted to identify the molecular responses of C. annuum plants to AE. Moreover, to define AEs could elicit any increase in the capsaicinoids content after a one-week exposition to AEs treatments. The results show that all AEs treatment signals (LHS, MHS, and HHS) were significantly different compared to the non-acoustic emission control (NAE). Also, the AEs induced the up-regulation of POD (~2.8, 2.9, and 3.6, respectively). The gene expression of another antioxidant response was particularly treatment-dependent. The HHS induced and overexpression of Mn-SOD (~0.23) and PAL (~0.33). As well, the MHS only induced an up-regulation of the CHs gene (~0.63). On the other hand, CAPIP-1 gene gas down-regulated by all AEs treatments LHS, MHS, and HHS ~ (-2.4, -0.43 and -6.4, respectively). Likewise, the down-regulation showed particularities depending on the treatment. LHS and MHS induced downregulation of the SOD gene ~ (-1.26 and -1.20 respectively) and PAL (-4.36 and 2.05, respectively). Correspondingly, the LHS and HHS showed the same tendency in the CHs gene, respectively ~ (-1.12 and -1.02, respectively). Regarding the elicitation effect of AE on the capsaicinoids content, additional treatment controls were included. A white noise treatment (WN) to prove the frequency-selectiveness of signals and a hydric stressed group (HS) to compare the CAPs content. Our findings suggest that WN and NAE did not present differences statically. Conversely, HS and all AEs treatments induced a significant increase of capsaicin (Cap) and dihydrocapsaicin (Dcap) after one-week of a treatment. Specifically, the HS plants showed an increase of 8.33 times compared to the NAE and WN treatments and 1.4 times higher than the MHS, which was the AEs treatment with a larger induction of Capsaicinoids among treatments (5.88) and compared to the controls.

Keywords: acoustic emission, capsaicinoids, elicitors, hydric stress, plant signaling

Procedia PDF Downloads 169
331 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure

Authors: Anika Zafiah M. Rus, S. Shafizah

Abstract:

This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.

Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood

Procedia PDF Downloads 465
330 Men Act, Women Are Acted Upon: Morphosyntactic Framing of the Sexual Intercourse in Online Pornography Titles

Authors: Aleksandra Tomic

Abstract:

According to reliable sources, 4% of all websites is devoted to pornographic material, yet these estimates are often reported to be much higher. The largest internet pornography streaming website reports 21.2 billion visits in 2015 only. Considering the ubiquity of online pornography and the frequency of use, it is necessary to examine its potential influence on the construal of the sexual act and the roles of participants. Apart from the verbal and physical interactions in the pornographic movies themselves, the language in the titles of movies has the power to frame the sexual intercourse. In this study, Critical Discourse Analysis and corpus linguistics approaches will be used to examine the way the sexual intercourse and the roles of the participants are ideologically construed and perpetuated in the Internet pornography discourse. To this end, the study will explore the association between the specific morphosyntactic aspects of the references to performers of both genders, the person and the thematic role, and the gender of referred performer in the corpus of online pornographic movie titles. Distinctive collexeme analysis will be conducted to uncover possible associations between for gender of the performer denoted by the linguistic expression, and the person and thematic role assigned to it in the titles of online pornography movies. Initial results of the chi-square procedure performed on a sample of 295 online pornography movie titles on the largest pornography streaming website ‘Pornhub’ yielded significant results. The use of the three person categories was not equally distributed between genders, X2 (2, N = 106) = 32.52, p < 0.001, with female performers being referred to in the third person in 71.7% of the instances, and speaking in the first person 20.8% of the time, whereas male performers spoke in the first person 68% of the time, and were referred to in the third person in 17% of the instances. Moreover, there was a gender disparity in the assignment of thematic roles, with linguistic expressions for women being assigned the Patient role and men the Agent role in 58.8% of the cases, whereas the roles were reversed in 41.2% of the instances, X2 (1, N = 262) = 8.07633, p < 0.005. The results are discussed in terms of the ideologies surrounding female and male sexuality in the pornography discourse. Potential patterns of power imbalance, objectification, and discrimination are highlighted. Finally, the evidence from psycholinguistic studies on the influence of the language structure on event construal is related to the results of the study.

Keywords: corpus linguistics, gender studies, pornography, thematic roles

Procedia PDF Downloads 190
329 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
328 Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis

Authors: Balgaisha G. Mukanova, Yelbek B. Utepov, Aida G. Nazarova, Alisher Z. Imanov

Abstract:

The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value.

Keywords: acoustic model, direction of arrival, inverse source problem, sound localization, urban noises

Procedia PDF Downloads 62
327 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas

Authors: Sharmin Sultana, Reinhard Schlickeiser

Abstract:

A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.

Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves

Procedia PDF Downloads 202
326 Transmission Performance Analysis for Live Broadcasting over IPTV Service in Telemedicine Applications

Authors: Jenny K. Ubaque, Edward P. Guillen, Juan S. Solórzano, Leonardo J. Ramírez

Abstract:

The health care must be a right for people around the world, but in order to guarantee the access to all, it is necessary to overcome geographical barriers. Telemedicine take advantage of Information Communication Technologies to deploy health care services around the world. To achieve those goals, it is necessary to use existing last mile solution to create access for home users, which is why is necessary to establish the channel characteristics for those kinds of services. This paper presents an analysis of network performance of last mile solution for the use of IPTV broadcasting with the application of streaming for telemedicine apps.

Keywords: telemedicine, IPTV, GPON, ADSL2+, coaxial, jumbogram

Procedia PDF Downloads 367
325 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach

Authors: Mustapha Sadouk

Abstract:

This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.

Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material

Procedia PDF Downloads 85
324 Impact of Marangoni Stress and Mobile Surface Charge on Electrokinetics of Ionic Liquids Over Hydrophobic Surfaces

Authors: Somnath Bhattacharyya

Abstract:

The mobile adsorbed surface charge on hydrophobic surfaces can modify the velocity slip condition as well as create a Marangoni stress at the interface. The functionalized hydrophobic walls of micro/nanopores, e.g., graphene nanochannels, may possess physio-sorbed ions. The lateral mobility of the physisorbed absorbed ions creates a friction force as well as an electric force, leading to a modification in the velocity slip condition at the hydrophobic surface. In addition, the non-uniform distribution of these surface ions creates a surface tension gradient, leading to a Marangoni stress. The impact of the mobile surface charge on streaming potential and electrochemical energy conversion efficiency in a pressure-driven flow of ionized liquid through the nanopore is addressed. Also, enhanced electro-osmotic flow through the hydrophobic nanochannel is also analyzed. The mean-filed electrokinetic model is modified to take into account the short-range non-electrostatic steric interactions and the long-range Coulomb correlations. The steric interaction is modeled by considering the ions as charged hard spheres of finite radius suspended in the electrolyte medium. The electrochemical potential is modified by including the volume exclusion effect, which is modeled based on the BMCSL equation of state. The electrostatic correlation is accounted for in the ionic self-energy. The extremal of the self-energy leads to a fourth-order Poisson equation for the electric field. The ion transport is governed by the modified Nernst-Planck equation, which includes the ion steric interactions; born force arises due to the spatial variation of the dielectric permittivity and the dielectrophoretic force on the hydrated ions. This ion transport equation is coupled with the Navier-Stokes equation describing the flow of the ionized fluid and the 3fourth-order Poisson equation for the electric field. We numerically solve the coupled set of nonlinear governing equations along with the prescribed boundary conditions by adopting a control volume approach over a staggered grid arrangement. In the staggered grid arrangements, velocity components are stored on the midpoint of the cell faces to which they are normal, whereas the remaining scalar variables are stored at the center of each cell. The convection and electromigration terms are discretized at each interface of the control volumes using the total variation diminishing (TVD) approach to capture the strong convection resulting from the highly enhanced fluid flow due to the modified model. In order to link pressure to the continuity equation, we adopt a pressure correction-based iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, in which the discretized continuity equation is converted to a Poisson equation involving pressure correction terms. Our results show that the physisorbed ions on a hydrophobic surface create an enhanced slip velocity when streaming potential, which enhances the convection current. However, the electroosmotic flow attenuates due to the mobile surface ions.

Keywords: microfluidics, electroosmosis, streaming potential, electrostatic correlation, finite sized ions

Procedia PDF Downloads 72
323 Analysis of the Elastic Energy Released and Characterization of the Eruptive Episodes Intensity’s during 2014-2015 at El Reventador Volcano, Ecuador

Authors: Paúl I. Cornejo

Abstract:

The elastic energy released through Strombolian explosions has been quite studied, detailing various processes, sources, and precursory events at several volcanoes. We realized an analysis based on the relative partitioning of the elastic energy radiated into the atmosphere and ground by Strombolian-type explosions recorded at El Reventador volcano, using infrasound and seismic signals at high and moderate seismicity episodes during intense eruptive stages of explosive and effusive activity. Our results show that considerable values of Volcano Acoustic-Seismic Ratio (VASR or η) are obtained at high seismicity stages. VASR is a physical diagnostic of explosive degassing that we used to compare eruption mechanisms at El Reventador volcano for two datasets of explosions recorded at a Broad-Band BB seismic and infrasonic station located at ~5 kilometers from the vent. We conclude that the acoustic energy EA released during explosive activity (VASR η = 0.47, standard deviation σ = 0.8) is higher than the EA released during effusive activity; therefore, producing the highest values of η. Furthermore, we realized the analysis and characterization of the eruptive intensity for two episodes at high seismicity, calculating a η three-time higher for an episode of effusive activity with an occasional explosive component (η = 0.32, and σ = 0.42), than a η for an episode of only effusive activity (η = 0.11, and σ = 0.18), but more energetic.

Keywords: effusive, explosion quakes, explosive, Strombolian, VASR

Procedia PDF Downloads 184
322 A Comparative Study on Vowel Articulation in Malayalam Speaking Children Using Cochlear Implant

Authors: Deepthy Ann Joy, N. Sreedevi

Abstract:

Hearing impairment (HI) at an early age, identified before the onset of language development can reduce the negative effect on speech and language development of children. Early rehabilitation is very important in the improvement of speech production in children with HI. Other than conventional hearing aids, Cochlear Implants are being used in the rehabilitation of children with HI. However, delay in acquisition of speech and language milestones persist in children with Cochlear Implant (CI). Delay in speech milestones are reflected through speech sound errors. These errors reflect the temporal and spectral characteristics of speech. Hence, acoustical analysis of the speech sounds will provide a better representation of speech production skills in children with CI. The present study aimed at investigating the acoustic characteristics of vowels in Malayalam speaking children with a cochlear implant. The participants of the study consisted of 20 Malayalam speaking children in the age range of four and seven years. The experimental group consisted of 10 children with CI, and the control group consisted of 10 typically developing children. Acoustic analysis was carried out for 5 short (/a/, /i/, /u/, /e/, /o/) and 5 long vowels (/a:/, /i:/, /u:/, /e:/, /o:/) in word-initial position. The responses were recorded and analyzed for acoustic parameters such as Vowel duration, Ratio of the duration of a short and long vowel, Formant frequencies (F₁ and F₂) and Formant Centralization Ratio (FCR) computed using the formula (F₂u+F₂a+F₁i+F₁u)/(F₂i+F₁a). Findings of the present study indicated that the values for vowel duration were higher in experimental group compared to the control group for all the vowels except for /u/. Ratio of duration of short and long vowel was also found to be higher in experimental group compared to control group except for /i/. Further F₁ for all vowels was found to be higher in experimental group with variability noticed in F₂ values. FCR was found be higher in experimental group, indicating vowel centralization. Further, the results of independent t-test revealed no significant difference across the parameters in both the groups. It was found that the spectral and temporal measures in children with CI moved towards normal range. The result emphasizes the significance of early rehabilitation in children with hearing impairment. The role of rehabilitation related aspects are also discussed in detail which can be clinically incorporated for the betterment of speech therapeutic services in children with CI.

Keywords: acoustics, cochlear implant, Malayalam, vowels

Procedia PDF Downloads 144
321 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete

Procedia PDF Downloads 171
320 From Sound to Music: The Trajectory of Musical Semiotics in a Selected Soundscape Environment in South-Western Nigeria

Authors: Olatunbosun Samuel Adekogbe

Abstract:

This paper addresses the question of musical signification, revolving around nature and its natural divides; the paper tends to examine the roles of the dispositional apparatus of listeners to react to sounding environments through music as coordinated sound that focuses on the powerful strain between vibrational occurrences of sound and potentials of being structured. This paper sets out to examine music as a simple conventional design that does not allude to something beyond music and sound as a vehicle to communicate through production, perception, translation, and reaction with regard to melodic and semiotic functions of sounds. This paper adopts the application of questionnaire and evolutionary approach methods to probe musical adaptation, reproduction, and natural selection as the basis for explaining specific human behavioural responses to musical sense-making beyond the above-sketched dichotomies, with a major focus on the transition from acoustic-emotional sensibilities to musical meaning in the selected soundscapes. It was observed that music has emancipated itself from the level of mere acoustic processing of sounds to a functional description in terms of allowing music users to share experiences and interact with the soundscaping environment. The paper, therefore, concludes that the audience as music participants and listeners in the selected soundscapes have been conceived as adaptive devices in the paradigm shift, which can build up new semiotic linkages with the sounding environments in southwestern Nigeria.

Keywords: semiotics, sound, music, soundscape, environment

Procedia PDF Downloads 65
319 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 521
318 Hydrodynamics and Hydro-acoustics of Fish Schools: Insights from Computational Models

Authors: Ji Zhou, Jung Hee Seo, Rajat Mittal

Abstract:

Fish move in groups for foraging, reproduction, predator protection, and hydrodynamic efficiency. Schooling's predator protection involves the "many eyes" theory, which increases predator detection probability in a group. Reduced visual signature in a group scales with school size, offering per-capita protection. The ‘confusion effect’ makes it hard for predators to target prey in a group. These benefits, however, all focus on vision-based sensing, overlooking sound-based detection. Fish, including predators, possess sophisticated sensory systems for pressure waves and underwater sound. The lateral line system detects acoustic waves, while otolith organs sense infrasound, and sharks use an auditory system for low-frequency sounds. Among sound generation mechanisms of fish, the mechanism of dipole sound relates to hydrodynamic pressure forces on the body surface of the fish and this pressure would be affected by group swimming. Thus, swimming within a group could affect this hydrodynamic noise signature of fish and possibly serve as an additional protection afforded by schooling, but none of the studies to date have explored this effect. BAUVs with fin-like propulsors could reduce acoustic noise without compromising performance, addressing issues of anthropogenic noise pollution in marine environments. Therefore, in this study, we used our in-house immersed-boundary method flow and acoustic solver, ViCar3D, to simulate fish schools consisting of four swimmers in the classic ‘diamond’ configuration and discussed the feasibility of yielding higher swimming efficiency and controlling far-field sound signature of the school. We examine the effects of the relative phase of fin flapping of the swimmers and the simulation results indicate that the phase of the fin flapping is a dominant factor in both thrust enhancement and the total sound radiated into the far-field by a group of swimmers. For fish in the “diamond” configuration, a suitable combination of the relative phase difference between pairs of leading fish and trailing fish can result in better swimming performance with significantly lower hydroacoustic noise.

Keywords: fish schooling, biopropulsion, hydrodynamics, hydroacoustics

Procedia PDF Downloads 61
317 Chatter Prediction of Curved Thin-walled Parts Considering Variation of Dynamic Characteristics Based on Acoustic Signals Acquisition

Authors: Damous Mohamed, Zeroudi Nasredine

Abstract:

High-speed milling of thin-walled parts with complex curvilinear profiles often encounters machining instability, commonly referred to as chatter. This phenomenon arises due to the dynamic interaction between the cutting tool and the part, exacerbated by the part's low rigidity and varying dynamic characteristics along the tool path. This research presents a dynamic model specifically developed to predict machining stability for such curved thin-walled components. The model employs the semi-discretization method, segmenting the tool trajectory into small, straight elements to locally approximate the behavior of an inclined plane. Dynamic characteristics for each segment are extracted through experimental modal analysis and incorporated into the simulation model to generate global stability lobe diagrams. Validation of the model is conducted through cutting tests where acoustic intensity is measured to detect instabilities. The experimental data align closely with the predicted stability limits, confirming the model's accuracy and effectiveness. This work provides a comprehensive approach to enhancing machining stability predictions, thereby improving the efficiency and quality of high-speed milling operations for thin-walled parts.

Keywords: chatter, curved thin-walled part, semi-discretization method, stability lobe diagrams

Procedia PDF Downloads 26
316 An Assessment of Bathymetric Changes in the Lower Usuma Reservoir, Abuja, Nigera

Authors: Rayleigh Dada Abu, Halilu Ahmad Shaba

Abstract:

Siltation is a serious problem that affects public water supply infrastructures such as dams and reservoirs. It is a major problem which threatens the performance and sustainability of dams and reservoirs. It reduces the dam capacity for flood control, potable water supply, changes water stage, reduces water quality and recreational benefits. The focus of this study is the Lower Usuma reservoir. At completion the reservoir had a gross storage capacity of 100 × 106 m3 (100 million cubic metres), a maximum operational level of 587.440 m a.s.l., with a maximum depth of 49 m and a catchment area of 241 km2 at dam site with a daily designed production capacity of 10,000 cubic metres per hour. The reservoir is 1,300 m long and feeds the treatment plant mainly by gravity. The reservoir became operational in 1986 and no survey has been conducted to determine its current storage capacity and rate of siltation. Hydrographic survey of the reservoir by integrated acoustic echo-sounding technique was conducted in November 2012 to determine the level and rate of siltation. The result obtained shows that the reservoir has lost 12.0 meters depth to siltation in 26 years of its operation; indicating 24.5% loss in installed storage capacity. The present bathymetric survey provides baseline information for future work on siltation depth and annual rates of storage capacity loss for the Lower Usuma reservoir.

Keywords: sedimentation, lower Usuma reservoir, acoustic echo sounder, bathymetric survey

Procedia PDF Downloads 514
315 Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations

Authors: Shradha S. Binani, P. S. Bodke, R. V. Joat

Abstract:

Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration.

Keywords: acoustical parameters, ultrasonic velocity, density, viscosity, 2-hydroxy substituted phenyl pyrimidine derivative

Procedia PDF Downloads 471
314 Ab Initio Calculations of Structure and Elastic Properties of BexZn1−xO Alloys

Authors: S. Lakel, F. Elhamra, M. Ibrir, K. Almi

Abstract:

There is a growing interest in Zn1-xBexO (ZBO)/ZnO hetero structures and quantum wells since the band gap energy of Zn1-xBexO solid solutions can be turned over a very large range (3.37–10.6 eV) as a function of the Be composition. ZBO/ZnO has been utilized in ultraviolet light emission diodes and lasers, and may find applications as active elements of various other electronic and optoelectronic devices. Band gap engineering by Be substitution enables the facile preparation of barrier layers and quantum wells in device structures. In addition, ZnO and its ternary alloys, as piezoelectric semiconductors, have been used for high-frequency surface acoustic wave devices in wireless communication systems due to their high acoustic velocities and large electromechanical coupling. However, many important parameters such as elastic constants, bulk modulus, Young’s modulus and band-gap bowing. First-principles calculations of the structural, electrical and elastic properties of Zn1-xBexO as a function of the Be concentration x have been performed within density functional theory using norm-conserving pseudopotentials and local density approximation (LDA) for the exchange and correlation energy. The alloys’ lattice constants may deviate from the Vegard law. As Be concentration increases, the elastic constants, the bulk modulus and Young’s modulus of the alloys increase, the band gap increases with increasing Be concentration and Zn1-xBexO alloys have direct band. Our calculated results are in good agreement with experimental data and other theoretical calculations.

Keywords: DFT calculation, norm-conserving pseudopotentials, ZnBeO alloys, ZnO

Procedia PDF Downloads 519
313 Near Field Focusing Behaviour of Airborne Ultrasonic Phased Arrays Influenced by Airflows

Authors: D. Sun, T. F. Lu, A. Zander, M. Trinkle

Abstract:

This paper investigates the potential use of airborne ultrasonic phased arrays for imaging in outdoor environments as a means of overcoming the limitations experienced by kinect sensors, which may fail to work in the outdoor environments due to the oversaturation of the infrared photo diodes. Ultrasonic phased arrays have been well studied for static media, yet there appears to be no comparable examination in the literature of the impact of a flowing medium on the focusing behaviour of near field focused ultrasonic arrays. This paper presents a method for predicting the sound pressure fields produced by a single ultrasound element or an ultrasonic phased array influenced by airflows. The approach can be used to determine the actual focal point location of an array exposed in a known flow field. From the presented simulation results based upon this model, it can be concluded that uniform flows in the direction orthogonal to the acoustic propagation have a noticeable influence on the sound pressure field, which is reflected in the twisting of the steering angle of the array. Uniform flows in the same direction as the acoustic propagation have negligible influence on the array. For an array impacted by a turbulent flow, determining the location of the focused sound field becomes difficult due to the irregularity and continuously changing direction and the speed of the turbulent flow. In some circumstances, ultrasonic phased arrays impacted by turbulent flows may not be capable of producing a focused sound field.

Keywords: airborne, airflow, focused sound field, ultrasonic phased array

Procedia PDF Downloads 343
312 Vibrations of Thin Bio Composite Plates

Authors: Timo Avikainen, Tuukka Verho

Abstract:

The use of natural fibers as reinforcements is growing increasingly in polymers which are involved in e.g. structural, vibration, and acoustic applications. The use of bio composites is being investigated as lightweight materials with specific properties like the ability to dissipate vibration energy and positive environmental profile and are thus considered as potential replacements for synthetic composites. The macro-level mechanical properties of the biocomposite material depend on several parameters in the detailed architecture and morphology of the reinforcing fiber structure. The polymer matrix phase is often applied to remain the fiber structure in touch. A big role in the packaging details of the fibers is related to the used manufacturing processes like extrusion, injection molding and treatments. There are typically big variances in the detailed parameters of the microstructure fibers. The study addressed the question of how the multiscale simulation methodology works in bio composites with short pulp fibers. The target is to see how the vibro – acoustic performance of thin–walled panels can be controlled by the detailed characteristics of the fiber material. Panels can be used in sound-producing speakers or sound insulation applications. The multiscale analysis chain is tested starting from the microstructural level and continuing via macrostructural material parameters to the product component part/assembly levels. Another application is the dynamic impact type of loading, exposing the material to the crack type damages that is in this study modeled as the Charpy impact tests.

Keywords: bio composite, pulp fiber, vibration, acoustics, impact, FEM

Procedia PDF Downloads 82
311 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
310 Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink

Authors: Diala Bitar, Emmanuel Gourdon, Claude H. Lamarque, Manuel Collet

Abstract:

Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained.

Keywords: electroacoustic absorber, multiple-time-scale with small finite parameter, nonlinear energy sink, nonlinear passive shunt

Procedia PDF Downloads 220
309 Effect of Mach Number for Gust-Airfoil Interatcion Noise

Authors: ShuJiang Jiang

Abstract:

The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils.

Keywords: aeroacoustics, gust-airfoil interaction, CFD, CAA

Procedia PDF Downloads 78
308 Design Optimization of Chevron Nozzles for Jet Noise Reduction

Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, V. R. Sanal Kumar

Abstract:

The noise regulations around the major airports and rocket launching stations due to the environmental concern have made jet noise a crucial problem in the present day aero-acoustics research. The three main acoustic sources in jet nozzles are aerodynamics noise, noise from craft systems and engine and mechanical noise. Note that the majority of engine noise is due to the jet noise coming out from the exhaust nozzle. The previous studies reveal that the potential of chevron nozzles for aircraft engines noise reduction is promising owing to the fact that the jet noise continues to be the dominant noise component, especially during take-off. In this paper parametric analytical studies have been carried out for optimizing the number of chevron lobes, the lobe length and tip shape, and the level of penetration of the chevrons into the flow over a variety of flow conditions for various aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, SST k-ω turbulence model with enhanced wall functions. In the numerical study, a fully implicit finite volume scheme of the compressible, Navier–Stokes equations is employed. We inferred that the geometry optimization of an environmental friendly chevron nozzle with a suitable number of chevron lobes with aerodynamically efficient tip contours for facilitating silent exit flow will enable a commendable sound reduction without much thrust penalty while comparing with the conventional supersonic nozzles with same area ratio.

Keywords: chevron nozzle, jet acoustic level, jet noise suppression, shape optimization of chevron nozzles

Procedia PDF Downloads 311
307 Benthic Cover in Coral Reef Environments under Influence of Submarine Groundwater Discharges

Authors: Arlett A. Rosado-Torres, Ismael Marino-Tapia

Abstract:

Changes in benthic cover of coral dominated systems to macroalgae dominance are widely studied worldwide. Watershed pollutants are potentially as important as overfishing causing phase shift. In certain regions of the world most of the continental inputs are through submarine groundwater discharges (SGD), which can play a significant ecological role because the concentration of its nutrients is usually greater that the one found in surface seawater. These stressors have adversely affected coral reefs, particularly in the Caribbean. Measurements of benthic cover (with video tracing, through a Go Pro camera), reef roughness (acoustic estimates with an Acoustic Doppler Current Velocity profiler and a differential GPS), thermohaline conditions (conductivity-temperature-depth (CTD) instrument) and nutrient measurements were taken in different sites in the reef lagoon of Puerto Morelos, Q. Roo, Mexico including those with influence of SGD and without it. The results suggest a link between SGD, macroalgae cover and structural complexity. Punctual water samples and data series from a CTD Diver confirm the presence of the SGD. On the site where the SGD is, the macroalgae cover is larger than in the other sites. To establish a causal link between this phase shift and SGD, the DELFT 3D hydrodynamic model (FLOW and WAVE modules) was performed under different environmental conditions and discharge magnitudes. The model was validated using measurements of oceanographic instruments anchored in the lagoon and forereef. The SGD is consistently favoring macroalgae populations and affecting structural complexity of the reef.

Keywords: hydrodynamic model, macroalgae, nutrients, phase shift

Procedia PDF Downloads 152
306 Optimization Based Design of Decelerating Duct for Pumpjets

Authors: Mustafa Sengul, Enes Sahin, Sertac Arslan

Abstract:

Pumpjets are one of the marine propulsion systems frequently used in underwater vehicles nowadays. The reasons for frequent use of pumpjet as a propulsion system are that it has higher relative efficiency at high speeds, better cavitation, and acoustic performance than its rivals. Pumpjets are composed of rotor, stator, and duct, and there are two different types of pumpjet configurations depending on the desired hydrodynamic characteristic, which are with accelerating and decelerating duct. Pumpjet with an accelerating channel is used at cargo ships where it works at low speeds and high loading conditions. The working principle of this type of pumpjet is to maximize the thrust by reducing the pressure of the fluid through the channel and throwing the fluid out from the channel with high momentum. On the other hand, for decelerating ducted pumpjets, the main consideration is to prevent the occurrence of the cavitation phenomenon by increasing the pressure of the fluid about the rotor region. By postponing the cavitation, acoustic noise naturally falls down, so decelerating ducted systems are used at noise-sensitive vehicle systems where acoustic performance is vital. Therefore, duct design becomes a crucial step during pumpjet design. This study, it is aimed to optimize the duct geometry of a decelerating ducted pumpjet for a highly speed underwater vehicle by using proper optimization tools. The target output of this optimization process is to obtain a duct design that maximizes fluid pressure around the rotor region to prevent from cavitation and minimizes drag force. There are two main optimization techniques that could be utilized for this process which are parameter-based optimization and gradient-based optimization. While parameter-based algorithm offers more major changes in interested geometry, which makes user to get close desired geometry, gradient-based algorithm deals with minor local changes in geometry. In parameter-based optimization, the geometry should be parameterized first. Then, by defining upper and lower limits for these parameters, design space is created. Finally, by proper optimization code and analysis, optimum geometry is obtained from this design space. For this duct optimization study, a commercial codedparameter-based optimization algorithm is used. To parameterize the geometry, duct is represented with b-spline curves and control points. These control points have x and y coordinates limits. By regarding these limits, design space is generated.

Keywords: pumpjet, decelerating duct design, optimization, underwater vehicles, cavitation, drag minimization

Procedia PDF Downloads 209
305 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 155
304 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 130
303 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand

Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff

Abstract:

Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.

Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste

Procedia PDF Downloads 138