Search results for: Lee Filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 834

Search results for: Lee Filter

594 Adaptive Filtering in Subbands for Supervised Source Separation

Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia

Abstract:

This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.

Keywords: adaptive filtering, multi-rate processing, normalized subband adaptive filter, source separation

Procedia PDF Downloads 431
593 Multi-Walled Carbon Nanotube Based Water Filter for Virus Pathogen Removal

Authors: K. Domagala, D. Kata, T. Graule

Abstract:

Diseases caused by contaminated drinking water are the worldwide problem, which leads to the death and severe illnesses for hundreds of millions million people each year. There is an urgent need for efficient water treatment techniques for virus pathogens removal. The aim of the research was to develop safe and economic solution, which help with the water treatment. In this study, the synthesis of copper-based multi-walled carbon nanotube composites is described. Proposed solution utilize combination of a low-cost material with a high active surface area and copper antiviral properties. Removal of viruses from water was possible by adsorption based on electrostatic interactions of negatively charged virus with a positively charged filter material.

Keywords: multi walled carbon nanotubes, water purification, virus removal, water treatment

Procedia PDF Downloads 129
592 The Cleaning Equipment to Prevents Dust Diffusion of Bus Air Filters

Authors: Jiraphorn Satechan, Thanaphon Khamthieng, Warunee Phanwong

Abstract:

This action research aimed at designing and developing the cleaning equipment to preventing dust diffusion of bus air filter. Quantitative and qualitative data collection methods were used to conduct data from October 1st, 2018 to September 30th, 2019. All of participants were male (100.0%) with aged 40- 49 years and 57.15%, of them finish bachelor degree. 71.43% of them was a driver and 57.15% of them had the working experience between 10 and 15 years. Research revealed that the participants assessed the quality of the bus air filter cleaning equipment for preventing dust diffusion at a moderate level (σ= 0.29), and 71.43 of them also suggested the development methods in order to improve the quality of bus air filters cleaning equipment as follows: 1) to install the circuit breaker for cutting the electricity and controlling the on-off of the equipment and to change the motor to the DC system, 2) should install the display monitor for wind pressure and electricity system as well as to install the air pressure gauge, 3) should install the tank lid lock for preventing air leakage and dust diffusion by increasing the blowing force and sucking power, 4) to stabilize the holding points for preventing the filter shaking while rotating and blowing for cleaning and to reduce the rotation speed in order to allow the filters to move slowly for the air system to blow for cleaning more thoroughly, 5) the amount of dust should be measured before and after cleaning and should be designed the cleaning equipment to be able to clean with a variety of filters, and sizes. Moreover, the light-weight materials should be used to build the cleaning equipment and the wheels should be installed at the base of the equipment in order to make it easier to move.

Keywords: Cleaning Equipment, Bus Air Filters, Preventing Dust Diffusion, Innovation

Procedia PDF Downloads 109
591 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform

Authors: Hana Rabbouch

Abstract:

In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.

Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets

Procedia PDF Downloads 139
590 2.5D Face Recognition Using Gabor Discrete Cosine Transform

Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao

Abstract:

In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.

Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose

Procedia PDF Downloads 326
589 Assessment of Conventional Drinking Water Treatment Plants as Removal Systems of Virulent Microsporidia

Authors: M. A. Gad, A. Z. Al-Herrawy

Abstract:

Microsporidia comprises various pathogenic species can infect humans by means of water. Moreover, chlorine disinfection of drinking-water has limitations against this protozoan pathogen. A total of 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow sand filter and rapid sand filter) during one year period. Samples were collected from inlet and outlet of each plant. Samples were separately filtrated through nitrocellulose membrane (142 mm, 0.45 µm), then eluted and centrifuged. The obtained pellet from each sample was subjected to DNA extraction, then, amplification using genus-specific primer for microsporidia. Each microsporidia-PCR positive sample was performed by two species specific primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis. The results of the present study showed that the percentage of removal for microsporidia through different treatment processes reached its highest rate in the station using slow sand filters (100%), while the removal by rapid sand filter system was 81.8%. Statistically, the two different drinking water treatment plants (slow and rapid) had significant effect for removal of microsporidia. Molecular identification of microsporidia-PCR positive samples using two different primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis showed the presence of the two pervious species in the inlet water of the two stations, while Encephalitozoon intestinalis was detected in the outlet water only. In conclusion, the appearance of virulent microsporidia in treated drinking water may cause potential health threat.

Keywords: removal, efficacy, microsporidia, drinking water treatment plants, PCR

Procedia PDF Downloads 208
588 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze

Abstract:

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

Keywords: auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter

Procedia PDF Downloads 423
587 An Algorithm for Removal of Noise from X-Ray Images

Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See

Abstract:

In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.

Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF

Procedia PDF Downloads 381
586 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter

Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri

Abstract:

Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.

Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion

Procedia PDF Downloads 693
585 Comparative Analysis of Universal Filtered Multi Carrier and Filtered Orthogonal Frequency Division Multiplexing Systems for Wireless Communications

Authors: Raja Rajeswari K

Abstract:

Orthogonal Frequency Division Multiplexing (OFDM), a multi Carrier transmission technique that has been used in implementing the majority of wireless applications like Wireless Network Protocol Standards (like IEEE 802.11a, IEEE 802.11n), in telecommunications (like LTE, LTE-Advanced) and also in Digital Audio & Video Broadcast standards. The latest research and development in the area of orthogonal frequency division multiplexing, Universal Filtered Multi Carrier (UFMC) & Filtered OFDM (F-OFDM) has attracted lots of attention for wideband wireless communications. In this paper UFMC & F-OFDM system are implemented and comparative analysis are carried out in terms of M-ary QAM modulation scheme over Dolph-chebyshev filter & rectangular window filter and to estimate Bit Error Rate (BER) over Rayleigh fading channel.

Keywords: UFMC, F-OFDM, BER, M-ary QAM

Procedia PDF Downloads 167
584 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array

Authors: Rachid Dehini, Brahim Berbaoui

Abstract:

The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.

Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)

Procedia PDF Downloads 330
583 A Sensor Placement Methodology for Chemical Plants

Authors: Omid Ataei Nia, Karim Salahshoor

Abstract:

In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.

Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter

Procedia PDF Downloads 158
582 A Review of the Factors That Influence on Nutrient Removal in Upflow Filters

Authors: Ali Alzeyadi, Edward Loffill, Rafid Alkhaddar Ali Alattabi

Abstract:

Phosphate, ammonium, and nitrates are forms of nutrients; they are released from different sources. High nutrient levels contribute to the eutrophication of water bodies by accelerating the extraordinary growth of algae. Recently, many filtration and treatment systems were developed and used for different removal processes. Due to enhanced operational aspects for the up-flow, continuous, granular Media filter researchers became more interested in further developing this technology and its performance for nutrient removal from wastewater. Environmental factors significantly affect the filtration process performance, and understanding their impact will help to maintain the nutrient removal process. Phosphate removal by phosphate sorption materials PSMs and nitrogen removal biologically are the methods of nutrient removal that have been discussed in this paper. Hence, the focus on the factors that influence these processes is the scope of this work. The finding showed the presence of factors affecting both removal processes; the size, shape, and roughness of the filter media particles play a crucial role in supporting biofilm formation. On the other hand, all of which are effected on the reactivity of surface between the media and phosphate. Many studies alluded to factors that have significant influence on the biological removal for nitrogen such as dissolved oxygen, temperature, and pH; this is due to the sensitivity of biological processes while the phosphate removal by PSMs showed less affected by these factors. This review work provides help to the researchers in create a comprehensive approach in regards study the nutrient removal in up flow filtration systems.

Keywords: nitrogen biological treatment, nutrients, psms, upflow filter, wastewater treatment

Procedia PDF Downloads 321
581 Biofilm Is Facilitator for Microplastic Ingestion in Green Mussel Perna Viridis

Authors: Yixuan Wang, A. C. Y. Wong, J. M. Y. Chiu, S. G. Cheung

Abstract:

After being released into the ocean, microplastics (MPs) are quickly colonized by microbes. The biofilm that forms on MPs alters their characteristics and perplexes users, including filter-feeders, some of whom choose to eat MPs that have biofilm. It has been proposed that filter feeders like mussels and other bivalves could serve as bioindicators of MP pollution. Mussels are considered selective feeders with particle sorting capability. Two sizes (27-32 µm and 90-106 µm), shapes (microspheres and microfibers), and types (polyethylene, polystyrene and polyester) of MPs were available for the green mussel, Perna viridis, at three concentrations (100 P/ml, 1000 P/ml and 10,000 P/ml). These MPs were incubated in the sea for 0, 3 or 14 days for biofilm development. The presence of the biofilm significantly affected the ingestion of MPs, and the mussels preferred MPs with biofilm, with a higher preference observed for biofilm with a longer incubation period. Additionally, the ingestion rate varied with the interaction between the concentration, size and form of MPs. The findings are discussed in relation to the possibility that mussels serve as MP bioindicators.

Keywords: marine miroplastics, biofilm, bioindicator, green mussel perna viridis

Procedia PDF Downloads 58
580 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 250
579 Development of an Integrated System for the Treatment of Rural Domestic Wastewater: Emphasis on Nutrient Removal

Authors: Prangya Ranjan Rout, Puspendu Bhunia, Rajesh Roshan Dash

Abstract:

In a developing country like India, providing reliable and affordable wastewater treatment facilities in rural areas is a huge challenge. With the aim of enhancing the nutrient removal from rural domestic wastewater while reducing the cost of treatment process, a novel, integrated treatment system consisting of a multistage bio-filter with drop aeration and a post positioned attached growth carbonaceous denitrifying-bioreactor was designed and developed in this work. The bio-filter was packed with ‘dolochar’, a sponge iron industry waste, as an adsorbent mainly for phosphate removal through physiochemical approach. The Denitrifying bio-reactor was packed with many waste organic solid substances (WOSS) as carbon sources and substrates for biomass attachment, mainly to remove nitrate in biological denitrification process. The performance of the modular system, treating real domestic wastewater was monitored for a period of about 60 days and the average removal efficiencies during the period were as follows: phosphate, 97.37%; nitrate, 85.91%, ammonia, 87.85%, with mean final effluent concentration of 0.73, 9.86, and 9.46 mg/L, respectively. The multistage bio-filter played an important role in ammonium oxidation and phosphate adsorption. The multilevel drop aeration with increasing oxygenation, and the special media used, consisting of certain oxides were likely beneficial for nitrification and phosphorus removal, respectively, whereas the nitrate was effectively reduced by biological denitrification in the carbonaceous bioreactor. This treatment system would allow multipurpose reuse of the final effluent. Moreover, the saturated dolochar can be used as nutrient suppliers in agricultural practices and the partially degraded carbonaceous substances can be subjected to composting, and subsequently used as an organic fertilizer. Thus, the system displays immense potential for treating domestic wastewater significantly decreasing the concentrations of nutrients and more importantly, facilitating the conversion of the waste materials into usable ones.

Keywords: nutrient removal, denitrifying bioreactor, multi-stage bio-filter, dolochar, waste organic solid substances

Procedia PDF Downloads 380
578 Bipolar Impulse Noise Removal and Edge Preservation in Color Images and Video Using Improved Kuwahara Filter

Authors: Reji Thankachan, Varsha PS

Abstract:

Both image capturing devices and human visual systems are nonlinear. Hence nonlinear filtering methods outperforms its linear counterpart in many applications. Linear methods are unable to remove impulsive noise in images by preserving its edges and fine details. In addition, linear algorithms are unable to remove signal dependent or multiplicative noise in images. This paper presents an approach to denoise and smoothen the Bipolar impulse noised images and videos using improved Kuwahara filter. It involves a 2 stage algorithm which includes a noise detection followed by filtering. Numerous simulation demonstrate that proposed method outperforms the existing method by eliminating the painting like flattening effect along the local feature direction while preserving edge with improvement in PSNR and MSE.

Keywords: bipolar impulse noise, Kuwahara, PSNR MSE, PDF

Procedia PDF Downloads 497
577 Mitigating Denial of Service Attacks in Information Centric Networking

Authors: Bander Alzahrani

Abstract:

Information-centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) is one of the promising candidates for a future Internet, has recently been under the spotlight by the research community to investigate the possibility of redesigning the current Internet architecture to solve many issues such as routing scalability, security, and quality of services issues.. The Bloom filter-based forwarding is a source-routing approach that is used in the PSIRP architecture. This mechanism is vulnerable to brute force attacks which may lead to denial-of-service (DoS) attacks. In this work, we present a new forwarding approach that keeps the advantages of Bloom filter-based forwarding while mitigates attacks on the forwarding mechanism. In practice, we introduce a special type of forwarding nodes called Edge-FW to be placed at the edge of the network. The role of these node is to add an extra security layer by validating and inspecting packets at the edge of the network against brute-force attacks and check whether the packet contains a legitimate forwarding identifier (FId) or not. We leverage Certificateless Aggregate Signature (CLAS) scheme with a small size of 64-bit which is used to sign the FId. Hence, this signature becomes bound to a specific FId. Therefore, malicious nodes that inject packets with random FIds will be easily detected and dropped at the Edge-FW node when the signature verification fails. Our preliminary security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DoS with very high probability.

Keywords: bloom filter, certificateless aggregate signature, denial-of-service, information centric network

Procedia PDF Downloads 196
576 Liver and Liver Lesion Segmentation From Abdominal CT Scans

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer- aided diagnosis applications. Segmentation of liver and liver lesion is regarded as a major primary step in computer aided diagnosis of liver diseases. Precise liver segmentation in abdominal CT images is one of the most important steps for the computer-aided diagnosis of liver pathology. In this papers, a semi- automated method for medical image data is presented for the liver and liver lesion segmentation data using mathematical morphology. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological filters to extract the liver. The second step consists to detect the liver lesion. In this task; we proposed a new method developed for the semi-automatic segmentation of the liver and hepatic lesions. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to improve the quality of the original image and image gradient by applying the spatial filter followed by the morphological filters. The second step consists to calculate the internal and external markers of the liver and hepatic lesions. Thereafter we proceed to the liver and hepatic lesions segmentation by the watershed transform controlled by markers. The validation of the developed algorithm is done using several images. Obtained results show the good performances of our proposed algorithm

Keywords: anisotropic diffusion filter, CT images, hepatic lesion segmentation, Liver segmentation, morphological filter, the watershed algorithm

Procedia PDF Downloads 449
575 Investigation Particle Behavior in Gas-Solid Filtration with Electrostatic Discharge in a Hybrid System

Authors: Flávia M. Oliveira, Marcos V. Rodrigues, Mônica L. Aguiar

Abstract:

Synthetic fibers are widely used in gas filtration. Previous attempts to optimize the filtration process have employed mixed fibers as the filter medium in gas-solid separation. Some of the materials most frequently used this purpose are composed of polyester, polypropylene, and glass fibers. In order to improve the retention of cement particles in bag filters, the present study investigates the use of synthetic glass fiber filters and polypropylene fiber for particle filtration, with electrostatic discharge of 0 to -2 kV in cement particles. The filtration curves obtained showed that charging increased the particle collection efficiency and lowered the pressure drop. Particle diameter had a direct influence on the formation of the dust cake, and the application of electrostatic discharge to the particles resulted in the retention of more particles, hence increasing the lifetime of fabric filters.

Keywords: glass fiber filter, particle, electrostatic discharge, cement

Procedia PDF Downloads 387
574 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System

Authors: Hao Wang, Shuguo Pan

Abstract:

The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.

Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm

Procedia PDF Downloads 95
573 Fast and Robust Long-term Tracking with Effective Searching Model

Authors: Thang V. Kieu, Long P. Nguyen

Abstract:

Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.

Keywords: correlation filter, long-term tracking, random fern, real-time tracking

Procedia PDF Downloads 135
572 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 295
571 Recognition of Noisy Words Using the Time Delay Neural Networks Approach

Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha

Abstract:

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.

Keywords: TDNN, neural networks, noise, speech recognition

Procedia PDF Downloads 288
570 Imaging Based On Bi-Static SAR Using GPS L5 Signal

Authors: Tahir Saleem, Mohammad Usman, Nadeem Khan

Abstract:

GPS signals are used for navigation and positioning purposes by a diverse set of users. However, this project intends to utilize the reflected GPS L5 signals for location of target in a region of interest by generating an image that highlights the positions of targets in the area of interest. The principle of bi-static radar is used to detect the targets or any movement or changes. The idea is confirmed by the results obtained during MATLAB simulations. A matched filter based technique is employed in the signal processing to improve the system resolution. The simulation is carried out under different conditions with moving receiver and targets. Noise and attenuation is also induced and atmospheric conditions that affect the direct and reflected GPS signals have been simulated to generate a more practical scenario. A realistic GPS L5 signal has been simulated, the simulation results verify that the detection and imaging of targets is possible by employing reflected GPS using L5 signals and matched filter processing technique with acceptable spatial resolution.

Keywords: GPS, L5 Signal, SAR, spatial resolution

Procedia PDF Downloads 532
569 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops

Authors: Catalina Albornoz, Giacomo Barbieri

Abstract:

Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.

Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature

Procedia PDF Downloads 385
568 Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization

Authors: Sandabad Sara, Sayd Tahri Yassine, Hammouch Ahmed

Abstract:

The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature.

Keywords: MRI, Em algorithm, brain, tumor, Nl-means

Procedia PDF Downloads 335
567 A Survey on Lossless Compression of Bayer Color Filter Array Images

Authors: Alina Trifan, António J. R. Neves

Abstract:

Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.

Keywords: bayer image, CFA, lossless compression, image coding standards

Procedia PDF Downloads 319
566 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model

Authors: Phornpat Chewasoonthorn, Surat Kwanmuang

Abstract:

Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.

Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter

Procedia PDF Downloads 158
565 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter

Authors: Vahid Anari, Leila Shahmohammadi

Abstract:

Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction

Procedia PDF Downloads 65