Search results for: Duncan-Chang deformation parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9552

Search results for: Duncan-Chang deformation parameters

9312 Model Tests on Geogrid-Reinforced Sand-Filled Embankments with a Cover Layer under Cyclic Loading

Authors: Ma Yuan, Zhang Mengxi, Akbar Javadi, Chen Longqing

Abstract:

The structure of sand-filled embankment with cover layer is treated with tipping clay modified with lime on the outside of the packing, and the geotextile is placed between the stuffing and the clay. The packing is usually river sand, and the improved clay protects the sand core against rainwater erosion. The sand-filled embankment with cover layer has practical problems such as high filling embankment, construction restriction, and steep slope. The reinforcement can be applied to the sand-filled embankment with cover layer to solve the complicated problems such as irregular settlement caused by poor stability of the embankment. At present, the research on the sand-filled embankment with cover layer mainly focuses on the sand properties, construction technology, and slope stability, and there are few studies in the experimental field, the deformation characteristics and stability of reinforced sand-filled embankment need further study. In addition, experimental research is relatively rare when the cyclic load is considered in tests. A subgrade structure of geogrid-reinforced sand-filled embankment with cover layer was proposed. The mechanical characteristics, the deformation properties, reinforced behavior and the ultimate bearing capacity of the embankment structure under cyclic loading were studied. For this structure, the geogrids in the sand and the tipping soil are through the geotextile which is arranged in sections continuously so that the geogrids can cross horizontally. Then, the Unsaturated/saturated Soil Triaxial Test System of Geotechnical Consulting and Testing Systems (GCTS), USA was modified to form the loading device of this test, and strain collector was used to measuring deformation and earth pressure of the embankment. A series of cyclic loading model tests were conducted on the geogrid-reinforced sand-filled embankment with a cover layer under a different number of reinforcement layers, the length of reinforcement and thickness of the cover layer. The settlement of the embankment, the normal cumulative deformation of the slope and the earth pressure were studied under different conditions. Besides cyclic loading model tests, model experiments of embankment subjected cyclic-static loading was carried out to analyze ultimate bearing capacity with different loading. The experiment results showed that the vertical cumulative settlement under long-term cyclic loading increases with the decrease of the number of reinforcement layers, length of the reinforcement arrangement and thickness of the tipping soil. Meanwhile, these three factors also have an influence on the decrease of the normal deformation of the embankment slope. The earth pressure around the loading point is significantly affected by putting geogrid in a model embankment. After cyclic loading, the decline of ultimate bearing capacity of the reinforced embankment can be effectively reduced, which is contrary to the unreinforced embankment.

Keywords: cyclic load; geogrid; reinforcement behavior; cumulative deformation; earth pressure

Procedia PDF Downloads 124
9311 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach

Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri

Abstract:

In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.

Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications

Procedia PDF Downloads 64
9310 Online Measurement of Fuel Stack Elongation

Authors: Sung Ho Ahn, Jintae Hong, Chang Young Joung, Tae Ho Yang, Sung Ho Heo, Seo Yun Jang

Abstract:

The performances of nuclear fuels and materials are qualified at an irradiation system in research reactors operating under the commercial nuclear power plant conditions. Fuel centerline temperature, coolant temperature, neutron flux, deformations of fuel stack and swelling are important parameters needed to analyze the nuclear fuel performances. The dimensional stability of nuclear fuels is a key parameter measuring the fuel densification and swelling. In this study, the fuel stack elongation is measured using a LVDT. A mockup LVDT instrumented fuel rod is developed. The performances of mockup LVDT instrumented fuel rod is evaluated by experiments.

Keywords: axial deformation, elongation measurement, in-pile instrumentation, LVDT

Procedia PDF Downloads 537
9309 Alpha-To-Omega Phase Transition in Bulk Nanostructured Ti and (α+β) Ti Alloys

Authors: Askar Kilmametov, Julia Ivanisenko, Boris Straumal, Horst Hahn

Abstract:

The high-pressure α- to ω-phase transition was discovered in elemental Ti and Zr fifty years ago using static high pressure and then observed to appear between 2 and 12 GPa at room temperature, depending on the experimental technique, the pressure environment, and the sample purity. The fact that ω-phase is retained in a metastable state in ambient condition after the removal of the pressure has been used to check the changes in magnetic and superconductive behavior, electron band structure and mechanical properties. However, the fundamental knowledge on a combination of both mechanical treatment and high applied pressure treatments for ω-phase formation in Ti alloys is currently lacking and has to be studied in relation to improved mechanical properties of bulk nanostructured states. In the present study, nanostructured (α+β) Ti alloys containing β-stabilizing elements such as Co, Fe, Cr, Nb were performed by severe plastic deformation, namely high pressure torsion (HPT) technique. HPT-induced α- to ω-phase transformation was revealed in dependence on applied pressure and shear strains by means of X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The transformation kinetics was compared with the kinetics of pressure-induced transition. Orientation relationship between α-, β- and ω-phases was taken into consideration and analyzed according to theoretical calculation proposed earlier. The influence of initial state before HPT appeared to be considerable for subsequent α- to ω-phase transition. Thermal stability of the HPT-induced ω-phase was discussed as well in the frame of mechanical behavior of Ti and Ti-based alloys produced by shear deformation under high applied pressure.

Keywords: bulk nanostructured materials, high pressure phase transitions, severe plastic deformation, titanium alloys

Procedia PDF Downloads 420
9308 Load Relaxation Behavior of Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

High-temperature deformation behavior of ferritic stainless steels such as STS 409L, STS 430J1L, and STS 429EM has been investigated in this study. Specimens with fully annealed microstructure were obtained by heat treatment. A series of load relaxation tests has been conducted on these samples at temperatures ranging from 200 to 900oC to construct flow curves in the strain rate range from 10-6 s-1 to 10-3 s-1. Strain hardening was not observed at high temperatures above 800oC in any stainless steels. Load relaxation behavior at the temperature was closely related with high-temperature mechanical properties such as the thermal fatigue and tensile behaviors. Load drop ratio of 436L stainless steel was much higher than that of the other steels. With increasing temperature, strength and load drop ratio of ferritic stainless steels showed entirely different trends.

Keywords: ferritic stainless steel, high temperature deformation, load relaxation, microstructure, strain rate sensitivity

Procedia PDF Downloads 339
9307 Effect of Twin Cavities on the Axially Loaded Pile in Clay

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

Presence of cavities in soil predictably induces ground deformation and changes in soil stress, which might influence adjacent existing pile foundations, though the effect of twin cavities on a nearby pile needs to be understood. This research is an attempt to identify the behaviour of piles subjected to axial load and embedded in cavitied clayey soil. A series of finite element modelling were conducted to investigate the performance of piled foundation located in such soils. The validity of the numerical simulation was evaluated by comparing it with available field test and alternative analytical model. The study involved many parameters such as twin cavities size, depth, spacing between cavities, and eccentricity of cavities from the pile axis on the pile performance subjected to axial load. The study involved many cases; in each case, a critical value has been found in which cavities’ presence has shown minimum impact on the behaviour of pile. Load-displacement relationships of the affecting parameters on the pile behaviour were presented to provide helpful information for designing piled foundation situated near twin underground cavities. It was concluded that the presence of the cavities within the soil mass reduces the ultimate capacity of pile. This reduction differs according to the size and location of the cavity.

Keywords: axial load, clay, finite element, pile, twin cavities, ultimate capacity

Procedia PDF Downloads 237
9306 Analysis of Exponential Nonuniform Transmission Line Parameters

Authors: Mounir Belattar

Abstract:

In this paper the Analysis of voltage waves that propagate along a lossless exponential nonuniform line is presented. For this analysis the parameters of this line are assumed to be varying function of the distance x along the line from the source end. The approach is based on the tow-port networks cascading presentation to derive the ABDC parameters of transmission using Picard-Carson Method which is a powerful method in getting a power series solution for distributed network because it is easy to calculate poles and zeros and solves differential equations such as telegrapher equations by an iterative sequence. So the impedance, admittance voltage and current along the line are expanded as a Taylor series in x/l where l is the total length of the line to obtain at the end, the main transmission line parameters such as voltage response and transmission and reflexion coefficients represented by scattering parameters in frequency domain.

Keywords: ABCD parameters, characteristic impedance exponential nonuniform transmission line, Picard-Carson's method, S parameters, Taylor's series

Procedia PDF Downloads 445
9305 Behavior of A Vertical Pile Under the Effect of an Inclined Load in Loose Sand

Authors: Fathi Mohamed Abdrabbo, Khaled Esayed Gaaver, Musab Musa Eldooma

Abstract:

This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements of pile head, as well as the deformation profiles along the pile and the pile stiffness, are significantly affected by α. It was observed that the P-Y curves of the pile-soil system are independent of α. Also, the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal load component of the applied load on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile.

Keywords: deep foundation, piles, inclined load, pile deformations

Procedia PDF Downloads 155
9304 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters

Authors: Rama Debbarma

Abstract:

The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.

Keywords: linear base isolator, earthquake, optimization, uncertain parameters

Procedia PDF Downloads 438
9303 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Authors: Ergin Kosa, Ali Göksenli

Abstract:

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials.

Keywords: erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material

Procedia PDF Downloads 407
9302 Optical and Mechanical Characterization of Severe Plastically Deformed Copper Alloy Processed by Constrained Groove Pressing

Authors: Jaya Prasad Vanam, Vinay Anurag P, Vidya Sravya N S, Kishore Babu Nagamothu

Abstract:

Constrained Groove Pressing (CGP) is one of the severe plastic deformation technique (SPD) by which we can process Ultra Fine Grained (UFG)/plane metallic materials. This paper discusses the effects of CGP on Cu-Zn alloy specimen at room temperature. A comprehensive study is made on the structural and mechanical properties of Brass specimen before and after Constrained grooves Pressing. Entire process is simulated in AFDEX CAE Software. It is found that most of the properties are superior with respect to brass samples such as yield strength, ultimate tensile strength, hardness, strain rate, etc., and they are found to be better for the CGP processed specimen. The results are discussed with respective graphs.

Keywords: constrained groove pressing, AFDEX, ultra fine grained materials, severe plastic deformation technique

Procedia PDF Downloads 161
9301 Thermal Buckling Analysis of Functionally Graded Beams with Various Boundary Conditions

Authors: Gholamreza Koochaki

Abstract:

This paper presents the buckling analysis of functionally graded beams with various boundary conditions. The first order shear deformation beam theory (Timoshenko beam theory) and the classical theory (Euler-Bernoulli beam theory) of Reddy have been applied to the functionally graded beams buckling analysis The material property gradient is assumed to be in thickness direction. The equilibrium and stability equations are derived using the total potential energy equations, classical theory and first order shear deformation theory assumption. The temperature difference and applied voltage are assumed to be constant. The critical buckling temperature of FG beams are upper than the isotropic ones. Also, the critical temperature is different for various boundary conditions.

Keywords: buckling, functionally graded beams, Hamilton's principle, Euler-Bernoulli beam

Procedia PDF Downloads 394
9300 Experimental Determination of Aluminum 7075-T6 Parameters Using Stabilized Cycle Tests to Predict Thermal Ratcheting

Authors: Armin Rahmatfam, Mohammad Zehsaz, Farid Vakili Tahami, Nasser Ghassembaglou

Abstract:

In this paper the thermal ratcheting, kinematic hardening parameters C, γ, isotropic hardening parameters and also k, b, Q combined isotropic/kinematic hardening parameters have been obtained experimentally from the monotonic, strain controlled cyclic tests at room and elevated temperatures of 20°C, 100°C, and 400°C. These parameters are used in nonlinear combined isotropic/kinematic hardening model to predict better description of the loading and reloading cycles in the cyclic indentation as well as thermal ratcheting. For this purpose, three groups of specimens made of Aluminum 7075-T6 have been investigated. After each test and using stable hysteretic cycles, material parameters have been obtained for using in combined nonlinear isotropic/kinematic hardening models. Also the methodology of obtaining the correct kinematic/isotropic hardening parameters is presented.

Keywords: combined hardening model, kinematic hardening, isotropic hardening, cyclic tests

Procedia PDF Downloads 482
9299 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process

Authors: A. Soualem

Abstract:

The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys. The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restraint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.

Keywords: springback, deep drawing, expansion, restricted deep drawing

Procedia PDF Downloads 457
9298 Pre-Transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel

Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury

Abstract:

Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its microstructure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.

Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation

Procedia PDF Downloads 500
9297 A First Order Shear Deformation Theory Approach for the Buckling Behavior of Nanocomposite Beams

Authors: P. Pramod Kumar, Madhu Salumari, V. V. Subba Rao

Abstract:

Due to their high strength-to-weight ratio, carbon nanotube (CNTs) reinforced polymer composites are being considered as one of the most promising nanocomposites which can improve the performance when used in structural applications. The buckling behavior is one of the most important parameter needs to be considered in the design of structural members like beams and plates. In the present paper, the elastic constants of CNT reinforced polymer composites are evaluated by using Mori-Tanaka micromechanics approach. Knowing the elastic constants, an analytical study is being conducted to investigate the buckling behavior of nanocomposites for different CNT volume fractions at different boundary conditions using first-order shear deformation theory (FSDT). The effect of stacking sequence and CNT radius on the buckling of beam has also been presented. This study is being conducted primarily with an intension to find the stiffening effect of CNTs when used in polymer composites as reinforcement.

Keywords: CNT, buckling, micromechanics, FSDT

Procedia PDF Downloads 282
9296 Thermo-Mechanical Treatment of Chromium Alloyed Low Carbon Steel

Authors: L. Kučerová, M. Bystrianský, V. Kotěšovec

Abstract:

Thermo-mechanical processing with various processing parameters was applied to 0.2%C-0.6%Mn-2S%i-0.8%Cr low alloyed high strength steel. The aim of the processing was to achieve the microstructures typical for transformation induced plasticity (TRIP) steels. Thermo-mechanical processing used in this work incorporated two or three deformation steps. The deformations were in all the cases carried out during the cooling from soaking temperatures to various bainite hold temperatures. In this way, 4-10% of retained austenite were retained in the final microstructures, consisting further of ferrite, bainite, martensite and pearlite. The complex character of TRIP steel microstructure is responsible for its good strength and ductility. The strengths achieved in this work were in the range of 740 MPa – 836 MPa with ductility A5mm of 31-41%.

Keywords: pearlite, retained austenite, thermo-mechanical treatment, TRIP steel

Procedia PDF Downloads 297
9295 An Experimental Analysis of Squeeze Casting Parameters for 2017 a Wrought Al Alloy

Authors: Mohamed Ben Amar, Najib Souissi, Chedly Bradai

Abstract:

A Taguchi design investigation has been made into the relationship between the ductility and process variables in a squeeze cast 2017A wrought aluminium alloy. The considered process parameters were: squeeze pressure, melt temperature and die preheating temperature. An orthogonal array (OA), main effect, signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) are employed to analyze the effect of casting parameters. The results have shown that the selected parameters significantly affect the ductility of 2017A wrought Al alloy castings. Optimal squeeze cast process parameters were provided to illustrate the proposed approach and the results were proven to be trustworthy through practical experiments.

Keywords: Taguchi method, squeeze casting, process parameters, ductility, microstructure

Procedia PDF Downloads 401
9294 Dynamic Relaxation and Isogeometric Analysis for Finite Deformation Elastic Sheets with Combined Bending and Stretching

Authors: Nikhil Padhye, Ellen Kintz, Dan Dorci

Abstract:

Recent years have seen a rising interest in study and applications of materially uniform thin-structures (plates/shells) subject to finite-bending and stretching deformations. We introduce a well-posed 2D-model involving finite-bending and stretching of thin-structures to approximate the three-dimensional equilibria. Key features of this approach include: Non-Uniform Rational B-Spline (NURBS)-based spatial discretization for finite elements, method of dynamic relaxation to predict stable equilibria, and no a priori kinematic assumption on the deformation fields. The approach is validated against the benchmark problems,and the use of NURBS for spatial discretization facilitates exact spatial representation and computation of curvatures (due to C1-continuity of interpolated displacements) for this higher-order accuracy 2D-model.

Keywords: Isogeometric Analysis, Plates/Shells , Finite Element Methods, Dynamic Relaxation

Procedia PDF Downloads 171
9293 Crustal Deformation Study across the Chite Fault Using GPS Measurements in North East India along the Indo Burmese Arc

Authors: Malsawmtluanga, J. Malsawma, R. P. Tiwari, V. K. Gahalaut

Abstract:

North East India is seismically one of the six most active regions of the world. It is placed in Zone V, the highest zone in the seismic zonation of India. It lies at the junction of Himalayan arc to the north and the Burmese arc to the east. The region has witnessed at least 18 large earthquakes including two great earthquakes Shillong (1987, M=8.7) and the Assam Tibet border (1950, M=8.7).The prominent Chite fault lies at the heart of Aizawl, the capital of Mizoram state and this hilly city is the home to about 2 million people. Geologically the area is a part of the Indo-Burmese Wedge and is prone to natural and man-made disasters. Unplanned constructions and urban dwellings on a rapid scale have lead to numerous unsafe structures adversely affecting the ongoing development and welfare projects of the government and they pose a huge threat for earthquakes. Crustal deformation measurements using campaign mode GPS were undertaken across this fault. Campaign mode GPS data were acquired and were processed with GAMIT-GLOBK software. The study presents the current velocity estimates at all the sites in ITRF 2008 and also in the fixed Indian reference frame. The site motion showed that there appears to be no differential motion anywhere across the fault area, thus confirming presently the fault is neither accumulating strain nor slipping aseismically. From the geological and geomorphological evidence, supported by geodetic measurements, lack of historic earthquakes, the Chite fault favours aseismic behaviour in this part of the Indo Burmese Arc (IBA).

Keywords: Chite fault, crustal deformation, geodesy, GPS, IBA

Procedia PDF Downloads 252
9292 Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks

Authors: Amir Alirezaei, Shahram Vahdani

Abstract:

This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.

Keywords: deformation demand, drift, setback, tall building

Procedia PDF Downloads 425
9291 Variant Selection and Pre-transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel

Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury

Abstract:

Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its micro structure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.

Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation

Procedia PDF Downloads 492
9290 Number of Necessary Parameters for Parametrization of Stabilizing Controllers for two times two RHinf Systems

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the number of parameters for the parametrization of stabilizing controllers for RHinf systems with size 2 × 2. Fortunately, any plant of this model can admit doubly coprime factorization. Thus we can use the Youla parameterization to parametrize the stabilizing contollers . However, Youla parameterization does not give itself the minimal number of parameters. This paper shows that the minimal number of parameters is four. As a result, we show that the Youla parametrization naturally gives the parameterization of stabilizing controllers with minimal numbers.

Keywords: RHinfo, parameterization, number of parameters, multi-input, multi-output systems

Procedia PDF Downloads 415
9289 Bending and Shear Characteristics of Hollowcore Slab with Polystyrene Forms

Authors: Kang Kun Lee

Abstract:

New I-slab system with polystyrene forms and precast concrete deck is proposed to reduce the construction period and the self-weight of the slab. This paper presents experimental works on the bending and shear of the I-slabs. Five specimens were tested. The main parameters of experiments are diameters of the holes made by polystyrene form and the thickness of slab. Structural performance of I-slab is evaluated on the basis of failure mode, load-displacement curve, and ultimate strengths. Based on the test results, it is found that the critical punching shear sections are changed as the test variables are different, hence resulting in the varied punching shear strengths. Test results indicate that the developed I-slab is very effective to increase the strength due to self-weight reduction.

Keywords: hollowcore slab, section force-deformation response, precast concrete deck

Procedia PDF Downloads 392
9288 An Analysis of the Relations between Aggregates’ Shape and Mechanical Properties throughout the Railway Ballast Service Life

Authors: Daianne Fernandes Diogenes

Abstract:

Railway ballast aggregates’ shape properties and size distribution can be directly affected by several factors, such as traffic, fouling, and maintenance processes, which cause breakage and wearing, leading to the fine particles’ accumulation through the ballast layer. This research aims to analyze the influence of traffic, tamping process, and sleepers’ stiffness on aggregates' shape and mechanical properties, by using traditional and digital image processing (DIP) techniques and cyclic tests, like resilient modulus (RM) and permanent deformation (PD). Aggregates were collected in different phases of the railway service life: (i) right after the crushing process; (ii) after construction, for the aggregates positioned below the sleepers and (iii) after 5 years of operation. An increase in the percentage of cubic particles was observed for the materials (ii) and (iii), providing a better interlocking, increasing stiffness and reducing axial deformation after 5 years of service, when compared to the initial conditions.

Keywords: digital image processing, mechanical behavior, railway ballast, shape properties

Procedia PDF Downloads 128
9287 Intelligent Production Machine

Authors: A. Şahinoğlu, R. Gürbüz, A. Güllü, M. Karhan

Abstract:

This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound’s features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified.

Keywords: cutting process, sound processing, intelligent late, sound analysis

Procedia PDF Downloads 338
9286 Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey

Authors: P. M. Keshtiban, M. Zdshakoyan, G. Faragi

Abstract:

Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results.

Keywords: AL1050, experiments, finite element method, severe plastic deformation

Procedia PDF Downloads 428
9285 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance

Procedia PDF Downloads 258
9284 A Criterion for Evaluating Plastic Loads: Plastic Work-Tangent Criterion

Authors: Ying Zhang

Abstract:

In ASME Boiler and Pressure Vessel Code, the plastic load is defined by applying the twice elastic slope (TES) criterion of plastic collapse to a characteristic load-deformation curve for the vessel. Several other plastic criterion such as tangent intersection (TI) criterion, plastic work (PW) criterion have been proposed in the literature, but all exhibit a practical limitation: difficult to define the load parameter for vessels subject to several combined loads. An alternative criterion: plastic work-tangent (PWT) criterion for evaluating plastic load in pressure vessel design by analysis is presented in this paper. According to the plastic work-load curve, when the tangent variation is less than a given value in the plastic phase, the corresponding load is the plastic load. Application of the proposed criterion is illustrated by considering the elastic-plastic response of the lower head of reactor pressure vessel (RPV) and nozzle intersection of (RPV). It is proposed that this is because the PWT criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation and more efficiently ton evaluating the plastic load.

Keywords: plastic load, plastic work, strain hardening, plastic work-tangent criterion

Procedia PDF Downloads 358
9283 Investigation of Chip Formation Characteristics during Surface Finishing of HDPE Samples

Authors: M. S. Kaiser, S. Reaz Ahmed

Abstract:

Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.

Keywords: HDPE, surface-finishing, chip formation, deformation, roughness

Procedia PDF Downloads 149