Search results for: online learning management system
28292 Artificial Intelligence in Duolingo
Authors: Jwana Khateeb, Lamar Bawazeer, Hayat Sharbatly, Mozoun Alghamdi
Abstract:
This research paper explores the idea of learning new languages through an innovative-mobile based learning technology. Throughout this paper we will discuss and examine a mobile-based application called Duolingo. Duolingo is a college standard application for learning foreign languages such as Spanish and English. It is a smart application where it uses smart adaptive technologies to advance the level of their students at each period of time by offering new tasks. Furthermore, we will discuss the history of the application and the methodology used within it. We have conducted a study in which we surveyed ten people about their experience using Duolingo. The results are examined and analyzed in which it indicates the effectiveness on Duolingo students who are seeking to learn new languages. Thus, the research paper will furthermore discuss the diverse methods and approaches in learning new languages through this mobile-based application.Keywords: Duolingo, AI, personalized, customized
Procedia PDF Downloads 28928291 The Autonomy Use of Preparatory School Students to Learn English Language
Authors: Mi̇hri̇ban Müge Aras
Abstract:
The present study aims to investigate the learner autonomy usage of prep school students. This research focuses on the prep school students' autonomy habits according to their self-regulated studies, age and duration of learning English. The research also analyzes whether prep school students have strong autonomy to learn the English language or depend on teachers and English classes only. The participants of the study consisted of 32 prep school students. The "Likert- type of questionnaire " was adopted by the researcher from the survey of Dede (2017). The scale was a one-dimensional 4-Likert type, which has the options of 1=never, 2= sometimes, 3=often, and 4=always. There are 19 questions in the questionnaire to understand the autonomy of students when they try to learn English. Descriptive statistics and OneANOVA were used to analyze the data. The results of the study showed that there is no significant correlation between their ages and their duration of learning English according to their autonomy studies for English.Keywords: learner autonomy, self-regulated learning, independent learning, English language learning, prep school students
Procedia PDF Downloads 24228290 Teaching and Education Science as a Way of Enhancing Student’s Skills and Employability
Authors: Nabbengo Minovia
Abstract:
Teaching and education science encompasses a broad spectrum of research and practices aimed at understanding and improving the processes of teaching and learning. This abstract explores key themes within this field, including pedagogical methodologies, educational psychology, curriculum development, and the integration of technology in education. It highlights the importance of evidence-based practices in enhancing student outcomes and fostering lifelong learning. The abstract also discusses current trends such as personalized learning, inclusive education, and the role of educators as facilitators of knowledge and critical thinking. By examining these aspects, this abstract aims to contribute to the ongoing dialogue on effective educational strategies and their impact on shaping future generations.Keywords: employability through skilling, excellence as a way to self-esteem, science as an art, skills gained through learning
Procedia PDF Downloads 2728289 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 8928288 Education for Sustainable Development Pedagogies: Examining the Influences of Context on South African Natural Sciences and Technology Teaching and Learning
Authors: A. U. Ugwu
Abstract:
Post-Apartheid South African education system had witnessed waves of curriculum reforms. Accordingly, there have been evidences of responsiveness towards local and global challenges of sustainable development over the past decade. In other words, the curriculum shows sensitivity towards issues of Sustainable Development (SD). Moreover, the paradigm of Sustainable Development Goals (SDGs) was introduced by the UNESCO in year 2015. The SDGs paradigm is essentially a vision towards actualizing sustainability in all aspects of the global society. Education for Sustainable Development (ESD) in retrospect entails teaching and learning to actualize the intended UNESCO 2030 SDGs. This paper explores how teaching and learning of ESD can be improved, by drawing from local context of the South African schooling system. Preservice natural sciences and technology teachers in their 2nd to 4th years of study at a university’s college of education in South Africa were contacted as participants of the study. Using qualitative case study research design, the study drew from the views and experiences of five (5) purposively selected participants from a broader study, aiming to closely understating how ESD is implemented pedagogically in teaching and learning. The inquiry employed questionnaires and a focus group discussion as qualitative data generation tools. A qualitative data analysis of generated data was carried out using content and thematic analysis, underpinned by interpretive paradigm. The result of analyzed data, suggests that ESD pedagogy at the location where this research was conducted is largely influenced by contextual factors. Furthermore, the result of the study shows that there is a critical need to employ/adopt local experiences or occurrences while teaching sustainable development. Certain pedagogical approaches such as the use of videos relative to local context should also be considered in order to achieve a more realistic application. The paper recommends that educational institutions through teaching and learning should implement ESD by drawing on local contexts and problems, thereby foregrounding constructivism, appreciating and fostering students' prior knowledge and lived experiences.Keywords: context, education for sustainable development, natural sciences and technology preservice teachers, qualitative research, sustainable development goals
Procedia PDF Downloads 16928287 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms
Authors: Senol Dogan, Gunay Karli
Abstract:
Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model
Procedia PDF Downloads 20928286 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications
Authors: Yasith Mindula Saipath Wickramasinghe
Abstract:
Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating
Procedia PDF Downloads 11828285 Availability, Accessibility and Utilization of Information and Communication Technology in Teaching and Learning Islamic Studies in Colleges of Education, North-Eastern, Nigeria
Authors: Bello Ali
Abstract:
The use of Information and Communication Technology (ICT) in tertiary institutions by lecturers and students has become a necessity for the enhancement of quality teaching and learning. This study examined availability, accessibility and utilization of ICT in Teaching-Learning Islamic Studies in Colleges of Education, North-East, Nigeria. The study adopted multi-stage sampling technique, in which, five out of the eleven Colleges of Education (both Federal and State owned) were purposively selected for the study. Primary data was drawn from the respondents by the use of questionnaire, interviews and observations. The results of the study, generally, indicate that the availability and accessibility to ICT facilities in Colleges of Education in North-East, Nigeria, especially in teaching/learning delivery of Islamic studies were relatively inadequate and rare to lecturers and students. The study further reveals that the respondents’ level of utilization of ICT is low and only few computer packages and internet services were involved in the ICT utilization, which is yet to reach the real expected situation of the globalization and advancement in the application of ICT if compared to other parts of the world, as far as the teaching and learning of Islamic studies is concerned. Observations and conclusion were drawn from the findings and finally, recommendations on how to improve on ICT availability, accessibility and utilization in teaching/ learning were suggested.Keywords: accessibility, availability, college of education, ICT, Islamic studies, learning, North-East, teaching, utilization
Procedia PDF Downloads 36328284 The Impact of Using Authentic Materials on Students' Motivation in Learning Indonesian Language as a Foreign Language
Authors: Ratna Elizabeth
Abstract:
Motivation is a very important factor since it contributes a lot to the students’ success in learning a language. Using authentic materials is believed as a mean of increasing the motivation. The materials define as authentic if they are not specifically written for the purpose of language teaching. They are genuine spoken or written language data which are drawn from many different sources. The intention of this study is to investigate the impact of using of authentic materials on students’ motivation. A single case study is conducted to the grade 9 students who learn Indonesian Language as a Foreign Language (ILFL) at an international school in Jakarta, Indonesia. Questionnaires are also distributed to the students to know their perceptions on the using of authentic materials. The results show that the using of authentic materials has increased the students’ motivation in learning the language.Keywords: authentic materials, ILFL, language learning, motivation
Procedia PDF Downloads 38828283 A Learning Process for Aesthetics of Language in Thai Poetry for High School Teachers
Authors: Jiraporn Adchariyaprasit
Abstract:
The aesthetics of language in Thai poetry are emerged from the combination of sounds and meanings. The appreciation of such beauty can be achieved by means of education, acquisition of knowledge, and training. This research aims to study the learning process of aesthetics of language in Thai poetry for high school teachers in Bangkok and nearby provinces. There are 10 samples selected by purposive sampling for in-depth interviews. According to the research, there are four patterns in the learning process of aesthetics of language in Thai poetry which are 1) the study of characteristics and patterns of poetry, 2) the training of poetic reading, 3) the study of social and cultural contexts of poetry’s creation, and 4) the study of other sciences related to poetry such as linguistics, traditional dance, and so on.Keywords: aesthetics, poetry, Thai poetry, poetry learning
Procedia PDF Downloads 43628282 Working Capital Management Effectiveness
Authors: Asif Iqbal
Abstract:
Working capital management has its effect on liquidity as well as on profitability of a firm. In this research we have selected a sample of 100 respondents whose firms are listed on Karachi stock exchange. We have studied the effect of different variable s of working capital management. We find that organizations throughout the world as well as in Pakistan have to give immense recognition to the working capital management as it is an effective thing from their long term perspective especially to their shareholders to have a firm confidence over the companies for investment purpose.Keywords: working capital management, Karachi stock exchange, shareholders, capital management
Procedia PDF Downloads 57528281 Relationship Quality, Value Creation Practices and Brand Loyalty in Virtual Communities: Evidence from Facebook Communities
Authors: Zoya Khan, Amina Muzaffar
Abstract:
Social media based brand communities are communities that are developed around a brand. In the highly globalized world of today, Facebook is undoubtedly being regarded and has been widely recognized as a trendy and well-accepted medium of marketing. By means of a Facebook fan page, organizations can effectually create, enhance, and sustain customer-brand relationship. In this article, we explore whether brand communities based on social media (a special type of online brand communities) have positive effects on the main community elements and value creation practices in the communities as well as on brand trust and brand loyalty. A survey was conducted and 201 valid responses were used for analysis. The results of structural equation modeling show that brand communities established on social media have positive effects on value creation practices. Brand use, impression management practices and brand identification has an impact on brand trust and this brand trust then further leads to brand loyalty.Keywords: relationship quality, impression management practices, brand identification, brand trust, brand loyalty
Procedia PDF Downloads 47428280 Improving Second Language Speaking Skills via Video Exchange
Authors: Nami Takase
Abstract:
Computer-mediated-communication allows people to connect and interact with each other as if they were sharing the same space. The current study examined the effects of using video letters (VLs) on the development of second language speaking skills of Common European Framework of Reference for Languages (CEFR) A1 and CEFR B2 level learners of English as a foreign language. Two groups were formed to measure the impact of VLs. The experimental and control groups were given the same topic, and both groups worked with a native English-speaking university student from the United States of America. Students in the experimental group exchanged VLs, and students in the control group used video conferencing. Pre- and post-tests were conducted to examine the effects of each practice mode. The transcribed speech-text data showed that the VL group had improved speech accuracy scores, while the video conferencing group had increased sentence complexity scores. The use of VLs may be more effective for beginner-level learners because they are able to notice their own errors and replay videos to better understand the native speaker’s speech at their own pace. Both the VL and video conferencing groups provided positive feedback regarding their interactions with native speakers. The results showed how different types of computer-mediated communication impacts different areas of language learning and speaking practice and how each of these types of online communication tool is suited to different teaching objectives.Keywords: computer-assisted-language-learning, computer-mediated-communication, english as a foreign language, speaking
Procedia PDF Downloads 9928279 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 34328278 Chinese Students’ Use of Corpus Tools in an English for Academic Purposes Writing Course: Influence on Learning Behaviour, Performance Outcomes and Perceptions
Authors: Jingwen Ou
Abstract:
Writing for academic purposes in a second or foreign language poses a significant challenge for non-native speakers, particularly at the tertiary level, where English academic writing for L2 students is often hindered by difficulties in academic discourse, including vocabulary, academic register, and organization. The past two decades have witnessed a rising popularity in the application of the data-driven learning (DDL) approach in EAP writing instruction. In light of such a trend, this study aims to enhance the integration of DDL into English for academic purposes (EAP) writing classrooms by investigating the perception of Chinese college students regarding the use of corpus tools for improving EAP writing. Additionally, the research explores their corpus consultation behaviors during training to provide insights into corpus-assisted EAP instruction for DDL practitioners. Given the uprising popularity of DDL, this research aims to investigate Chinese university students’ use of corpus tools with three main foci: 1) the influence of corpus tools on learning behaviours, 2) the influence of corpus tools on students’ academic writing performance outcomes, and 3) students’ perceptions and potential perceptional changes towards the use of such tools. Three corpus tools, CQPWeb, Sketch Engine, and LancsBox X, are selected for investigation due to the scarcity of empirical research on patterns of learners’ engagement with a combination of multiple corpora. The research adopts a pre-test / post-test design for the evaluation of students’ academic writing performance before and after the intervention. Twenty participants will be divided into two groups: an intervention and a non-intervention group. Three corpus training workshops will be delivered at the beginning, middle, and end of a semester. An online survey and three separate focus group interviews are designed to investigate students’ perceptions of the use of corpus tools for improving academic writing skills, particularly the rhetorical functions in different essay sections. Insights from students’ consultation sessions indicated difficulties with DDL practice, including insufficiency of time to complete all tasks, struggle with technical set-up, unfamiliarity with the DDL approach and difficulty with some advanced corpus functions. Findings from the main study aim to provide pedagogical insights and training resources for EAP practitioners and learners.Keywords: corpus linguistics, data-driven learning, English for academic purposes, tertiary education in China
Procedia PDF Downloads 6028277 Interpersonal Competence Related to the Practice Learning of Occupational Therapy Students in Hong Kong
Authors: Lik Hang Gary Wong
Abstract:
Background: Practice learning is crucial for preparing the healthcare profession to meet the real challenge upon graduation. Students are required to demonstrate their competence in managing interpersonal challenges, such as teamwork with other professionals and communicating well with the service users, during the placement. Such competence precedes clinical practice, and it may eventually affect students' actual performance in a clinical context. Unfortunately, there were limited studies investigating how such competence affects students' performance in practice learning. Objectives: The aim of this study is to investigate how self-rated interpersonal competence affects students' actual performance during clinical placement. Methods: 40 occupational therapy students from Hong Kong were recruited in this study. Prior to the clinical placement (level two or above), they completed an online survey that included the Interpersonal Communication Competence Scale (ICCS) measuring self-perceived competence in interpersonal communication. Near the end of their placement, the clinical educator rated students’ performance with the Student Practice Evaluation Form - Revised edition (SPEF-R). The SPEF-R measures the eight core competency domains required for an entry-level occupational therapist. This study adopted the cross-sectional observational design. Pearson correlation and multiple regression are conducted to examine the relationship between students' interpersonal communication competence and their actual performance in clinical placement. Results: The ICCS total scores were significantly correlated with all the SPEF-R domains, with correlation coefficient r ranging from 0.39 to 0.51. The strongest association was found with the co-worker communication domain (r = 0.51, p < 0.01), followed by the information gathering domain (r = 0.50, p < 0.01). Regarding the ICCS total scores as the independent variable and the rating in various SPEF-R domains as the dependent variables in the multiple regression analyses, the interpersonal competence measures were identified as a significant predictor of the co-worker communication (R² = 0.33, β = 0.014, SE = 0.006, p = 0.026), information gathering (R² = 0.27, β = 0.018, SE = 0.007, p = 0.011), and service provision (R² = 0.17, β = 0.017, SE = 0.007, p = 0.020). Moreover, some specific communication skills appeared to be especially important to clinical practice. For example, immediacy, which means whether the students were readily approachable on all social occasions, correlated with all the SPEF-R domains, with r-values ranging from 0.45 to 0.33. Other sub-skills, such as empathy, interaction management, and supportiveness, were also found to be significantly correlated to most of the SPEF-R domains. Meanwhile, the ICCS scores correlated differently with the co-worker communication domain (r = 0.51, p < 0.01) and the communication with the service user domain (r = 0.39, p < 0.05). It suggested that different communication skill sets would be required for different interpersonal contexts within the workplace. Conclusion: Students' self-perceived interpersonal communication competence could predict their actual performance during clinical placement. Moreover, some specific communication skills were more important to the co-worker communication but not to the daily interaction with the service users. There were implications on how to better prepare the students to meet the future challenge upon graduation.Keywords: interpersonal competence, clinical education, healthcare professional education, occupational therapy, occupational therapy students
Procedia PDF Downloads 7228276 Management Support, Role Ambiguity and Role Ambiguity among Professional Nurses at National Health Insurance Pilot Sites in South Africa: An Interpretive Phenomenology
Authors: Nomcebo N. Mpili, Cynthia Z. Madlabana
Abstract:
The South African Primary Health Care (PHC) system has undergone a number of transformations such as the introduction of National Health Insurance (NHI) to bring about easily accessible universal health coverage and to meet the health needs for all its citizens. This provides ongoing challenges to ensure that health workers are equipped with appropriate knowledge, support, and skills to meet these changes. Therefore it is crucial to understand the experiences and challenges of nurses as the backbone of PHC in providing quality healthcare services. In addition there has been a need to understand nurses’ experiences with management support, role ambiguity and role conflict amongst other challenges in light of the current reforms in healthcare. Indeed these constructs are notorious for having a detrimental impact on the outcomes of change initiatives within any organisation, this is no different in healthcare. This draws a discussion on professional nurses within the South African health care system especially since they have been labelled as the backbone of PHC, meaning any healthcare backlog falls on them. The study made use of semi-structured interviews and adopted the interpretative phenomenological approach (IPA) as the researcher aimed to explore the lived experiences of (n= 18) participants. The study discovered that professional nurses experienced a lack of management support within PHC facilities and that management mainly played an administrative and disciplinary role. Although participants mainly held positive perceptions with regards to changes happening in health care however they also expressed negative experiences in terms of how change initiatives were introduced resulting in role conflict and role ambiguity. Participants mentioned a shortage of staff, inadequate training as well as a lack of management support as some of the key challenges faced in facilities. This study offers unique findings as participants have not only experienced the various reforms within the PHC system however they have also been part of NHI pilot. The authors are not aware of any other studies published that examine management support, role conflict and role ambiguity together especially in South African PHC facilities. In conclusion understanding these challenges may provide insight and opportunities available to improve the current landscape of PHC not only in South Africa but internationally.Keywords: management support, professional nurse, role ambiguity, role conflict
Procedia PDF Downloads 14428275 Construction Information Visualization System Using nD CAD Model
Authors: Hyeon-seoung Kim, Sang-mi Park, Sun-ju Han, Leen-seok Kang
Abstract:
The visualization technology of construction information using 3D and nD modeling can satisfy the visualization needs of each construction project participant. The nD CAD system is a tool that the construction information, such as construction schedule, cost and resource utilization, are simulated by 4D, 5D and 6D object formats based on 3D object. This study developed a methodology and simulation engine for nD CAD system for construction project management. It has improved functions such as built-in schedule generation, cost simulation of changed budget and built-in resource allocation comparing with the current systems. To develop an integrated nD CAD system, this study attempts an integrated method to link 5D and 6D objects based on 4D object.Keywords: building information modeling, visual simulation, 3D object, nD CAD augmented reality
Procedia PDF Downloads 31228274 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods
Authors: Khumbuzile M. Ngcobo, Seraphin D. Eyono Obono
Abstract:
Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICT's) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods and the following personality an e-learning related theories constructs: computer self-efficacy, trust in ICT systems, and conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICT's for learning about indigenous foods.Keywords: e-learning, indigenous foods, information and communication technologies, learning theories, personality
Procedia PDF Downloads 28028273 Design and Implementation of Flexible Metadata Editing System for Digital Contents
Authors: K. W. Nam, B. J. Kim, S. J. Lee
Abstract:
Along with the development of network infrastructures, such as high-speed Internet and mobile environment, the explosion of multimedia data is expanding the range of multimedia services beyond voice and data services. Amid this flow, research is actively being done on the creation, management, and transmission of metadata on digital content to provide different services to users. This paper proposes a system for the insertion, storage, and retrieval of metadata about digital content. The metadata server with Binary XML was implemented for efficient storage space and retrieval speeds, and the transport data size required for metadata retrieval was simplified. With the proposed system, the metadata could be inserted into the moving objects in the video, and the unnecessary overlap could be minimized by improving the storage structure of the metadata. The proposed system can assemble metadata into one relevant topic, even if it is expressed in different media or in different forms. It is expected that the proposed system will handle complex network types of data.Keywords: video, multimedia, metadata, editing tool, XML
Procedia PDF Downloads 17128272 Renovating Language Laboratories for Pedagogical and Technological Advancements in the New Era
Authors: Paul Lam, Chi Him Chan, Alan Tse
Abstract:
Language laboratories have been widely used in language learning, starting in the middle of the last century as one of the earliest forms of educational technology. They are designed to assist students’ language learning with technological innovations. Traditional language laboratories provide individual workstations that allow students to access multimedia language resources. In this type of facility, students can train their listening and speaking abilities, and teachers can also assess the performance of an individual student. Although such a setting promotes a student-centered pedagogy by encouraging students to work at their own pace and according to their own needs, it still favours a traditional, behaviourist language learning pedagogy which focuses on repetitive drilling. The change of pedagogies poses challenges to both the teachers and the facilities. The peer-learning pedagogy advocates that language learning should focus on the social aspect, which emphasizes the importance of everyday communication in language learning. The self-access, individual workstation language laboratories may not be able to provide the flexibility for interaction in the new pedagogies. Modern advancement in technology is another factor that drove our language laboratory renovation. In particular, mobile and wireless technology enabled the use of smaller and more flexible devices, making possible much clever use of space. The Chinese University of Hong Kong (CUHK) renovated nine existing language laboratories to provide lighter and more advanced equipment, movable tables, and round desks. These facilities allow more flexibility and encourage students’ interaction. It is believed that the renovated language laboratories can serve different peer learning activities and thus support peer-learning pedagogies in language teaching and learning. A survey has been conducted to collect comments from the teachers who have used the renovated language laboratories and received forty-four response. The teachers’ comments reveal that they experienced different challenges in using the renovated language laboratories, and there is a need to provide guidance to teachers during the technological and pedagogical transition. For example, teachers need instruction on using the newly installed devices such as touch-monitor and visualizer. They also need advice on planning new teaching and learning activities. Nevertheless, teachers appreciated that the renovated language laboratories are flexible and provide more spaces for different learning activities.Keywords: language laboratories, language learning, peer-learning, student interaction
Procedia PDF Downloads 10728271 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model
Authors: Yolina A. Petrova, Georgi I. Petkov
Abstract:
The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.Keywords: analogy-making, categorization, category learning, cognitive modeling, role-governed categories
Procedia PDF Downloads 14228270 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)
Authors: David Hasurungan
Abstract:
This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system
Procedia PDF Downloads 36028269 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 1128268 Redefining Problems and Challenges of Natural Resource Management in Indonesia
Authors: Amalia Zuhra
Abstract:
Indonesia is very rich with its natural resources. Natural resource management becomes a challenge for Indonesia. Improper management will make the natural resources run out and future generations will not be able to enjoy the natural wealth. A good rule of law and proper implementation determines the success of the management of a country's natural resources. This paper examines the need to redefine problems and challenges in the management of natural resources in Indonesia in the context of law. The purpose of this article is to overview the latest issues and challenges in natural resource management and to redefine legal provisions related to environmental management and human rights protection so that the management of natural resources in the present and future will be more sustainable. This paper finds that sustainable management of natural resources is absolutely essential. The aspect of environmental protection and human rights must be elaborated more deeply so that the management of natural resources can be done maximally without harming not only people but also the environment.Keywords: international environmental law, human rights law, natural resource management, sustainable development
Procedia PDF Downloads 27528267 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 17428266 ePA-Coach: Design of the Intelligent Virtual Learning Coach for Senior Learners in Support of Digital Literacy in the Context of Electronic Patient Record
Authors: Ilona Buchem, Carolin Gellner
Abstract:
Over the last few years, the call for the support of senior learners in the development of their digital literacy has become prevalent, mainly due to the progression towards ageing societies paired with advances in digitalisation in all spheres of life, including e-health and electronic patient record (EPA). While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning focusing on knowledge acquisition and cognitive tasks, little research exists in learning models which target virtual mentoring and coaching with the help of pedagogical agents and address the social dimensions of learning. Research from studies with students in the context of formal education has already provided methods for designing intelligent virtual agents in support of personalised learning. However, this research has mostly focused on cognitive skills and has not yet been applied to the context of mentoring/coaching of senior learners, who have different characteristics and learn in different contexts. In this paper, we describe how insights from previous research can be used to develop an intelligent virtual learning coach (agent) for senior learners with a focus on building the social relationship between the agent and the learner and the key task of the agent to socialize learners to the larger context of digital literacy with a focus on electronic health records. Following current approaches to mentoring and coaching, the agent is designed not to enhance and monitor the cognitive performance of the learner but to serve as a trusted friend and advisor, whose role is to provide one-to-one guidance and support sharing of experiences among learners (peers). Based on literature review and synopsis of research on virtual agents and current coaching/mentoring models under consideration of the specific characteristics and requirements of senior learners, we describe the design framework which was applied to design an intelligent virtual learning coach as part of the e-learning system for digital literacy of senior learners in the ePA-Coach project founded by the German Ministry of Education and Research. This paper also presents the results from the evaluation study, which compared the use of the first prototype of the virtual learning coach designed according to the design framework with a voice narration in a multimedia learning environment with senior learners. The focus of the study was to validate the agent design in the context of the persona effect (Lester et al., 1997). Since the persona effect is related to the hypothesis that animated agents are perceived as more socially engaging, the study evaluated possible impacts of agent coaching in comparison with voice coaching on motivation, engagement, experience, and digital literacy.Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records
Procedia PDF Downloads 11728265 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate
Authors: Susan Diamond
Abstract:
Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare.Keywords: deep learning, machine learning, cognitive computing, model training
Procedia PDF Downloads 20928264 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning
Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin
Abstract:
This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing
Procedia PDF Downloads 2728263 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids
Authors: Xun Li, Haojie Wang
Abstract:
Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense
Procedia PDF Downloads 114