Search results for: laminar boundary layer separation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4775

Search results for: laminar boundary layer separation

2135 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: launch vehicle modeling, launch vehicle trajectory, mathematical modeling, Matlab- Simulink

Procedia PDF Downloads 272
2134 Determination of Verapamil Hydrochloride in Tablets and Injection Solutions With the Verapamil-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis

Authors: Faisal A. Salih

Abstract:

Verapamil hydrochloride (Ver) is a drug used in medicine for arrythmia, angina and hypertension as a calcium channel blocker. For the quantitative determination of Ver in dosage forms, the HPLC method is most often used. A convenient alternative to the chromatographic method is potentiometry using a Verselective electrode, which does not require expensive equipment, can be used without separation from the matrix components, which significantly reduces the analysis time, and does not use toxic organic solvents, being a "green", "environmentally friendly" technique. It has been established in this study that the rational choice of the membrane plasticizer and the preconditioning and measurement algorithms, which prevent nonexchangeable extraction of Ver into the membrane phase, makes it possible to achieve excellent analytical characteristics of Ver-selective electrodes based on commercially available components. In particular, an electrode with the following membrane composition: PVC (32.8 wt %), ortho-nitrophenyloctyl ether (66.6 wt %), and tetrakis-4-chlorophenylborate (0.6 wt % or 0.01 M) have the lower detection limit 4 × 10−8 M and potential reproducibility 0.15–0.22 mV. Both direct potentiometry (DP) and potentiometric titration (PT) methods can be used for the determination of Ver in tablets and injection solutions. Masses of Ver per average tablet weight determined by the methods of DP and PT for the same set of 10 tablets were (80.4±0.2 and80.7±0.2) mg, respectively. The masses of Ver in solutions for injection, determined by DP for two ampoules from one set, were (5.00±0.015 and 5.004±0.006) mg. In all cases, good reproducibility and excellent correspondence with the declared quantities were observed.

Keywords: verapamil, potentiometry, ion-selective electrode, pharmaceutical analysis

Procedia PDF Downloads 83
2133 Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates

Authors: H. Fazlinejad, A. Halvaee

Abstract:

In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.

Keywords: ATIG, active flux, weld penetration, Al 1050, ZnO

Procedia PDF Downloads 161
2132 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed.

Abstract:

High-Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20-60 and 6-18 µg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 µg/ml and for 6S were 0.3672 and 1.2238 µg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: ginger, 6-gingerol, HPLC, 6-shogaol

Procedia PDF Downloads 436
2131 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture

Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis

Abstract:

Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.

Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus

Procedia PDF Downloads 183
2130 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning

Procedia PDF Downloads 89
2129 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu

Abstract:

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

Keywords: photodetection, p-type doping, multilayers, MoS₂

Procedia PDF Downloads 101
2128 Influence of Bragg Reflectors Pairs on Resonance Characteristics of Solidly Mounted Resonators

Authors: Vinita Choudhary

Abstract:

The solidly mounted resonator (SMR) is a bulk acoustic wave-based device consisting of a piezoelectric layer sandwiched between two electrodes upon Bragg reflectors, which then are attached to a substrate. To transform the effective acoustic impedance of the substrate to a near zero value, the Bragg reflectors are composed of alternating high and low acoustic impedance layers of quarter-wavelength thickness. In this work presents the design and investigation of acoustic Bragg reflectors (ABRs) for solidly mounted bulk acoustic wave resonators through analysis and simulation. This performance of the resonator is analyzed using 1D Mason modeling. The performance parameters are the effect of Bragg pairs number on transmissivity, reflectivity, insertion loss, the electromechanical and quality factor of the 5GHz operating resonator.

Keywords: bragg reflectors, SMR, insertion loss, quality factor

Procedia PDF Downloads 88
2127 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 84
2126 Particle Size Analysis of Itagunmodi Southwestern Nigeria Alluvial Gold Ore Sample by Gaudin Schumann Method

Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke

Abstract:

Mining of alluvial gold ore by artisanal miners has been going on for decades at Itagunmodi, Southwestern Nigeria. In order to optimize the traditional panning gravity separation method commonly used in the area, a mineral particle size analysis study is critical. This study analyzed alluvial gold ore samples collected at identified five different locations in the area with a view to determine the ore particle size distributions. 500g measured of as-received alluvial gold ore sample was introduced into the uppermost sieve of an electrical sieve shaker consisting of sieves arranged in the order of decreasing nominal apertures of 5600μm, 3350μm, 2800μm, 355μm, 250μm, 125μm and 90μm, and operated for 20 minutes. The amount of material retained on each sieve was measured and tabulated for analysis. A screen analysis graph using the Gaudin Schuman method was drawn for each of the screen tests on the alluvial samples. The study showed that the percentages of fine particle size -125+90 μm fraction were 45.00%, 36.00%, 39.60%, 43.00% and 36.80% for the selected samples. These primary ore characteristic results provide reference data for the alluvial gold ore processing method selection, process performance measurement and optimization.

Keywords: alluvial gold ore, sieve shaker, particle size, Gaudin Schumann

Procedia PDF Downloads 48
2125 Dynamic Response of Doubly Curved Composite Shell with Embedded Shape Memory Alloys Wires

Authors: Amin Ardali, Mohammadreza Khalili, Mohammadreza Rezai

Abstract:

In this paper, dynamic response of thin smart composite panel subjected to low-velocity transverse impact is investigated. Shape memory wires are used to reinforced curved composite panel in a smart way. One-dimensional thermodynamic constitutive model by Liang and Rogers is used for estimating the structural recovery stress. The two degrees-of-freedom mass-spring model is used for evaluation of the contact force between the curved composite panel and the impactor. This work is benefited from the Hertzian linear contact model which is linearized for the impact analysis of curved composite panel. The governing equations of curved panel are provided by first-order shear theory and solved by Fourier series related to simply supported boundary condition. For this purpose, the equation of doubly curved panel motion included the uniform in-plane forces is obtained. By the present analysis, the curved panel behavior under low-velocity impact, and also the effect of the impact parameters, the shape memory wire and the curved panel dimensions are studied.

Keywords: doubly curved shell, SMA wire, impact response, smart material, shape memory alloy

Procedia PDF Downloads 397
2124 Digital Material Characterization Using the Quantum Fourier Transform

Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel

Abstract:

The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.

Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises

Procedia PDF Downloads 72
2123 Acoustic Blood Plasmapheresis in Polymeric Resonators

Authors: Itziar Gonzalez, Pilar Carreras, Alberto Pinto, Roque Ruben Andres

Abstract:

Acoustophoretic separation of plasma from blood is based on a collection process of the blood cells, driven by an acoustic radiation force. The number of cells, their concentration, and the sample hydrodynamics are involved in these processes. However, their influence on the acoustic blood response has not yet been reported in the literature. Addressing it, this paper presents an experimental study of blood samples exposed to ultrasonic standing waves at different hematocrit levels and hydrodynamic conditions. The experiments were performed in a glass capillary (700µm-square cross section) actuated by a piezoelectric ceramic at 1MHz, hosting 2D orthogonal half-wavelength resonances transverse to the channel length, with a single-pressure-node along its central axis where cells collected driven by the acoustic radiation force. Four blood dilutions in PBS of 1:20, 1:10, 1:5, and 1:2 were tested at eight flow rate conditions Q=0:120µL/min. The 1:5 dilution (H=9%) demonstrated to be optimal for the plasmapheresis at any of the flow rates analyzed, requiring the shortest times to achieve plasma free of cells. The study opens new possibilities to optimize processes of plasmapheresis processes by ultrasounds at different hematocrit conditions in future personalized diagnoses/treatments involving blood samples.

Keywords: ultrasounds, microfluidics, flow rate, acoustophoresis, polymeric resonators

Procedia PDF Downloads 133
2122 Cellulose Containing Metal Organic Frameworks in Environmental Applications

Authors: Hossam El-Sayed Emam

Abstract:

As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.

Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification

Procedia PDF Downloads 147
2121 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction

Authors: Sri Sai Ramya Bojedla, Falguni Pati

Abstract:

Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.

Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers

Procedia PDF Downloads 190
2120 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 150
2119 Evaluation of Settlement of Coastal Embankments Using Finite Elements Method

Authors: Sina Fadaie, Seyed Abolhassan Naeini

Abstract:

Coastal embankments play an important role in coastal structures by reducing the effect of the wave forces and controlling the movement of sediments. Many coastal areas are underlain by weak and compressible soils. Estimation of during construction settlement of coastal embankments is highly important in design and safety control of embankments and appurtenant structures. Accordingly, selecting and establishing of an appropriate model with a reasonable level of complication is one of the challenges for engineers. Although there are advanced models in the literature regarding design of embankments, there is not enough information on the prediction of their associated settlement, particularly in coastal areas having considerable soft soils. Marine engineering study in Iran is important due to the existence of two important coastal areas located in the northern and southern parts of the country. In the present study, the validity of Terzaghi’s consolidation theory has been investigated. In addition, the settlement of these coastal embankments during construction is predicted by using special methods in PLAXIS software by the help of appropriate boundary conditions and soil layers. The results indicate that, for the existing soil condition at the site, some parameters are important to be considered in analysis. Consequently, a model is introduced to estimate the settlement of the embankments in such geotechnical conditions.

Keywords: consolidation, settlement, coastal embankments, numerical methods, finite elements method

Procedia PDF Downloads 152
2118 Free Vibration Characteristics of Nanoplates with Various Edge Supports Incorporating Surface Free Energy Effects

Authors: Saeid Sahmani

Abstract:

Due to size-dependent behavior of nanostrustures, the classical continuum models are not applicable for the analyses at this submicrion size. Surface stress effect is one of the most important matters which make the nanoscale structures to have different properties compared to the conventional structures due to high surface to volume ratio. In the present study, free vibration characteristics of nanoplates are investigated including surface stress effects. To this end, non-classical plate model based on Gurtin-Murdoch elasticity theory is proposed to evaluate the surface stress effects on the vibrational behavior of nanoplates subjected to different boundary conditions. Generalized differential quadrature (GDQ) method is employed to discretize the governing non-classical differential equations along with various edge supports. Selected numerical results are given to demonstrate the distinction between the behavior of nanoplates predicted by the classical and present non-classical plate models that leads to illustrate the great influence of surface stress effect. It is observed that this influence quite depends on the magnitude of the surface elastic constants which are relevant to the selected material.

Keywords: nanomechanics, surface stress, free vibration, GDQ method, small scale effect

Procedia PDF Downloads 352
2117 Tuning of the Thermal Capacity of an Envelope for Peak Demand Reduction

Authors: Isha Rathore, Peeyush Jain, Elangovan Rajasekar

Abstract:

The thermal capacity of the envelope impacts the cooling and heating demand of a building and modulates the peak electricity demand. This paper presents the thermal capacity tuning of a building envelope to minimize peak electricity demand for space cooling. We consider a 40 m² residential testbed located in Hyderabad, India (Composite Climate). An EnergyPlus model is validated using real-time data. A Parametric simulation framework for thermal capacity tuning is created using the Honeybee plugin. Diffusivity, Thickness, layer position, orientation and fenestration size of the exterior envelope are parametrized considering a five-layered wall system. A total of 1824 parametric runs are performed and the optimum wall configuration leading to minimum peak cooling demand is presented.

Keywords: thermal capacity, tuning, peak demand reduction, parametric analysis

Procedia PDF Downloads 177
2116 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text

Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman

Abstract:

The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.

Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks

Procedia PDF Downloads 257
2115 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials

Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi

Abstract:

Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.

Keywords: building materials, heat transfer, moisture diffusion, numerical solution

Procedia PDF Downloads 287
2114 Equality and Non-Discrimination in Israel: The Use of Land

Authors: Mais Qandeel

Abstract:

Within the Jewish and democratic Israeli state, as dually characterized, the treatment of citizens differs according to their religious groups and nationalities. The laws and policies against Arab citizens concerning ownership and use of land are the main focus of this article. As the Jewish character has led to Jewish based legal provisions which give the privilege to Jews, first, this article examines the legal bases which distinguish between citizens in Israel based on their religion. It examines the major Israeli laws which are used to confiscate, manage, and lease properties. Second, the article demonstrates the de facto practices against Arab citizens in using lands. Most of the Palestinian land was confiscated and turned over to Jewish owners or to state land, Palestinian citizens are distinguished in using the state administered lands. They are also restricted in using full ownership rights and denied using plots of lands and housing units. Such policies have created, within the same state, a class of secondary citizens who are categorized as non-Jews. Last, within the Basic Law: Human Dignity and Freedom which has served as the constitutional bill of rights for Israelis and also the International law, particularly the International Convention on the Elimination of All Forms of Racial Discrimination, it will be concluded whether these restricted policies against Arab citizens in using land constitute a religion-based-discrimination among Israeli citizens and create a situation of separation and inequality between two groups of people in Israel.

Keywords: Israel, citizens, discrimination, equality

Procedia PDF Downloads 344
2113 The Use of Ontology Framework for Automation Digital Forensics Investigation

Authors: Ahmad Luthfi

Abstract:

One of the main goals of a computer forensic analyst is to determine the cause and effect of the acquisition of a digital evidence in order to obtain relevant information on the case is being handled. In order to get fast and accurate results, this paper will discuss the approach known as ontology framework. This model uses a structured hierarchy of layers that create connectivity between the variant and searching investigation of activity that a computer forensic analysis activities can be carried out automatically. There are two main layers are used, namely analysis tools and operating system. By using the concept of ontology, the second layer is automatically designed to help investigator to perform the acquisition of digital evidence. The methodology of automation approach of this research is by utilizing forward chaining where the system will perform a search against investigative steps and atomically structured in accordance with the rules of the ontology.

Keywords: ontology, framework, automation, forensics

Procedia PDF Downloads 335
2112 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades

Authors: Magdi M. E. Zumrawi, Nehla Mansour

Abstract:

This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.

Keywords: geogrid, reinforcement, stabilization, subgrade

Procedia PDF Downloads 314
2111 Authenticity of Ecuadorian Commercial Honeys

Authors: Elisabetta Schievano, Valentina Zuccato, Claudia Finotello, Patricia Vit

Abstract:

Control of honey frauds is needed in Ecuador to protect bee keepers and consumers because simple syrups and new syrups with eucalyptus are sold as genuine honeys. Authenticity of Ecuadorian commercial honeys was tested with a vortex emulsion consisting on one volume of honey:water (1:1) dilution, and two volumes of diethyl ether. This method allows a separation of phases in one minute to discriminate genuine honeys that form three phase and fake honeys that form two phases; 34 of the 42 honeys analyzed from five provinces of Ecuador were genuine. This was confirmed with 1H NMR spectra of honey dilutions in deuterated water with an enhanced aminoacid region with signals for proline, phenylalanine and tyrosine. Classic quality indicators were also tested with this method (sugars, HMF), indicators of fermentation (ethanol, acetic acid), and residues of citric acid used in the syrup manufacture. One of the honeys gave a false positive for genuine, being an admixture of genuine honey with added syrup, evident for the high sucrose. Sensory analysis was the final confirmation to recognize the honey groups studied here, namely honey produced in combs by Apis mellifera, fake honey, and honey produced in cerumen pots by Geotrigona, Melipona, and Scaptotrigona. This is a valuable contribution to protect honey consumers, and to develop the beekeeping industry in Ecuador.

Keywords: fake, genuine, honey, 1H NMR, Ecuador

Procedia PDF Downloads 382
2110 Limitation of Parallel Flow in Three-Dimensional Elongated Porous Domain Subjected to Cross Heat and Mass Flux

Authors: Najwa Mimouni, Omar Rahli, Rachid Bennacer, Salah Chikh

Abstract:

In the present work 2D and 3D numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out. In the formulation of the problem, the Boussinesq approximation is considered and cross Neumann boundary conditions are specified for heat and mass walls conditions. The numerical method is based on the control volume approach with the third order QUICK scheme. Full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For the explored large range of the controlling parameters, we clearly evidenced that the increase in the depth of the cavity i.e. the lateral aspect ratio has an important effect on the flow patterns. The 2D perfect parallel flows obtained for a small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complicated flow pattern and the classically studied 2D parallel flows are impossible.

Keywords: bifurcation, natural convection, heat and mass transfer, parallel flow, porous media

Procedia PDF Downloads 467
2109 Flood Monitoring Using Active Microwave Remote Sensed Synthetic Aperture Radar Data

Authors: Bikramjit Goswami, Manoranjan Kalita

Abstract:

Active microwave remote sensing is useful in remote sensing applications in cloud-covered regions in the world. Because of high spatial resolution, the spatial variations of land cover can be monitored in greater detail using synthetic aperture radar (SAR). Inundation is studied using the SAR images obtained from Sentinel-1A in both VH and VV polarizations in the present experimental study. The temporal variation of the SAR scattering coefficient values for the area gives a good indication of flood and its boundary. The study area is the district of Morigaon in the state of Assam in India. The period of flood monitoring study is the monsoon season of the year 2017, during which high flood occurred in the state of Assam. The variation of microwave scattering value shows a distinctive indication of flood from the non-flooded period. Frequent monitoring of flood in a large area (10 km x 10 km) using passive microwave sensing and pin-pointing the actual flooded portions (5 m x 5 m) within the flooded area using active microwave sensing, can be a highly useful combination, as revealed by the present experimental results.

Keywords: active remote sensing, flood monitoring, microwave remote sensing, synthetic aperture radar

Procedia PDF Downloads 143
2108 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments

Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni

Abstract:

Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.

Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil

Procedia PDF Downloads 317
2107 Numerical and Experimental Investigation of the Turbulence Level Influence on the Flow through the Staggered Smooth Tube Bundle

Authors: L. Adjlout, N.Benharrat, O. Ladjdel, F. Djemil, A. Adjlout, T. Yahiaoui

Abstract:

The present investigation is an experimental and numerical studies of the turbulence level influence on the flow in a smooth staggered tube bundle. The experiments were carried out in a closed circuit wind tunnel of subsonic type (TE44). Three turbulence levels at the inlet namely 1%, 4.6% and 6.3% and two Reynolds numbers Re = 9300 and Re = 13950 were performed. The obtained results for the central tube show that there are two minimum values for the angles 70° and 280° corresponding to the separation points. The pressure coefficient distributions seem to have constant values between 120° and 240° resulting in Von Karman street configuration in the wake. These remarks were valid for the tests carried out. The numerical study was performed by the ANSYS FLUENT code which solves the averaged Navier-Stokes equations (RANS). Two turbulence models (k-ε RNG and k-ε realizable), two types of grids and two levels of turbulence at the entrance of 4.6% and 6.3% for Reynolds numbers of 9300 and 13950 were considered. The obtained results for the central tube were compared with the present experimental results. It is concluded that the K-ε realizable is more suitable for the pressure distribution prediction than the K-ε RNG model compared to the present experimental results for this studied case.

Keywords: tube bundle, staggered configuration, turbulence level, numerical, experimental

Procedia PDF Downloads 125
2106 Influence of Pile Radius on Inertial Response of Pile Group in Fundamental Frequency of Homogeneous Soil Medium

Authors: Faghihnia Torshizi Mostafa, Saitoh Masato

Abstract:

An efficient method is developed for the response of a group of vertical, cylindrical fixed-head, finite length piles embedded in a homogeneous elastic stratum, subjected to harmonic force atop the pile group cap. Pile to pile interaction is represented through simplified beam-on-dynamic-Winkler-foundation (BDWF) with realistic frequency-dependent springs and dashpots. Pile group effect is considered through interaction factors. New closed-form expressions for interaction factors and curvature ratios atop the pile are extended by considering different boundary conditions at the tip of the piles (fixed, hinged). In order to investigate the fundamental characteristics of inertial bending strains in pile groups, inertial bending strains at the head of each pile are expressed in terms of slenderness ratio. The results of parametric study give valuable insight in understanding the behavior of fixed head pile groups in fundamental natural frequency of soil stratum.

Keywords: Winkler-foundation, fundamental frequency of soil stratum, normalized inertial bending strain, harmonic excitation

Procedia PDF Downloads 408