Search results for: family led decision making
7150 The 'Toshi-No-Sakon' Phenomenon: A Trend in Japanese Family Formations
Authors: Franco Lorenzo D. Morales
Abstract:
‘Toshi-no-sakon,’ which translates to as ‘age gap marriage,’ is a term that has been popularized by celebrity couples in the Japanese entertainment industry. Japan is distinct for a developed nation for its rapidly aging population, declining marital and fertility rates, and the reinforcement of traditional gender roles. Statistical data has shown that the average age of marriage in Japan is increasing every year, showing a growing tendency for late marriage. As a result, the government has been trying to curb the declining trends by encouraging marriage and childbirth among the populace. This graduate thesis seeks to analyze the ‘toshi-no-sakon’ phenomenon in lieu of Japan’s current economic and social situation, and to see what the implications are for these kinds of married couples. This research also seeks to expound more on age gaps within married couples, which is a factor rarely-touched upon in Japanese family studies. A literature review was first performed in order to provide a framework to study ‘toshi-no-sakon’ from the perspective of four fields of study—marriage, family, aging, and gender. Numerous anonymous online statements by ‘toshi-no-sakon’ couples were then collected and analyzed, which brought to light a number of concerns. Couples wherein the husband is the older partner were prioritized in order to narrow down the focus of the research, and ‘toshi-no-sakon’ is only considered when the couple’s age gap is ten years or more. Current findings suggest that one of the perceived merits for a woman to marry an older man is that financial security would be guaranteed. However, this has been shown to be untrue as a number of couples express concern regarding their financial situation, which could be attributed to their husband’s socio-economic status. Having an older husband who is approaching the age of retirement presents another dilemma as the wife would be more obliged to provide care for her aging husband. This notion of the wife being a caregiver likely stems from an arrangement once common in Japanese families in which the wife must primarily care for her husband’s elderly parents. Childbearing is another concern as couples would be pressured to have a child right away due to the age of the husband, in addition to limiting the couple’s ideal number of children. This is another problematic aspect as the husband would have to provide income until his child has finished their education, implying that retirement would have to be delayed indefinitely. It is highly recommended that future studies conduct face-to-face interviews with couples and families who fall under the category of ‘toshi-no-sakon’ in order to gain a more in-depth perspective into the phenomenon and to reveal any undiscovered trends. Cases wherein the wife is the older partner in the relationship should also be given focus in future studies involving ‘toshi-no-sakon’.Keywords: age gap, family structure, gender roles, marriage trends
Procedia PDF Downloads 3647149 College Readiness Outcomes of No Child Left Behind: A Critical Analysis
Authors: Tianyu Chen
Abstract:
The No Child Left Behind Act (NCLB) of 2001 was a major federal education policy that aimed to improve academic outcomes for all students in the United States. This study examines whether NCLB improved college readiness, measured by access to higher education, for different demographic groups. Using data from the Integrated Public Use Microdata Series (IPUMS) from 2003-2008, regression analyses explore the relationship between gender, race, family income, and region with occupational education score. The results indicate that NCLB implementation had a positive effect on college access for women and Asian students compared to other groups. Higher family income was also associated with an increased likelihood of pursuing higher education, especially for families in the South. While NCLB intended to close achievement gaps, disparities in college readiness remained five years after implementation. Further research could examine longer-term trends and additional factors influencing the policy's effectiveness across student subgroups. This study provides evidence that simply holding schools accountable for test scores may not sufficiently improve equitable educational outcomes. More targeted support of disadvantaged groups may be needed to fulfill the goal of "no child left behind."Keywords: no child left behind act, college readiness, achievement gaps, educational equity
Procedia PDF Downloads 547148 Analyzing Social Media Discourses of Domestic Violence in Promoting Awareness and Support Seeking: An Exploratory Study
Authors: Sudha Subramani, Hua Wang
Abstract:
Domestic Violence (DV) against women is now recognized to be a serious and widespread problem worldwide. There is a growing concern that violence against women has a global public health impact, as well as a violation of human rights. From the existing statistical surveys, it is revealed that there exists a strong relationship between DV and health issues of women like bruising, lacerations, depression, anxiety, flashbacks, sleep disturbances, hyper-arousal, emotional distress, sexually transmitted diseases and so on. This social problem is still considered as behind the closed doors issue and stigmatized topic. Women conceal their sufferings from family and friends, as they experience a lack of trust in others, feelings of shame and embarrassment among the society. Hence, women survivors of DV experience some barriers in seeking the support of specialized services such as health care access, crisis support, and legal guidance. Fortunately, with the popularity of social media like Facebook and Twitter, people share their opinions and emotional feelings to seek the social and emotional support, for sympathetic encouragement, to show compassion and empathy among the public. Considering the DV, social media plays a predominant role in creating the awareness and promoting the support services to the public, as we live in the golden era of social media. The various professional people like the public health researchers, clinicians, psychologists, social workers, national family health organizations, lawyers, and victims or their family and friends share the unprecedentedly valuable information (personal opinions and experiences) in a single platform to improve the social welfare of the community. Though each tweet or post contains a less informational value, the consolidation of millions of messages can generate actionable knowledge and provide valuable insights about the public opinion in general. Hence, this paper reports on an exploratory analysis of the effectiveness of social media for unobtrusive assessment of attitudes and awareness towards DV. In this paper, mixed methods such as qualitative analysis and text mining approaches are used to understand the social media disclosures of DV through the lenses of opinion sharing, anonymity, and support seeking. The results of this study could be helpful to avoid the cost of wide scale surveys, while still maintaining appropriate research conditions is to leverage the abundance of data publicly available on the web. Also, this analysis with data enrichment and consolidation would be useful in assisting advocacy and national family health organizations to provide information about resources and support, raise awareness and counter common stigmatizing attitudes about DV.Keywords: domestic violence, social media, social stigma and support, women health
Procedia PDF Downloads 2907147 Electricity Load Modeling: An Application to Italian Market
Authors: Giovanni Masala, Stefania Marica
Abstract:
Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression
Procedia PDF Downloads 3957146 Military Families’ Attachment to the Royal Guards Community of Dusit District, Bangkok Metropolitan
Authors: Kanikanun Photchong, Phusit Phukamchanoad
Abstract:
The objective of this research is to study the people’s level of participation in activities of the community, their satisfaction towards the community, the attachment they have to the community, factors that influence the attachment, as well as the characteristics of the relationships of military families’ of the Royal Guards community of Dusit District. The method used was non-probability sampling by quota sampling according to people’s age. The determined age group was 18 years or older. One set of a sample group was done per family. The questionnaires were conducted by 287 people. Snowball sampling was also used by interviewing people of the community, starting from the Royal Guards Community’s leader, then by 20 of the community’s well-respected persons. The data was analyzed by using descriptive statistics, such as arithmetic mean and standard deviation, as well as by inferential statistics, such as Independent - Samples T test (T-test), One-Way ANOVA (F-test), Chi-Square. Descriptive analysis according to the structure of the interview content was also used. The results of the research is that the participation of the population in the Royal Guards Community in various activities is at a medium level, with the average participation level during Mother’s and Father’s Days. The people’s general level of satisfaction towards the premises of the Royal Guards Community is at the highest level. The people were most satisfied with the transportation within the community and in contacting with people from outside the premises. The access to the community is convenient and there are various entrances. The attachment of the people to the Royal Guards Community in general and by each category is at a high level. The feeling that the community is their home rated the highest average. Factors that influence the attachment of the people of the Royal Guards Community are age, status, profession, income, length of stay in the community, membership of social groups, having neighbors they feel close and familiar with, and as well as the benefits they receive from the community. In addition, it was found that people that participate in activities have a high level of positive relationship towards the attachment of the people to the Royal Guards Community. The satisfaction of the community has a very high level of positive relationship with the attachment of the people to the Royal Guards Community. The characteristics of the attachment of military families’ is that they live in big houses that everyone has to protect and care for, starting from the leader of the family as well as all members. Therefore, they all love the community they live in. The characteristics that show the participation of activities within the community and the high level of satisfaction towards the premises of the community will enable the people to be more attached to the community. The people feel that everyone is close neighbors within the community, as if they are one big family.Keywords: community attachment, community satisfaction, royal guards community, activities of the community
Procedia PDF Downloads 3697145 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm
Authors: A. Baviskar, C. Sandeep, K. Shankar
Abstract:
Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)
Procedia PDF Downloads 2777144 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy
Authors: Kemal Polat
Abstract:
In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.Keywords: machine learning, data weighting, classification, data mining
Procedia PDF Downloads 3257143 The Relationship between Hot and Cool Executive Function and Theory of Mind in School-Aged Children with Autism Spectrum Disorder
Authors: Evangelia-Chrysanthi Kouklari, Stella Tsermentseli, Claire P. Monks
Abstract:
Executive function (EF) refers to a set of future-oriented and goal-directed cognitive skills that are crucial for problem solving and social behaviour, as well as the ability to organise oneself. It has been suggested that EF could be conceptualised as two distinct but interrelated constructs, one emotional (hot) and one cognitive (cool), as it facilitates both affective and cognitive regulation. Cool EF has been found to be strongly related to Theory of Mind (ToM) that is the ability to infer mental states, but research has not taken into account the association between hot EF and ToM in Autism Spectrum Disorder (ASD) to date. The present study investigates the associations between both hot and cool EF and ToM in school-aged children with ASD. This cross-sectional study assesses 79 school-aged children with ASD (7-15 years) and 91 controls matched for age and IQ, on tasks tapping cool EF (working memory, inhibition, planning), hot EF (effective decision making, delay discounting), and ToM (emotional understanding and false/no false belief). Significant group differences in each EF measure support a global executive dysfunction in ASD. Strong associations between hot EF and ToM in ASD are reported for the first time (i.e. ToM emotional understanding and delay discounting). These findings highlight that hot EF also makes a unique contribution to the developmental profile of ASD. Considering the role of both hot and cool EF in association with ToM in individuals with ASD may aid in gaining a greater understanding not just of how these complex multifaceted cognitive abilities relate to one another, but their joint role in the distinct developmental pathway followed in ASD.Keywords: ASD, executive function, school age, theory of mind
Procedia PDF Downloads 2917142 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays
Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner
Abstract:
Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation
Procedia PDF Downloads 2927141 ePLANETe Idea and Functionalities: Agricultural Sustainability Assessment, Biodiversity, and Stakeholder Involvement
Authors: S. K. Ashiquer Rahman
Abstract:
A cutting-edge online knowledge mediation system called "ePLANETe" provides a framework for building knowledge, tools and methods for all education, research and sustainable practices and elsewhere, as well as the deliberative assessment support of sustainability, biodiversity, and stakeholder involvement issues of the territorial development sector, e.g., agriculture.The purpose is to present, as sectorial and institutional perception, the 'ePLANETe' concept and functionalities as an experimental online platform for contributing the sustainability assessment, biodiversity, and stakeholder involvement. In the upshot, the concept of 'ePLANETe'isan investigation of the challenges of "online things, technology and application". The new digital technologies are exploited to facilitate collaborative technology and application to territorial development issues, e.g., agriculture. In order to investigate the dealing capacity (Qualitative and Quantitative) of sustainability, biodiversity, and stakeholder involvement of the agriculture sector through the stakeholder-based integrated assessment "Deliberation Support Tools (DST) and INTEGRAAL method" of collective resources. Specifically, this paper focuses on integrating system methodologies with deliberation tools for collective assessment and decision-making in implementing regional plans of agriculture. The aim of this report is to identify effective knowledge and tools and to enable deliberation methodologies regarding practices on the sustainability of agriculture and biodiversity issues, societal responsibilities, and regional planning that will create the scope for qualitative and quantitative assessments of sustainability as a new landmark of the agriculture sector.Keywords: sustainability, biodiversity, stakeholder, dst, integraal
Procedia PDF Downloads 1167140 Sexting Phenomenon in Educational Settings: A Data Mining Approach
Authors: Koutsopoulou Ioanna, Gkintoni Evgenia, Halkiopoulos Constantinos, Antonopoulou Hera
Abstract:
Recent advances in Internet Computer Technology (ICT) and the ever-increasing use of technological equipment amongst adolescents and young adults along with unattended access to the internet and social media and uncontrolled use of smart phones and PCs have caused social problems like sexting to emerge. The main purpose of the present article is first to present an analytic theoretical framework of sexting as a recent social phenomenon based on studies that have been conducted the last decade or so; and second to investigate Greek students’ and also social network users, sexting perceptions and to record how often social media users exchange sexual messages and to retrace demographic variables predictors. Data from 1,000 students were collected and analyzed and all statistical analysis was done by the software package WEKA. The results indicate among others, that the use of data mining methods is an important tool to draw conclusions that could affect decision and policy making especially in the field and related social topics of educational psychology. To sum up, sexting lurks many risks for adolescents and young adults students in Greece and needs to be better addressed in relevance to the stakeholders as well as society in general. Furthermore, policy makers, legislation makers and authorities will have to take action to protect minors. Prevention strategies based on Greek cultural specificities are being proposed. This social problem has raised concerns in recent years and will most likely escalate concerns in global communities in the future.Keywords: educational ethics, sexting, Greek sexters, sex education, data mining
Procedia PDF Downloads 1827139 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing
Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi
Abstract:
Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management
Procedia PDF Downloads 67138 The Effective Method for Postering Thinking Dispositions of Learners
Authors: H. Jalahi, A. Yazdanpanah Nozari
Abstract:
Background and Purpose: Assessment of learners’ performance is an important factors in teaching-learning process. When a factor is sensitive and has high influence on life, their assessment should be done precisely. Thinking dispositions are very important factors in medical education because of its specific condition. In this study a model is designed for fostering thinking dispositions of learners in which authentic assessment is an important element. Materials and Methods: Objective based research is developmental, and such a model was not designed for curricula. Data collection and comparing approaches about assessment and analyzing current assessments offered applied proposals. Results: Based on research findings, the current assessments are response-based, that is students instead of product of response, only offers the specific response which the teachers expects; but authentic assessment is a form of assessment in which students are asked to perform real-word tasks that demonstrate meaningful application of essential knowledge and skills. Conclusion: Because of the difficulties and unexpected problems in life and individuals needs to lifelong learning and conditions in medical course that require decision making in specific times, we must pay attention to reach thinking dispositions and it should be included in curriculum. Authentic assessment as an important aspect of curriculum can help fostering thinking dispositions of learners. Using this kind of assessments which focus on application of information and skills to solve real-word tasks have more important role in medical courses.Keywords: assessment, authentic, medical courses, developmental
Procedia PDF Downloads 3657137 Determinant Factor of Farm Household Fruit Tree Planting: The Case of Habru Woreda, North Wollo
Authors: Getamesay Kassaye Dimru
Abstract:
The cultivation of fruit tree in degraded areas has two-fold importance. Firstly, it improves food availability and income, and secondly, it promotes the conservation of soil and water improving, in turn, the productivity of the land. The main objectives of this study are to identify the determinant of farmer's fruit trees plantation decision and to major fruit production challenges and opportunities of the study area. The analysis was made using primary data collected from 60 sample household selected randomly from the study area in 2016. The primary data was supplemented by data collected from a key informant. In addition to the descriptive statistics and statistical tests (Chi-square test and t-test), a logit model was employed to identify the determinant of fruit tree plantation decision. Drought, pest incidence, land degradation, lack of input, lack of capital and irrigation schemes maintenance, lack of misuse of irrigation water and limited agricultural personnel are the major production constraints identified. The opportunities that need to further exploited are better access to irrigation, main road access, endowment of preferred guava variety, experience of farmers, and proximity of the study area to research center. The result of logit model shows that from different factors hypothesized to determine fruit tree plantation decision, age of the household head accesses to market and perception of farmers about fruits' disease and pest resistance are found to be significant. The result has revealed important implications for the promotion of fruit production for both land degradation control and rehabilitation and increasing the livelihood of farming households.Keywords: degradation, fruit, irrigation, pest
Procedia PDF Downloads 2357136 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie
Abstract:
In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data
Procedia PDF Downloads 3207135 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration
Authors: Matthew Yeager, Christopher Willy, John Bischoff
Abstract:
The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design
Procedia PDF Downloads 1837134 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 1537133 Australian Football Supporters Engagement Patterns; Manchester United vs a-League
Authors: Trevor R. Higgins, Ben Lopez
Abstract:
Australian football fans have a tendency to indulge in foreign football clubs, often assigning a greater value to foreign clubs, in preference to the Australian National football competition; the A-League. There currently exists a gap in the knowledge available in relation to football fans in Australia, their engagement with foreign football teams and the impact that this may have with their engagement with A-League. The purpose of this study was to compare the engagement of the members of the Manchester United Supporters Club - Australia (MUSC-Aus) with Manchester United and the A-League. An online survey was implemented to gather the relevant data from members of the MUSC-Aus. Results from completed surveys were collected, and analyzed in relation to engagement levels with Manchester United and the A-League. Members of MUSC-Aus who responded to the survey were predominantly male (94%) and born in Australia (46%), England (25%), Ireland (7%), were greatly influenced in their choice of Manchester United by family (43%) and team history (16%), whereas location was the overwhelming influence in supporting the A-League (88%). Importantly, there was a reduced level of engagement in the A-League on two accounts. Firstly, only 64% of MUSC-Aus engaged with the A-League, reporting perceptions of low standard as the major reason (50%). Secondly, MUSC-Aus members who engaged in the A-League reported reduced engagement in the A-League, identified through spending patterns. MUSC-Aus members’ expenditure on Manchester United engagement was 400% greater than expenditure on A-League engagement. Furthermore, additional survey responses indicated that the level of commitment towards the A-League overall was less than Manchester United. The greatest impact on fan engagement in the A-League by MUSC-Aus can be attributed to several primary factors; family support, team history and perceptions to on-field performance and quality of players. Currently, there is little that can be done in regards to enhancing family and history as the A-League is still in its infancy. Therefore, perceptions of on-field performances and player quality should be addressed. Introducing short-term international marquee contracts to A-League rosters, across the entire competition, may provide the platform to raise the perception of the A-League player quality with minimal impact on local player development. In addition, a national marketing campaign promoting the success of A-League clubs in the ACL, as well as promoting the skill on display in the A-League may address the negative association with the standard of the A-League competition.Keywords: engagement, football, perceptions of performance, team
Procedia PDF Downloads 2817132 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas
Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu
Abstract:
Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.Keywords: climate change, water needs, balance sheet, water quality
Procedia PDF Downloads 757131 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach
Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta
Abstract:
Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.Keywords: support vector machines, decision tree, random forest
Procedia PDF Downloads 407130 Enhancing Quality Management Systems through Automated Controls and Neural Networks
Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova
Abstract:
The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.Keywords: automated control system, quality management, document structure, formal language
Procedia PDF Downloads 397129 A Greedy Alignment Algorithm Supporting Medication Reconciliation
Authors: David Tresner-Kirsch
Abstract:
Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm
Procedia PDF Downloads 2857128 Ten Patterns of Organizational Misconduct and a Descriptive Model of Interactions
Authors: Ali Abbas
Abstract:
This paper presents a descriptive model of organizational misconduct based on observed patterns that occur before and after an ethical collapse. The patterns were classified by categorizing media articles in both "for-profit" and "not-for-profit" organizations. Based on the model parameters, the paper provides a descriptive model of various organizational deflection strategies under numerous scenarios, including situations where ethical complaints build-up, situations under which whistleblowers become more prevalent, situations where large scandals that relate to leadership occur, and strategies by which organizations deflect blame when pressure builds up or when media finds out. The model parameters start with the premise of a tolerance to double standards in unethical acts when conducted by leadership or by members of corporate governance. Following this premise, the model explains how organizations engage in discursive strategies to cover up the potential conflicts that arise, including secret agreements and weakening stakeholders who may oppose the organizational acts. Deflection strategies include "preemptive" and "post-complaint" secret agreements, absence of (or vague) documented procedures, engaging in blame and scapegoating, remaining silent on complaints until the media finds out, as well as being slow (if at all) to acknowledge misconduct and fast to cover it up. The results of this paper may be used to guide organizational leaders into the implications of such shortsighted strategies toward unethical acts, even if they are deemed legal. Validation of the model assumptions through numerous media articles is provided.Keywords: ethical decision making, prediction, scandals, organizational strategies
Procedia PDF Downloads 1257127 Assessment of Green Infrastructure for Sustainable Urban Water Management
Authors: Suraj Sharma
Abstract:
Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation
Procedia PDF Downloads 1437126 Sports in the Contemporary Society; Its Role in the Economic Development of a Country
Authors: C. K. Kishore Kumar, B. P. Aruna
Abstract:
We have made an attempt to analyze the role of sports in the contemporary society. This paper critically analyses how developed as well as developing countries spend huge amount of money every year in conducting various sports and games, development of sports infrastructure, manufacturing of sports equipment and get into bidding to organize international events like Olympic, World Cup games like foot ball, soccer, tennis etc., Throughout the world, Sports and Commerce have joined together. Sports in today’s world has become a large profit making industry. An attempt is further made to understand that the players or sports persons are only a small part of this huge industry, more than the players, there are various other people, corporations, Nation as a whole who are making huge profits from the sports industry. This industrialization has indeed changed the whole scenario of sports. Top level sports are purely a business nowadays and so fans are sucked into believing they are part of their club. In reality they are merely cash cows to be milked by a greedy, grasping and corrupt business that cares nothing but making money. In no previous time period have we seen the type of growth in the commercialization of sports that we have seen in the last 3 decades. Athletes are leveled with prize money and/or appearances fees so much so, that injuries may be ignored, educational opportunities are put aside in the quest for success which is ultimately money. Industrialization and commercialization of sports has taken a key role in the economic development of the country. The purpose of this paper is to explore as to how sports once considered as a leisure time activity has become an activity for money and in turn has taken a lead role in the economic development of a country.Keywords: contemporary society, economic development, industrialization of sports, commercialization of sports, leisure time activity
Procedia PDF Downloads 4387125 Mathematical Model of Corporate Bond Portfolio and Effective Border Preview
Authors: Sergey Podluzhnyy
Abstract:
One of the most important tasks of investment and pension fund management is building decision support system which helps to make right decision on corporate bond portfolio formation. Today there are several basic methods of bond portfolio management. They are duration management, immunization and convexity management. Identified methods have serious disadvantage: they do not take into account credit risk or insolvency risk of issuer. So, identified methods can be applied only for management and evaluation of high-quality sovereign bonds. Applying article proposes mathematical model for building an optimal in case of risk and yield corporate bond portfolio. Proposed model takes into account the default probability in formula of assessment of bonds which results to more correct evaluation of bonds prices. Moreover, applied model provides tools for visualization of the efficient frontier of corporate bonds portfolio taking into account the exposure to credit risk, which will increase the quality of the investment decisions of portfolio managers.Keywords: corporate bond portfolio, default probability, effective boundary, portfolio optimization task
Procedia PDF Downloads 3187124 The Impact of Unemployment on the Sexual Behaviour of Male Youth in Quzini, Eastern Cape, South Africa: A Qualitative Study
Authors: Jabulani Gilford Kheswa
Abstract:
This paper reports on the effects of unemployment on the sexual behaviour of male youth. Drawing from Jahoda’s deprivation theory, unemployed male youth is prone to psychological distress and as a result, they resort to drugs and alcohol abuse as a way to cope with discrimination. Studies showed that such youth is more inclined to be sexually aggressive and very often engage in criminal activities and risky sexual behaviour such as multiple sexual partners and unprotected sex to cover their feelings of emotional insecurities and negative self-concept. The purpose of the study was to investigate the impact of unemployment on the sexual behaviour of Xhosa- speaking male youth, aged 19-35, from Quzini Location, Eastern Cape, South Africa. A qualitative, explorative, descriptive and contextual design was followed using phenomenological method. The purposively sampled comprised fifteen unemployed males who gave their informed consent to be interviewed. For trustworthiness of the study, the researcher met the Lincoln and Guba’s principles, namely; credibility, dependability confirmability and transferability. The following themes were identified, namely; patriarchy, gender- based violence, drug abuse, stigma and discrimination, criminal activities, depression and low- self-esteem. Based on the findings, the recommendations are that the government and private sectors should create jobs aimed at reducing unemployment for unemployed youth and psycho-educational programmes that will equip them in the areas of sexual values and attitudes, communication and decision-making skills.Keywords: discrimination, male-youth, sex, unemployment
Procedia PDF Downloads 2727123 US-Iran Hostage Crisis by the Metaphor of Argo in the Light of Post-Modernist Post-Colonial and Realist Theories
Authors: Hatice Idil Gorgen
Abstract:
This paper argues that discourses and textuality which is literary tool of Western ethnocentrism create aggressive foreign policy against the West by Non-West countries. Quasi-colonial experiences create an inferiority complex on officially or not colonized areas by reconstructing their identity. This reconstructed identity leads revolution and resistance movement to feel secure themselves as a psychological defense against colonial powers. Knowledge learned by successful implementation of discourses grants right to has power for authority, in addition to serving as a tool to reinforce power of authority by its cognitive traits on foreign policy decision making. The combination of these points contributes to shaping and then make predictable state policies. In the methodology of paper, secondary data was firstly reviewed through university library using a range of sources such as academic abstract, OPAC system, bibliography databases and internet search engines. The film of Argo was used to strengthen and materialize theoretical explanations as a metaphor. This paper aims to highlight the cumulative effects on the construction of the identity throughout embedded discourses by textuality. To demonstrate it by a metaphor, Argo will be used as a primary source for good story-telling about history. U.S-Iran hostage crisis is mainly applied by aiming to see foundations Iran’s behavior in the context of its revolutionary identity and major influences of actions of U.S on it.Keywords: discourse, post colonialism, post modernism, objectivity
Procedia PDF Downloads 1607122 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 1117121 Proposing an Improved Managerial-Based Business Process Framework
Authors: Alireza Nikravanshallmani, Jamshid Dehmeshki, Mojtaba Ahmadi
Abstract:
Modeling of business processes, based on BPMN (Business Process Modeling Notation), helps analysts and managers to understand business processes, and, identify their shortages. These models provide a context to make rational decision of organizing business processes activities in an understandable manner. The purpose of this paper is to provide a framework for better understanding of business processes and their problems by reducing the cognitive load of displayed information for their audience at different managerial levels while keeping the essential information which are needed by them. For this reason, we integrate business process diagrams across the different managerial levels to develop a framework to improve the performance of business process management (BPM) projects. The proposed framework is entitled ‘Business process improvement framework based on managerial levels (BPIML)’. This framework, determine a certain type of business process diagrams (BPD) based on BPMN with respect to the objectives and tasks of the various managerial levels of organizations and their roles in BPM projects. This framework will make us able to provide the necessary support for making decisions about business processes. The framework is evaluated with a case study in a real business process improvement project, to demonstrate its superiority over the conventional method. A questionnaire consisted of 10 questions using Likert scale was designed and given to the participants (managers of Bank Refah Kargaran three managerial levels). By examining the results of the questionnaire, it can be said that the proposed framework provide support for correct and timely decisions by increasing the clarity and transparency of the business processes which led to success in BPM projects.Keywords: business process management (BPM), business process modeling, business process reengineering (BPR), business process optimizing, BPMN
Procedia PDF Downloads 452