Search results for: composite manufacturing indices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4725

Search results for: composite manufacturing indices

2085 An Approximation Algorithm for the Non Orthogonal Cutting Problem

Authors: R. Ouafi, F. Ouafi

Abstract:

We study the problem of cutting a rectangular material entity into smaller sub-entities of trapezoidal forms with minimum waste of the material. This problem will be denoted TCP (Trapezoidal Cutting Problem). The TCP has many applications in manufacturing processes of various industries: pipe line design (petro chemistry), the design of airfoil (aeronautical) or cuts of the components of textile products. We introduce an orthogonal build to provide the optimal horizontal and vertical homogeneous strips. In this paper we develop a general heuristic search based upon orthogonal build. By solving two one-dimensional knapsack problems, we combine the horizontal and vertical homogeneous strips to give a non orthogonal cutting pattern.

Keywords: combinatorial optimization, cutting problem, heuristic

Procedia PDF Downloads 541
2084 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites

Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il

Abstract:

Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.

Keywords: composite, flexural strength, matrix, sisal fibre

Procedia PDF Downloads 395
2083 Sustainability Assessment of Food Delivery with Last-Mile Delivery Droids, A Case Study at the European Commission's JRC Ispra Site

Authors: Ada Garus

Abstract:

This paper presents the outcomes of the sustainability assessment of food delivery with a last-mile delivery service introduced in a real-world case study. The methodology used in the sustainability assessment integrates multi-criteria decision-making analysis, sustainability pillars, and scenario analysis to best reflect the conflicting needs of stakeholders involved in the last mile delivery system. The case study provides an application of the framework to the food delivery system of the Joint Research Centre of the European Commission where three alternative solutions were analyzed I) the existent state in which individuals frequent the local cantine or pick up their food, using their preferred mode of transport II) the hypothetical scenario in which individuals can only order their food using the delivery droid system III) a scenario in which the food delivery droid based system is introduced as a supplement to the current system. The environmental indices are calculated using a simulation study in which decision regarding the food delivery is predicted using a multinomial logit model. The vehicle dynamics model is used to predict the fuel consumption of the regular combustion engines vehicles used by the cantine goers and the electricity consumption of the droid. The sustainability assessment allows for the evaluation of the economic, environmental, and social aspects of food delivery, making it an apt input for policymakers. Moreover, the assessment is one of the first studies to investigate automated delivery droids, which could become a frequent addition to the urban landscape in the near future.

Keywords: innovations in transportation technologies, behavioural change and mobility, urban freight logistics, innovative transportation systems

Procedia PDF Downloads 193
2082 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.

Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE

Procedia PDF Downloads 428
2081 Analysis of Land Use, Land Cover Changes in Damaturu, Nigeria: Using Satellite Images

Authors: Isa Muhammad Zumo, Musa Lawan

Abstract:

This study analyzes the land use/land cover changes in Damaturu metropolis from 1986 to 2005. LandSat TM Images of 1986, 1999, and 2005 were used. Built-up lands, agric lands, water body and other lands were created as themes within ILWIS 3.4 software. The images were displayed in False Colour Composite (FCC) for a better visualization and identification of the themes created. Training sample sets were collected based on the ground truth data during field the checks. Statistical data were then extracted from the classified sample set. Area in hectares for each theme was calculated for each year and the result for each land use/land cover types for each study year was compared. From the result, it was found out that built-up areas have a considerable increase from 37.71 hectares in 1986 to 1062.72 hectares in 2005. It has an annual increase rate of approximately 0.34%. The results also reveal that there is a decrease of 5829.66 hectares of other lands (vacant lands) from 1986 to 2005.

Keywords: land use, changes, analysis, environmental pollution

Procedia PDF Downloads 347
2080 Understanding Tourism Innovation through Fuzzy Measures

Authors: Marcella De Filippo, Delio Colangelo, Luca Farnia

Abstract:

In recent decades, the hyper-competition of tourism scenario has implicated the maturity of many businesses, attributing a central role to innovative processes and their dissemination in the economy of company management. At the same time, it has defined the need for monitoring the application of innovations, in order to govern and improve the performance of companies and destinations. The study aims to analyze and define the innovation in the tourism sector. The research actions have concerned, on the one hand, some in-depth interviews with experts, identifying innovation in terms of process and product, digitalization, sustainability policies and, on the other hand, to evaluate the interaction between these factors, in terms of substitutability and complementarity in management scenarios, in order to identify which one is essential to be competitive in the global scenario. Fuzzy measures and Choquet integral were used to elicit Experts’ preferences. This method allows not only to evaluate the relative importance of each pillar, but also and more interestingly, the level of interaction, ranging from complementarity to substitutability, between pairs of factors. The results of the survey are the following: in terms of Shapley values, Experts assert that Innovation is the most important factor (32.32), followed by digitalization (31.86), Network (20.57) and Sustainability (15.25). In terms of Interaction indices, given the low degree of consensus among experts, the interaction between couples of criteria on average could be ignored; however, it is worth to note that the factors innovations and digitalization are those in which experts express the highest degree of interaction. However for some of them, these factors have a moderate level of complementarity (with a pick of 57.14), and others consider them moderately substitutes (with a pick of -39.58). Another example, although outlier is the interaction between network and digitalization, in which an expert consider them markedly substitutes (-77.08).

Keywords: innovation, business model, tourism, fuzzy

Procedia PDF Downloads 272
2079 Bio-Based Processes for Circular Economy in the Textile Industry

Authors: Nazanin Forouz

Abstract:

The textile industry faces increasing criticism due to its resource-intensive nature and the negative environmental and societal impacts associated with the manufacturing, use, and disposal of clothes. To address these concerns, there is a growing desire to transition towards a circular economy for textiles, implementing recycling concepts and technologies to protect resources, the environment, and people. While existing recycling processes have focused on chemical and mechanical reuse of textile fibers, bio-based processes have received limited attention beyond end-of-life composting. However, bio-based technologies hold great promise for circularizing the textile life cycle and reducing environmental impacts.

Keywords: textile industry, circular economy, bio-based processes, recycling, environmental impacts

Procedia PDF Downloads 95
2078 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles

Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra

Abstract:

A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.

Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin

Procedia PDF Downloads 392
2077 A Method for Quantitative Assessment of the Dependencies between Input Signals and Output Indicators in Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

Knowing the degree of dependencies between the sets of input signals and selected sets of indicators that measure a production system's effectiveness is of great importance in the industry. This paper introduces the SELM method that enables the selection of sets of input signals, which affects the most the selected subset of indicators that measures the effectiveness of a production system. For defined set of output indicators, the method quantifies the impact of input signals that are gathered in the continuous monitoring production system.

Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems

Procedia PDF Downloads 119
2076 Impact of Board Characteristics on Financial Performance: A Study of Manufacturing Sector of Pakistan

Authors: Saad Bin Nasir

Abstract:

The research will examine the role of corporate governance (CG) practices on firm’s financial performance. Population of this research will be manufacture sector of Pakistan. For the purposes of measurement of impact of corporate governance practices such as board size, board independence, ceo/chairman duality, will take as independent variables and for the measurement of firm’s performance return on assets and return on equity will take as dependent variables. Panel data regression model will be used to estimate the impact of CG on firm performance.

Keywords: corporate governance, board size, board independence, leadership

Procedia PDF Downloads 524
2075 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 65
2074 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method

Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry

Abstract:

The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.

Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design

Procedia PDF Downloads 152
2073 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 134
2072 Graphen-Based Nanocomposites for Glucose and Ethanol Enzymatic Biosensor Fabrication

Authors: Tesfaye Alamirew, Delele Worku, Solomon W. Fanta, Nigus Gabbiye

Abstract:

Recently graphen based nanocomposites are become an emerging research areas for fabrication of enzymatic biosensors due to their property of large surface area, conductivity and biocompatibility. This review summarizes recent research reports of graphen based nanocomposites for the fabrication of glucose and ethanol enzymatic biosensors. The newly fabricated enzyme free microwave treated nitrogen doped graphen (MN-d-GR) had provided highest sensitivity towards glucose and GCE/rGO/AuNPs/ADH composite had provided far highest sensitivity towards ethanol compared to other reported graphen based nanocomposites. The MWCNT/GO/GOx and GCE/ErGO/PTH/ADH nanocomposites had also enhanced wide linear range for glucose and ethanol detection respectively. Generally, graphen based nanocomposite enzymatic biosensors had fast direct electron transfer rate, highest sensitivity and wide linear detection ranges during glucose and ethanol sensing.

Keywords: glucose, ethanol, enzymatic biosensor, graphen, nanocomposite

Procedia PDF Downloads 126
2071 Analysis of Splicing Methods for High Speed Automated Fibre Placement Applications

Authors: Phillip Kearney, Constantina Lekakou, Stephen Belcher, Alessandro Sordon

Abstract:

The focus in the automotive industry is to reduce human operator and machine interaction, so manufacturing becomes more automated and safer. The aim is to lower part cost and construction time as well as defects in the parts, sometimes occurring due to the physical limitations of human operators. A move to automate the layup of reinforcement material in composites manufacturing has resulted in the use of tapes that are placed in position by a robotic deposition head, also described as Automated Fibre Placement (AFP). The process of AFP is limited with respect to the finite amount of material that can be loaded into the machine at any one time. Joining two batches of tape material together involves a splice to secure the ends of the finishing tape to the starting edge of the new tape. The splicing method of choice for the majority of prepreg applications is a hand stich method, and as the name suggests requires human input to achieve. This investigation explores three methods for automated splicing, namely, adhesive, binding and stitching. The adhesive technique uses an additional adhesive placed on the tape ends to be joined. Binding uses the binding agent that is already impregnated onto the tape through the application of heat. The stitching method is used as a baseline to compare the new splicing methods to the traditional technique currently in use. As the methods will be used within a High Speed Automated Fibre Placement (HSAFP) process, this meant the parameters of the splices have to meet certain specifications: (a) the splice must be able to endure a load of 50 N in tension applied at a rate of 1 mm/s; (b) the splice must be created in less than 6 seconds, dictated by the capacity of the tape accumulator within the system. The samples for experimentation were manufactured with controlled overlaps, alignment and splicing parameters, these were then tested in tension using a tensile testing machine. Initial analysis explored the use of the impregnated binding agent present on the tape, as in the binding splicing technique. It analysed the effect of temperature and overlap on the strength of the splice. It was found that the optimum splicing temperature was at the higher end of the activation range of the binding agent, 100 °C. The optimum overlap was found to be 25 mm; it was found that there was no improvement in bond strength from 25 mm to 30 mm overlap. The final analysis compared the different splicing methods to the baseline of a stitched bond. It was found that the addition of an adhesive was the best splicing method, achieving a maximum load of over 500 N compared to the 26 N load achieved by a stitching splice and 94 N by the binding method.

Keywords: analysis, automated fibre placement, high speed, splicing

Procedia PDF Downloads 155
2070 Cryogenic Machining of Sawdust Incorporated Polypropylene Composites

Authors: K. N. Umesh

Abstract:

Wood Polymer Composites (WPC) were synthesized artificially by combining polypropylene, wood and resin. It is difficult to obtain a good surface finish by conventional machining on WPC because of material degradation due to excessive heat generated during the process. In order to preserve the material property and deliver a better surface finish and accuracy, a proper solution is devised for the machining of wood composites at low temperature. This research focuses on studying the effects of parameters of cryogenic machining on sawdust incorporated polypropylene composite material, in view of evolving the most suitable composition and an appropriate combination of process parameters. The machining characteristics of the six different compositions of WPC were evaluated by analyzing the trend. An attempt is made to determine proper combinations material composition and process control parameters, through process capability studies. A WPC of 80%-wood (saw dust particles), 20%-polypropylene and 0%-resin was found to be the best alternative for obtaining the best surface finish under cryogenic machining conditions.

Keywords: Cryogenic Machining, Process Capability, Surface Finish, Wood Polymer Composites

Procedia PDF Downloads 249
2069 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 51
2068 Beyond Cooking and Food Preparation: Examining the Material Culture of Medieval Cuisine in the Middle East

Authors: Shurouq Munzer

Abstract:

This study investigates methods for inferring the presence of cooking activity at an archaeological site through the study of cooking tools, contextual evidence, and food preparation techniques. This paper examines the patterns of cooking utensils and categorizes the morphological features as well as the types of clay utilized in manufacturing such cooking utensils. Despite challenges in accessing such evidence due to its limited availability in books and excavations. The excavation results provide the point for evaluating progress in daily life and underscore the cultural, social, and economic significance of studying cooking activity at archaeological sites within their archaeological contexts.

Keywords: coarse ware, cooking utensils, ḥisba, waqif, muḥtasib, foodways, practice, cuisine, food preparation

Procedia PDF Downloads 74
2067 Wear Characteristics of Al Based Composites Fabricated with Nano Silicon Carbide Particles

Authors: Mohammad Reza Koushki Ardestani, Saeed Daneshmand, Mohammad Heydari Vini

Abstract:

In the present study, AA7075/SiO2 composites have been fabricated via liquid metallurgy process. Using the degassing process, the wet ability of the molten aluminum alloys increased which improved the bonding between aluminum matrix and reinforcement (SiO2) particles. AA7075 alloy and SiO2 particles were taken as the base matrix and reinforcements, respectively. Then, contents of 2.5 and 5 wt. % of SiO2 subdivisions were added into the AA7075 matrix. To improve wettability and distribution, reinforcement particles were pre-heated to a temperature of 550°C for each composite sample. A uniform distribution of SiO2 particles was observed through the matrix alloy in the microstructural study. A hardened EN32 steel disc as the counter face was used to evaluate the wear rate pin-on-disc, a wear testing machine containing. The results showed that the wear rate of the AA/SiO2 composites was lesser than that of the monolithic AA7075 samples. Finally, The SEM worn surfaces of samples were investigated.

Keywords: Al7075, SiO₂, wear, composites, stir casting

Procedia PDF Downloads 101
2066 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.

Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews

Procedia PDF Downloads 237
2065 Soil Salinity from Wastewater Irrigation in Urban Greenery

Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton

Abstract:

The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.

Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities

Procedia PDF Downloads 162
2064 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume

Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto

Abstract:

Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.

Keywords: frontal lobe, functional near-infrared spectroscopy, state-trait anxiety inventory score, stress

Procedia PDF Downloads 250
2063 Selection of Soil Quality Indicators of Rice Cropping Systems Using Minimum Data Set Influenced by Imbalanced Fertilization

Authors: Theresa K., Shanmugasundaram R., Kennedy J. S.

Abstract:

Nutrient supplements are indispensable for raising crops and to reap determining productivity. The nutrient imbalance between replenishment and crop uptake is attempted through the input of inorganic fertilizers. Excessive dumping of inorganic nutrients in soil cause stagnant and decline in yield. Imbalanced N-P-K ratio in the soil exacerbates and agitates the soil ecosystems. The study evaluated the fertilization practices of conventional (CFs), organic and Integrated Nutrient Management system (INM) on soil quality using key indicators and soil quality indices. Twelve rice farming fields of which, ten fields were having conventional cultivation practices, one field each was organic farming based and INM based cultivated under monocropping sequence in the Thondamuthur block of Coimbatore district were fixed and properties viz., physical, chemical and biological were studied for four cropping seasons to determine soil quality index (SQI). SQI was computed for conventional, organic and INM fields. Comparing conventional farming (CF) with organic and INM, CF was recorded with a lower soil quality index. While in organic and INM fields, the higher SQI value of 0.99 and 0.88 respectively were registered. CF₄ received with a super-optimal dose of N (250%) showed a lesser SQI value (0.573) as well as the yield (3.20 t ha⁻¹) and the CF6 which received 125 % N recorded the highest SQI (0.715) and yield (6.20 t ha⁻¹). Likewise, most of the CFs received higher N beyond the level of 125 % except CF₃ and CF₉, which recorded lower yields. CFs which received super-optimal P in the order of CF₆&CF₇>CF₁&CF₁₀ recorded lesser yields except for CF₆. Super-optimal K application also recorded lesser yield in CF₄, CF₇ and CF₉.

Keywords: rice cropping system, soil quality indicators, imbalanced fertilization, yield

Procedia PDF Downloads 157
2062 Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides

Authors: Josef Brychta, Jiri Kratochvil, Marek Pagac

Abstract:

The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness.

Keywords: grained cutting materials difficult to machine materials, optimum utilization, mechanic, manufacturing

Procedia PDF Downloads 299
2061 Studies on H2S Gas Sensing Performance of Al2O3-Doped ZnO Thick Films at Ppb Level

Authors: M. K. Deore

Abstract:

The thick films of undoped and Al2O3 doped- ZnO were prepared by screen printing technique. AR grade (99.9 % pure) Zinc Oxide powder were mixed mechanochemically in acetone medium with Aluminium Chloride (AlCl2) material in various weight percentages such as 0.5, 1, 3 and 5 wt % to obtain Al2O3 - ZnO composite. The prepared materials were sintered at 1000oC for 12h in air ambience and ball milled to ensure sufficiently fine particle size. The electrical, structural and morphological properties of the films were investigated. The X-ray diffraction analysis of pure and doped ZnO shows the polycrystalline nature. The surface morphology of the films was studied by SEM. The final composition of each film was determined by EDAX analysis. The gas response of undoped and Al2O3- doped ZnO films were studied for different gases such as CO, H2, NH3, and H2S at operating temperature ranging from 50 oC to 450 o C. The pure film shows the response to H2S gas (500ppm) at 300oC while the film doped with 3 wt.% Al2O3 gives the good response to H2S gas(ppb) at 350oC. The selectivity, response and recovery time of the sensor were measured and presented.

Keywords: thick films, ZnO-Al2O3, H2S gas, sensitivity, selectivity, response and recovery time

Procedia PDF Downloads 420
2060 An Advanced Match-Up Scheduling Under Single Machine Breakdown

Authors: J. Ikome, M. Ndeley

Abstract:

When a machine breakdown forces a Modified Flow Shop (MFS) out of the prescribed state, the proposed strategy reschedules part of the initial schedule to match up with the preschedule at some point. The objective is to create a new schedule that is consistent with the other production planning decisions like material flow, tooling and purchasing by utilizing the time critical decision making concept. We propose a new rescheduling strategy and a match-up point determination procedure through a feedback mechanism to increase both the schedule quality and stability. The proposed approach is compared with alternative reactive scheduling methods under different experimental settings.

Keywords: advanced critical task methods modified flow shop (MFS), Manufacturing, experiment, determination

Procedia PDF Downloads 405
2059 Growth Comparison and Intestinal Health in Broilers Fed Scent Leaf Meal (Ocimum gratissimum) and Synthetic Antibiotic

Authors: Adedoyin Akintunde Adedayo, Onilude Abiodun Anthony

Abstract:

The continuous usage of synthetic antibiotics in livestock production has led to the resistance of microbial pathogens. This has prompted research to find alternative sources. This study aims to compare the growth and intestinal health of broilers fed scent leaf meal (SLM) as an alternative to synthetic antibiotics. The study used a completely randomized design (CRD) with 300 one-week-old Arbor Acres broiler chicks. The chicks were divided into six treatments with five replicates of ten birds each. The feeding trial lasted 49 days, including a one-week acclimatization period. Commercial broiler diets were used. The diets included a negative control (no leaf meal or antibiotics), a positive control (0.10% oxy-tetracycline), and four diets with different levels of SLM (0.5%, 1.0%, 1.5%, and 2.0%). The supplementation of both oxy-tetracycline and SLM improved feed intake during the finisher phase. Birds fed SLM at a 1% inclusion level showed significantly (P<0.05) improved average body weight gain (ABWG), lowered feed-to-gain ratio, and cost per kilogram of weight gain compared to other diets. The mortality (2.0%) rate was significantly higher in the negative control group. White blood cell levels varied significantly (P<0.05) in birds fed SLM-supplemented diets, and the use of 2% SLM led to an increase in liver weight. However, welfare indices were not compromised.

Keywords: Arbor Acres, phyto-biotic, synthetic antibiotic, white blood cell, liver weight

Procedia PDF Downloads 74
2058 Influence of Sulphur and Boron on Growth, Quality Parameters and Productivity of Soybean (Glycine Max (L.) Merrill)

Authors: Shital Bangar, G. B. Khandagale

Abstract:

The experimentation was carried out to study the influence of sulphur and boron on growth parameters and productivity of soybean in kharif season of 2009-2010 at Experimental Farm, Department of Agricultural Botany, Marathwada Agricultural University, Parbhani (M.S.). The object was to evaluate the impact of sulphur and boron on growth, development, grain yield and physiological aspects of soybean variety MAUS-81. Nine treatments consisted of three levels of sulphur i.e. 20, 30 and 40 Kg/ha as well as three levels boron i.e.10, 15 and 20 kg boron/ha and the combinations of these two mineral elements i.e. Sulphur @30 kg/ha + Borax @15 kg/ha and Sulphur @40 kg/ha + Borax @ 20 kg/ha with one control treatment in Randomized Block Design (RBD) with three replications. The effect of sulphur and boron on various growth parameters of soybean like relative growth rate (RGR) and net assimilation rate (NAR) were remained statistically on par with each other. However, the application of higher dose of Sulphur @40 kg/ha + Borax @ 20 kg/ha enhanced significantly all the growth parameters. Application of the nutrients increased the dry matter accumulation of the crop plant and hence, other growth indices like RGR and NAR also increased significantly. RGR and NAR values were recorded highest at the initial crop growth stages and decline thereafter. The application of sulphur @40 kg/ha + Borax @ 20 kg/ha recorded significantly higher content of chlorophyll ‘a’ than rest of the treatments and chlorophyll ‘b’ observed higher in boron @15 kg/ha as well as boron@20 kg/ha, whereas total chlorophyll content was maximum in sulphur @40 kg/ha. Oil content was not influenced significantly due to above fertilization. The highest seed yield and total biological yield were obtained with combination of Sulphur @40 kg/ha + Borax @ 20 kg/ha, single sulphur and boron application also showed a significant effect on seed and biological yield.

Keywords: boron, growth, productivity, quality, soybean and sulphur

Procedia PDF Downloads 405
2057 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: reinforcement, silicon carbide, fly ash, red mud

Procedia PDF Downloads 159
2056 Correlations between Pushing Skills and Pushing Perceptions, Second-Stage Labor Duration, Postpartum Fatigue, and Birth Satisfaction

Authors: Yu-Ching Huang

Abstract:

Background: Delivery bridges the antepartum and postpartum period. Subsequent fatigue can affect indices, including postpartum recovery and life quality. Milk secretion, breastfeeding quality, and newborn participation may be compromised. Correspondingly, using proper pushing skills during the second stage of labor has the potential to effectively reduce postpartum fatigue and enhance birth satisfaction in new mothers. Purpose: To compare the effects of using different pushing skills on maternal pushing perception, postpartum fatigue, and birth satisfaction. Methodology: The present study used a descriptive research approach and recruited 382 participants from a medical center in northern Taiwan. Data were collected using a structured questionnaire, which included a demographic and obstetrics information datasheet, the Labor Pushing Experience Scale, a fatigue scale, and a birth satisfaction scale. Research Results: Using pushing skills (including upright position [t= 2.28, p < .05] and delayed pushing [t= -1.98, p < .05] during the second stage of labor was shown to enhance birth satisfaction in participants. Additionally, open glottis pushing ( t = 5.46, p < .001) resulted in a mean duration of second-stage labor that was 17.67 minutes less than that achieved using Valsalva pushing. Moreover, a better perceived pushing experience was associated with lower perceived postpartum fatigue (r = .46, p < .05) and higher birth satisfaction (r = -.16, p < .05). Finally, postpartum fatigue perception was negatively associated with birth satisfaction (r = -.16, p < .05). Conclusion and Clinical Application: The findings suggest that midwives should advocate that women adopt upright positions, delayed pushing, and open glottis pushing during the second stage of labor in order to enhance their birth satisfaction.

Keywords: second stage labor duration of pushing skill, pushing experience perception, postpartum fatigue, birth satisfaction

Procedia PDF Downloads 267