Search results for: annotated facial expression dataset
829 An Ecological Systems Approach to Risk and Protective Factors of Sibling Conflict for Children in the United Kingdom
Authors: C. A. Bradley, D. Patsios, D. Berridge
Abstract:
This paper presents evidence to better understand the risk and protective factors related to sibling conflict and the patterns of association between sibling conflict and negative adjustment outcomes by incorporating additional familial and societal factors within statistical models of risk and adjustment. It was conducted through the secondary analysis of a large representative cross-sectional dataset of children in the UK. The original study includes proxy interviews for young children and self-report interviews for adolescents. The study applies an ecological systems framework for the analyses. Hierarchical regression models assess risk and protective factors and adjustment outcomes associated with sibling conflict. Interactions reveal differential effect between contextual risk factors and the social context of influence. The general pattern of findings suggested that, although factors affecting likelihood of experiencing sibling conflict were often determined by child age, some remained consistent across childhood. These factors were often conditional on each other, reinforcing the importance of an ecological framework. Across both age-groups, sibling conflict was associated with siblings closer in age; male sibling groups; most advantaged socio-economic group; and exposure to community violence, such as witnessing violent assault or robbery. The study develops the evidence base on the influence of ethnicity and socio-economic group on sibling conflict by exploring interactions between social context. It also identifies key new areas of influence – such as family structure, disability, and community violence in exacerbating or reducing risk of conflict. The study found negative associations between sibling conflict and young children’s mental well-being and adolescents' mental well-being and anti-social behaviour, but also more context specific associations – such as sibling conflict moderating the negative impact of adversity and high risk experiences for young children such as parental violence toward the child.Keywords: adjustment, conflict, ecological systems, family systems, risk and protective factors, sibling
Procedia PDF Downloads 106828 RhoA Regulates E-Cadherin Intercellular Junctions in Oral Squamous Carcinoma Cells
Authors: Ga-Young Lee, Hyun-Man Kim
Abstract:
The modulation of the cell-cell junction is critical in epithelial-mesenchymal transition during tumorigenesis. As RhoA activity is known to be up-regulated to dissociate cell-cell junction by contracting acto-myosin complex in various cancer cells, the present study investigated if RhoA activity was also associated with the disruption of the cell-cell junction of oral cancer cells. We studied SCC-25 cells which are established from oral squamous cell carcinoma if their E-cadherin junction (ECJ) was under control of RhoA. Interestingly, development of ECJ of SCC-25 cells depended on the amount of fibronectin (FN) coated on the culture dishes. Seeded cells promptly aggregated to develop ECJ on the substrates coated with a low amount of FN, whereas they were retarded in the development of ECJ on the substrates coated with a high amount of FN. However, it was an unexpected finding that total RhoA activity was lower in the dissociated cells on the substrates of high FN than in the aggregated cells on the substrates of low FN. Treating the dissociated cells on the substrates of high FN with LPA, a RhoA activator, promoted the development to ECJ. In contrast, treating the aggregated cells on the substrates of low FN with Clostridium botulinum C3, a toxin decreasing RhoA activity, dissociated cells concomitant with the disruption of ECJ. Genetical knockdown of RhoA expression by transfecting RhoA siRNA also down-regulated the development of ECJ in SCC-25 cells. Furthermore, PMA, an activator of protein kinase C (PKC), down-regulated the development of ECJ junction of SCC-25 cells on the substrates coated with low FN. In contrast, GO6976, a PKC inhibitor, up-regulated the development of ECJ of SCC-25 cells with the activation of RhoA on the substrates coated with high FN. In conclusion, in the present study, we demonstrated unexpected results that the activation of RhoA promotes the development of ECJ, whereas the inhibition of RhoA retards the development of ECJ in SCC-25 cells.Keywords: E-cadherin junction, oral squamous cell carcinoma, PKC, RhoA, SCC-25
Procedia PDF Downloads 329827 Understanding the Fundamental Driver of Semiconductor Radiation Tolerance with Experiment and Theory
Authors: Julie V. Logan, Preston T. Webster, Kevin B. Woller, Christian P. Morath, Michael P. Short
Abstract:
Semiconductors, as the base of critical electronic systems, are exposed to damaging radiation while operating in space, nuclear reactors, and particle accelerator environments. What innate property allows some semiconductors to sustain little damage while others accumulate defects rapidly with dose is, at present, poorly understood. This limits the extent to which radiation tolerance can be implemented as a design criterion. To address this problem of determining the driver of semiconductor radiation tolerance, the first step is to generate a dataset of the relative radiation tolerance of a large range of semiconductors (exposed to the same radiation damage and characterized in the same way). To accomplish this, Rutherford backscatter channeling experiments are used to compare the displaced lattice atom buildup in InAs, InP, GaP, GaN, ZnO, MgO, and Si as a function of step-wise alpha particle dose. With this experimental information on radiation-induced incorporation of interstitial defects in hand, hybrid density functional theory electron densities (and their derived quantities) are calculated, and their gradient and Laplacian are evaluated to obtain key fundamental information about the interactions in each material. It is shown that simple, undifferentiated values (which are typically used to describe bond strength) are insufficient to predict radiation tolerance. Instead, the curvature of the electron density at bond critical points provides a measure of radiation tolerance consistent with the experimental results obtained. This curvature and associated forces surrounding bond critical points disfavors localization of displaced lattice atoms at these points, favoring their diffusion toward perfect lattice positions. With this criterion to predict radiation tolerance, simple density functional theory simulations can be conducted on potential new materials to gain insight into how they may operate in demanding high radiation environments.Keywords: density functional theory, GaN, GaP, InAs, InP, MgO, radiation tolerance, rutherford backscatter channeling
Procedia PDF Downloads 171826 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 90825 The Role of Moroccan Salafist Radicalism in Creating Threat to Spain’s Security
Authors: Stanislaw Kosmynka
Abstract:
Although the genesis of the activity of fighting salafist radicalism in Spain dates back to the 80’s, the development of extremism of this kind manifested itself only in the next decade. Its first permanently functioning structures in this country in the second half of 90’s of 20th century came from Algieria and Syria. At the same time it should be emphasized that this distinction is in many dimensions conventional, the more so because they consisted also of immigrants from other coutries of Islam, particularly from Morocco. The paper seeks to understand the radical salafist challenge for Spain in the context of some terrorist networks consisted of immigrants from Morocco. On the eve of the new millennium Moroccan jihadists played an increasingly important role. Although the activity of these groups had for many years mainly logistical and propaganda character, the bomb attack carried out on 11 March 2004 in Madrid constituted an expression of open forms of terrorism, directed against the authorities and society of Spain and reflected the narration of representatives of the trend of the global jihad. The people involved in carrying out that act of violence were to a large extent Moroccan immigrants; also in the following years among the cells of radicals in Spain Moroccans stood out many times. That is why the forms and directions of activity of these extremists in Spain, also after 11th March 2004 and in the actual context of the impact of Islamic State, are worth presenting. The paper is focused on threats to the security of Spain and the region and remains connected with the issues of mutual relations of the society of a host country with immigrant communities which to a large degree come from this part of Maghreb.Keywords: jihadi terrorism, Morocco, radical salafism, security, Spain, terrorist cells, threat
Procedia PDF Downloads 525824 Interaction Between Gut Microorganisms and Endocrine Disruptors - Effects on Hyperglycaemia
Authors: Karthika Durairaj, Buvaneswari G., Gowdham M., Gilles M., Velmurugan G.
Abstract:
Background: Hyperglycaemia is the primary cause of metabolic illness. Recently, researchers focused on the possibility that chemical exposure could promote metabolic disease. Hyperglycaemia causes a variety of metabolic diseases dependent on its etiologic conditions. According to animal and population-based research, individual chemical exposure causes health problems through alteration of endocrine function with the influence of microbial influence. We were intrigued by the function of gut microbiota variation in high fat and chemically induced hyperglycaemia. Methodology: C57/Bl6 mice were subjected to two different treatments to generate the etiologic-based diabetes model: I – a high-fat diet with a 45 kcal diet, and II - endocrine disrupting chemicals (EDCs) cocktail. The mice were monitored periodically for changes in body weight and fasting glucose. After 120 days of the experiment, blood anthropometry, faecal metagenomics and metabolomics were performed and analyzed through statistical analysis using one-way ANOVA and student’s t-test. Results: After 120 days of exposure, we found hyperglycaemic changes in both experimental models. The treatment groups also differed in terms of plasma lipid levels, creatinine, and hepatic markers. To determine the influence on glucose metabolism, microbial profiling and metabolite levels were significantly different between groups. The gene expression studies associated with glucose metabolism vary between hosts and their treatments. Conclusion: This research will result in the identification of biomarkers and molecular targets for better diabetes control and treatment.Keywords: hyperglycaemia, endocrine-disrupting chemicals, gut microbiota, host metabolism
Procedia PDF Downloads 40823 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 167822 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action
Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere
Abstract:
Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results
Procedia PDF Downloads 131821 Eco-Friendly Control of Bacterial Speck on Solanum lycopersicum by Azadirachta indica Extract
Authors: Navodit Goel, Prabir K. Paul
Abstract:
Tomato (Solanum lycopersicum) is attacked by Pseudomonas syringae pv. tomato causing speck lesions on the leaves leading to severe economic casualty. In the present study, aqueous fruit extracts of Azadirachta indica (neem) were sprayed on a single node of tomato plants grown under controlled contamination-free conditions. The treatment of plants was performed with neem fruit extract either alone or along with the pathogen. The parameters of observation were activities of polyphenol oxidase (PPO) and lysozyme, and isoform analysis of PPO; both at the treated leaves as well as untreated leaves away from the site of extract application. Polyphenol oxidase initiates phenylpropanoid pathway resulting in the synthesis of quinines from cytoplasmic phenols and production of reactive oxygen species toxic to broad spectrum microbes. Lysozyme is responsible for the breakdown of bacterial cell wall. The results indicate the upregulation of PPO and lysozyme activities in both the treated and untreated leaves along with de novo expression of newer PPO isoenzymes (which were absent in control samples). The appearance of additional PPO isoenzymes in bioelicitor-treated plants indicates that either the isoenzymes were expressed after bioelicitor application or the already expressed but inactive isoenzymes were activated by it. Lysozyme activity was significantly increased in the plants when treated with the bioelicitor or the pathogen alone. However, no new isoenzymes of lysozyme were expressed upon application of the extract. Induction of resistance by neem fruit extract could be a potent weapon in eco-friendly plant protection strategies.Keywords: Azadirachta indica, lysozyme, polyphenol oxidase, Solanum lycopersicum
Procedia PDF Downloads 286820 Introduction to Political Psychoanalysis of a Group in the Middle East
Authors: Seyedfateh Moradi, Abas Ali Rahbar
Abstract:
The present study focuses on investigating group psychoanalysis in the Middle East. The study uses a descriptive-analytic method and library resources have been used to collect the data. Additionally, the researcher’s observations of people’s everyday behavior have played an important role in the production and analysis of the study. Group psychoanalysis in the Middle East can be conducted through people’s daily behaviors, proverbs, poetry, mythology, etc., and some of the general characteristics of people in the Middle East include: xenophobia, revivalism, fatalism, nostalgic, wills and so on. Members of the group have often failed to achieve Libido wills and it is very important in unifying and reproduction violence. Therefore, if libidinal wills are irrationally fixed, it will be important in forming fundamentalist and racist groups, a situation that is dominant among many groups in the Middle East. Adversities, from early childhood and afterwards, in the subjects have always been influential in the political behavior of group members, and it manifests itself as counter-projections. Consequently, it affects the foreign policy of the governments. On the other hand, two kinds of subjects are identifiable in the Middle East, one; classical subject that is related to nostalgia and mythology and, two; modern subjects which is self-alienated. As a result, both subjects are seeking identity and self-expression in public in relation to forming groups. Therefore, collective unconscious in the Middle East shows itself as extreme boundaries and leads to forming groups characterized with violence. Psychoanalysis shows important aspects to identify many developments in the Middle East; totally analysis of Freud, Carl Jung and Reich about groups can be applied in the present Middle East.Keywords: political, psychoanalysis, group, Middle East
Procedia PDF Downloads 310819 Reimaging Archetype of Mosque: A Case Study on Contemporary Mosque Architecture in Bangladesh
Authors: Sabrina Rahman
Abstract:
The Mosque is Islam’s most symbolic structure, as well as the expression of collective identity. From the explicit words of our Prophet, 'The earth has been created for me as a masjid and a place of purity, and whatever man from my Ummah finds himself in need of prayer, let him pray' (anywhere)! it is obvious that a devout Muslim does not require a defined space or structure for divine worship since the whole earth is his prayer house. Yet we see that from time immemorial man throughout the Muslim world has painstakingly erected innumerable mosques. However, mosque design spans time, crosses boundaries, and expresses cultures. It is a cultural manifestation as much as one based on a regional building tradition or a certain interpretation of religion. The trend to express physical signs of religion is not new. Physical forms seem to convey symbolic messages. However, in recent times physical forms of mosque architecture are dominantly demising from mosque architecture projects in Bangladesh. Dome & minaret, the most prominent symbol of the mosque, is replacing by contextual and contemporary improvisation rather than subcontinental mosque architecture practice of early fellows. Thus the recent mosque projects of the last 15 years established the contemporary architectural realm in their design. Contextually, spiritual lighting, the serenity of space, tranquility of outdoor spaces, the texture of materials is widely establishing a new genre of Muslim prayer space. A case study based research will lead to specify its significant factors of modernism. Based on the findings, the paper presents evidence of recent projects as well as a guideline for the future image of contemporary Mosque architecture in Bangladesh.Keywords: contemporary architecture, modernism, prayer space, symbolism
Procedia PDF Downloads 118818 The Role of Micro-Ribonucleic Acid-182 and Micro-Ribonucleic Acid-214 in Cisplatin Resistance of Triple-Negative Breast Cancer Cells
Authors: Bahadir Batar, Elif Serdal, Berna Erdal, Hasan Ogul
Abstract:
Micro-ribonucleic acids (miRNAs) are small short non-coding ribonucleic acid molecules about 22 nucleotides long. miRNAs play a key role in response to chemotherapeutic agents. WW domain-containing oxidoreductase (WWOX) gene encodes a tumor suppressor protein. Loss or reduction of Wwox protein is observed in many breast cancer cases. WWOX protein deficiency is increased in triple-negative breast cancer (TNBC). TNBC is a heterogeneous, highly aggressive, and difficult to treat tumor type. WWOX loss contributes to resistance to cisplatin therapy in patients with TNBC. Here, the aim of the study was to investigate the potential role of miRNAs in cisplatin therapy resistance of WWOX-deficient TNBC cells. This was a cell culture study. miRNA expression profiling was analyzed by LightCycler 480 system. miRNA Set Enrichment Analysis tool was used to integrate experimental data with literature-based biological knowledge to infer a new hypothesis. Increased miR-182 and decreased miR-214 were significantly correlated with cisplatin resistance in WWOX-deficient TNBC cells. miR-182 and miR-214 may involve in cisplatin resistance of WWOX-deficient TNBC cells by deregulating the DNA repair, apoptosis, or protein kinase B signaling pathways. These data highlight the mechanism by which WWOX regulates cisplatin resistance of TNBC and the potential use of WWOX as a predictor biomarker for cisplatin resistance.Keywords: cisplatin, microRNA, triple-negative breast cancer, WWOX
Procedia PDF Downloads 129817 In vitro Protein Folding and Stability Using Thermostable Exoshells
Authors: Siddharth Deshpande, Nihar Masurkar, Vallerinteavide Mavelli Girish, Malan Desai, Chester Drum
Abstract:
Folding and stabilization of recombinant proteins remain a consistent challenge for industrial and therapeutic applications. Proteins derived from thermophilic bacteria often have superior expression and stability qualities. To develop a generalizable approach to protein folding and stabilization, we tested the hypothesis that wrapping a thermostable exoshell around a protein substrate would aid folding and impart thermostable qualities to the internalized substrate. To test the effect of internalizing a protein within a thermostable exoshell (tES), we tested in vitro folding and stability using green fluorescent protein (GFPuv), horseradish peroxidase (HRP) and renilla luciferase (rLuc). The 8nm interior volume of a thermostable ferritin assembly was engineered to accommodate foreign proteins and either present a positive, neutral or negative interior charge environment. We further engineered the tES complex to reversibly assemble and disassemble with pH titration. Template proteins were expressed as inclusion bodies and an in vitro folding protocol was developed that forced proteins to fold inside a single tES. Functional yield was improved 100-fold, 100-fold and 150-fold with use of tES for GFPuv, HRP and rLuc respectively and was highly dependent on the internal charge environment of the tES. After folding, functional proteins could be released from the tES folding cavity using size exclusion chromatography at pH 5.8. Internalized proteins were tested for improved stability against thermal, organic, urea and guanidine denaturation. Our results demonstrated that thermostable exoshells can efficiently refold and stabilize inactive aggregates into functional proteins.Keywords: thermostable shell, in vitro folding, stability, functional yield
Procedia PDF Downloads 246816 A Conceptual Approach for Evaluating the Urban Renewal Process
Authors: Muge Unal, Ahmet Cilek
Abstract:
Urban identity, having a dynamic characteristic spatial and semantic aspects, is a phenomenon in an ever-changing. Urban identity formation includes not only a process of physical nature but also development and change processes that take place in the political, economic, social and cultural values, whether national and international level. Although the concept of urban transformation is basically regarded as the spatial transformation; in fact, it reveals a holistic perspective and transformation based on dialectical relationship existing between the spatial and social relationship. For this reason, urban renewal needs to address as not only spatial but also the impact of spatial transformation on social, cultural and economic. Implementation tools used in the perception of urban transformation are varied concepts such as urban renewal, urban resettlement, urban rehabilitation, urban redevelopment, and urban revitalization. The phenomenon of urban transformation begins with the Industrial Revolution. Until the 1980s, it was interpreted as reconsidering physical fossil on urban environment factor like occurring in rapid urbanization, changing in the spatial structure of the city, concentrating of the population in urban areas. However, after the 1980s, it has resided in a conceptual structure which requires to be addressed physical, economic, social, technological and integrity of information. In conclusion, urban transformation, when it enter the literature as a practice of planning, has been up to date in terms of the conceptual structure and content and also hasn’t remained behind converting itself. Urban transformation still maintains its simplest expression, while it transforms so fast converts the contents. In this study, the relationship between urban design and components of urban transformation were discussed with strategies used as a place in the historical process of urban transformation besides a general evaluation of the concept of urban renewal.Keywords: conceptual approach, urban identity, urban regeneration, urban renewal
Procedia PDF Downloads 427815 Bifunctional Electrospun Fibers Based on Poly(Lactic Acid)/Calcium Oxide Nanocomposites as a Potential Scaffold for Bone Tissue Engineering
Authors: Daniel Canales, Fabián Alvarez, Pablo Varela, Marcela Saavedra, Claudio García, Paula Zapata
Abstract:
Calcium oxide nanoparticles (n-CaO) ca. 8 nm were obtained from eggshell waste. The n-CaO was incorporated into Poly(lactic acid) PLA matrix in 10 and 20 wt.% of filler content by electrospinning process to obtain PLA/n-CaO nanocomposite fibers as a potential use in scaffold for bone tissue regeneration. The fibers morphology and diameter were homogeneity, the PLA had a diameter of 2.2 ± 0.8 µm and, with the nanoparticles incorporation (20wt.%), reached ca. 2.9 ± 0.9 µm. The PLA/n-CaO nanocomposites fibers showed in vitro bioactivity, capable of inducing the precipitation of hydroxyapatite (HA) layer in the fiber surface after 7 days in Simulated Body Solution (SBF). The biocidal and biological properties of PLA/n-Cao with 20 wt.% were evaluated, showing a 30% reduction in bacterial viability against S. aureus and 11% for E. coli after 6 hours of bacterial suspensions exposure. Furthermore, the fibers did not show a cytotoxic effect on the bone marrow ST-2 cell line, permitting the cell adhesion and proliferation in Roswell Park Memorial Institute medium (RPMI). The PLA/n-CaO with 20 wt.% of nanoparticles showed a higher capacity to promote the osteogenic differentiation, significantly increasing the alkaline phosphatase (ALP) expression after 7 days compared to PLA and cell control. The in vivo analysis corroborated the biocompatibility of scaffolds prepared, the presence of n-CaO in PLA reduced the formation of fibrous encapsulation of the material improve the healing process.Keywords: electrospun scaffolds, PLA based nanocomposites, calcium oxide nanoparticles, bioactive materials, tissue engineering
Procedia PDF Downloads 92814 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 173813 Extremism among College and High School Students in Moscow: Diagnostics Features
Authors: Puzanova Zhanna Vasilyevna, Larina Tatiana Igorevna, Tertyshnikova Anastasia Gennadyevna
Abstract:
In this day and age, extremism in various forms of its manifestation is a real threat to the world community, the national security of a state and its territorial integrity, as well as to the constitutional rights and freedoms of citizens. Extremism, as it is known, in general terms described as a commitment to extreme views and actions, radically denying the existing social norms and rules. Supporters of extremism in the ideological and political struggles often adopt methods and means of psychological warfare, appeal not to reason and logical arguments, but to emotions and instincts of the people, to prejudices, biases, and a variety of mythological designs. They are dissatisfied with the established order and aim at increasing this dissatisfaction among the masses. Youth extremism holds a specific place among the existing forms and types of extremism. In this context in 2015, we conducted a survey among Moscow college and high school students. The aim of this study was to determine how great or small is the difference in understanding and attitudes towards extremism manifestations, inclination and readiness to take part in extremist activities and what causes this predisposition, if it exists. We performed multivariate analysis and found the Russian college and high school students' opinion about the extremism and terrorism situation in our country and also their cognition on these topics. Among other things, we showed, that the level of aggressiveness of young people were not above the average for the whole population. The survey was conducted using the questionnaire method. The sample included college and high school students in Moscow (642 and 382, respectively) by method of random selection. The questionnaire was developed by specialists of RUDN University Sociological Laboratory and included both original questions (projective questions, the technique of incomplete sentences), and the standard test Dayhoff S. to determine the level of internal aggressiveness. It is also used as an experiment, the technique of study option using of FACS and SPAFF to determine the psychotypes and determination of non-verbal manifestations of emotions. The study confirmed the hypothesis that in respondents’ opinion, the level of aggression is higher today than a few years ago. Differences were found in the understanding of and respect for such social phenomena as extremism, terrorism, and their danger and appeal for the two age groups of young people. Theory of psychotypes, SPAFF (specific affect cording system) and FACS (facial action cording system) are considered as additional techniques for the diagnosis of a tendency to extreme views. Thus, it is established that diagnostics of acceptance of extreme views among young people is possible thanks to simultaneous use of knowledge from the different fields of socio-humanistic sciences. The results of the research can be used in a comparative context with other countries and as a starting point for further research in the field, taking into account its extreme relevance.Keywords: extremism, youth extremism, diagnostics of extremist manifestations, forecast of behavior, sociological polls, theory of psychotypes, FACS, SPAFF
Procedia PDF Downloads 337812 The Exploration of Persuasive Skills and Participants Characteristics in Pyramid-Sale: A Qualitative Study
Authors: Xing Yan Fan, Xing Lin Xu, Man Yuan Chen, Pei Tzu Lee, Yu Ting Wang, Yi Xiao Cao, Rui Yao
Abstract:
Pyramid sales have been a widespread issue in China. Victims who are defrauded not only lose money but damage interpersonal relationship. A deeper understanding of pyramid-sale models can be beneficial to prevent potential victims from fraud and improve the property security. The goals of this study were to detect psychological characteristics of pyramid-sale sellers, and analyse persuasive skills in pyramid organizations. A qualitative study was conducted in this study. Participants (n=6) recruited by 'snowball' sampling from present pyramid-sale sellers (n=3) and imprisoned pyramid-sale sellers (n=3). All participants accepted semi-structured interview for collecting data. Content analysis was adopted for data coding and analysis. The results indicate that pyramid organizations are used to utilize their appearance packaging and celebrity effect to strengthen the positions in participants’ mind. The status gap between pyramid-sale sellers in same organization, as well as rewards to increase reputation, are used to motivate participants in pyramid. The most significant common characteristics among all participants are that they tend to possess a high sense of belongingness within the firm. Moreover, the expression of pyramid-sale sellers on gambling mentality is expected to growth as constantly losing money. Findings suggest that the psychological characteristics of pyramid-sale sellers in accordance with Maslow’s hierarchy of needs, persuasive skills of pyramid organization confront to 'attitude-behaviour change model'. These findings have implication on 'immune education' that providing guidance for victims out of stuck and protecting ordinary people from the jeopardizing of pyramid sales.Keywords: pyramid sales, characteristics, persuasive skills, qualitative study
Procedia PDF Downloads 253811 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles
Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver
Abstract:
Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.Keywords: cancer cell, nanoparticles, cell culture, SEM
Procedia PDF Downloads 732810 Hippocampus Proteomic of Major Depression and Antidepressant Treatment: Involvement of Cell Proliferation, Differentiation, and Connectivity
Authors: Dhruv J. Limaye, Hanga Galfalvy, Cheick A. Sissoko, Yung-yu Huang, Chunanning Tang, Ying Liu, Shu-Chi Hsiung, Andrew J. Dwork, Gorazd B. Rosoklija, Victoria Arango, Lewis Brown, J. John Mann, Maura Boldrini
Abstract:
Memory and emotion require hippocampal cell viability and connectivity and are disrupted in major depressive disorder (MDD). Applying shotgun proteomics and stereological quantification of neural progenitor cells (NPCs), intermediate neural progenitors (INPs), and mature granule neurons (GNs), to postmortem human hippocampus, identified differentially expressed proteins (DEPs), and fewer NPCs, INPs and GNs, in untreated MDD (uMDD) compared with non-psychiatric controls (CTRL) and antidepressant-treated MDD (MDDT). DEPs lower in uMDD vs. CTRL promote mitosis, differentiation, and prevent apoptosis. DEPs higher in uMDD vs. CTRL inhibit the cell cycle, and regulate cell adhesion, neurite outgrowth, and DNA repair. DEPs lower in MDDT vs. uMDD block cell proliferation. We observe group-specific correlations between numbers of NPCs, INPs, and GNs and an abundance of proteins regulating mitosis, differentiation, and apoptosis. Altered protein expression underlies hippocampus cellular and volume loss in uMDD, supports a trophic effect of antidepressants, and offers new treatment targets.Keywords: proteomics, hippocampus, depression, mitosis, migration, differentiation, mitochondria, apoptosis, antidepressants, human brain
Procedia PDF Downloads 99809 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez
Abstract:
In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval
Procedia PDF Downloads 231808 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field
Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot
Abstract:
The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management
Procedia PDF Downloads 132807 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 60806 The Integration of Digital Humanities into the Sociology of Knowledge Approach to Discourse Analysis
Authors: Gertraud Koch, Teresa Stumpf, Alejandra Tijerina García
Abstract:
Discourse analysis research approaches belong to the central research strategies applied throughout the humanities; they focus on the countless forms and ways digital texts and images shape present-day notions of the world. Despite the constantly growing number of relevant digital, multimodal discourse resources, digital humanities (DH) methods are thus far not systematically developed and accessible for discourse analysis approaches. Specifically, the significance of multimodality and meaning plurality modelling are yet to be sufficiently addressed. In order to address this research gap, the D-WISE project aims to develop a prototypical working environment as digital support for the sociology of knowledge approach to discourse analysis and new IT-analysis approaches for the use of context-oriented embedding representations. Playing an essential role throughout our research endeavor is the constant optimization of hermeneutical methodology in the use of (semi)automated processes and their corresponding epistemological reflection. Among the discourse analyses, the sociology of knowledge approach to discourse analysis is characterised by the reconstructive and accompanying research into the formation of knowledge systems in social negotiation processes. The approach analyses how dominant understandings of a phenomenon develop, i.e., the way they are expressed and consolidated by various actors in specific arenas of discourse until a specific understanding of the phenomenon and its socially accepted structure are established. This article presents insights and initial findings from D-WISE, a joint research project running since 2021 between the Institute of Anthropological Studies in Culture and History and the Language Technology Group of the Department of Informatics at the University of Hamburg. As an interdisciplinary team, we develop central innovations with regard to the availability of relevant DH applications by building up a uniform working environment, which supports the procedure of the sociology of knowledge approach to discourse analysis within open corpora and heterogeneous, multimodal data sources for researchers in the humanities. We are hereby expanding the existing range of DH methods by developing contextualized embeddings for improved modelling of the plurality of meaning and the integrated processing of multimodal data. The alignment of this methodological and technical innovation is based on the epistemological working methods according to grounded theory as a hermeneutic methodology. In order to systematically relate, compare, and reflect the approaches of structural-IT and hermeneutic-interpretative analysis, the discourse analysis is carried out both manually and digitally. Using the example of current discourses on digitization in the healthcare sector and the associated issues regarding data protection, we have manually built an initial data corpus of which the relevant actors and discourse positions are analysed in conventional qualitative discourse analysis. At the same time, we are building an extensive digital corpus on the same topic based on the use and further development of entity-centered research tools such as topic crawlers and automated newsreaders. In addition to the text material, this consists of multimodal sources such as images, video sequences, and apps. In a blended reading process, the data material is filtered, annotated, and finally coded with the help of NLP tools such as dependency parsing, named entity recognition, co-reference resolution, entity linking, sentiment analysis, and other project-specific tools that are being adapted and developed. The coding process is carried out (semi-)automated by programs that propose coding paradigms based on the calculated entities and their relationships. Simultaneously, these can be specifically trained by manual coding in a closed reading process and specified according to the content issues. Overall, this approach enables purely qualitative, fully automated, and semi-automated analyses to be compared and reflected upon.Keywords: entanglement of structural IT and hermeneutic-interpretative analysis, multimodality, plurality of meaning, sociology of knowledge approach to discourse analysis
Procedia PDF Downloads 224805 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering
Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott
Abstract:
Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.Keywords: cancer research, graph theory, machine learning, single cell analysis
Procedia PDF Downloads 112804 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target
Authors: Vishal Raj, Noorhan Abbas
Abstract:
Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)
Procedia PDF Downloads 105803 Survey of the Effect of the Probiotic Bacterium Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT/PTEN, and MAPK Signaling Pathways at Co-Culture with KB Oral Cancer Cell Line and HUVEC Cells
Authors: Negar Zaheddoust, Negin Zaheddoust, Abbas Asoudeh-Fard
Abstract:
Probiotic bacteria have been employed as a novel and less side-effect strategy for anticancer therapy. Since the oral cavity is a host for probiotic and pathogen bacteria to colonize, more investigation is needed to evaluate the effectiveness of this novel adjunctive treatment for oral cancer. We considered Lactobacillus plantarum as a probiotic and Streptococcus mutans as a pathogen bacterium in our study. The aim of this study is to examine the effect of Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT / PTEN, and MAPK signaling pathway, which is involved in apoptosis or survival of oral cancer KB cells. On the other hand, to study the effects of these bacteria on normal cells, we used HUVEC cells. The KB and HUVEC cell lines were co-cultured with Lactobacillus plantarum and Streptococcus mutans isolated from traditional Iranian dairy and dental plaque, respectively. The growth-inhibitory effects of these two bacteria on KB and HUVEC cells were determined by (3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide) MTT assay. MTT results demonstrated that the proliferation of KB cells was affected in a time, dose, and strain-dependent manner. In the following, the examination of induced apoptosis or necrosis in co-cultured KB cells with the best IC50 concentration of the Lactobacillus plantarum and Streptococcus mutans will be analyzed by FACS flow cytometry, and the changes in gene expression of Casp3, AKT / PTEN, MAPK genes will be evaluated using real-time polymerase chain reaction.Keywords: cancer therapy, induced apoptosis, oral cancer, probiotics
Procedia PDF Downloads 247802 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 86801 Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering
Authors: Yusser Olguín, Diego Benavente, Fernando Dorta, Nicole Orellana, Cristian Acevedo
Abstract:
One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli.Keywords: microfluidics, nerve tissue engineering, microbioreactor, electrical stimuli
Procedia PDF Downloads 84800 Model Predictive Control Applied to Thermal Regulation of Thermoforming Process Based on the Armax Linear Model and a Quadratic Criterion Formulation
Authors: Moaine Jebara, Lionel Boillereaux, Sofiane Belhabib, Michel Havet, Alain Sarda, Pierre Mousseau, Rémi Deterre
Abstract:
Energy consumption efficiency is a major concern for the material processing industry such as thermoforming process and molding. Indeed, these systems should deliver the right amount of energy at the right time to the processed material. Recent technical development, as well as the particularities of the heating system dynamics, made the Model Predictive Control (MPC) one of the best candidates for thermal control of several production processes like molding and composite thermoforming to name a few. The main principle of this technique is to use a dynamic model of the process inside the controller in real time in order to anticipate the future behavior of the process which allows the current timeslot to be optimized while taking future timeslots into account. This study presents a procedure based on a predictive control that brings balance between optimality, simplicity, and flexibility of its implementation. The development of this approach is progressive starting from the case of a single zone before its extension to the multizone and/or multisource case, taking thus into account the thermal couplings between the adjacent zones. After a quadratic formulation of the MPC criterion to ensure the thermal control, the linear expression is retained in order to reduce calculation time thanks to the use of the ARMAX linear decomposition methods. The effectiveness of this approach is illustrated by experiment and simulation.Keywords: energy efficiency, linear decomposition methods, model predictive control, mold heating systems
Procedia PDF Downloads 270