Search results for: strain energy
7246 Superhydrophobic Behavior of SnO₂-TiO₂ Composite Thin Films
Authors: Debarun Dhar Purkayastha, Talinungsang
Abstract:
SnO₂-TiO₂ nanocomposite thin films were prepared by the sol-gel method on borosilicate glass substrate. The films were annealed at a temperature of 300ᵒC, 400ᵒC, and 500ᵒC respectively for 2h in the air. The films obtained were further modified with stearic acid in order to decrease the surface energy. The X-ray diffraction patterns for the SnO₂-TiO₂ thin films after annealing at different temperatures can be indexed to the mixture of TiO₂ (rutile and anatase) and SnO₂ (tetragonal) phases. The average crystallite size calculated from Scherrer’s formula is found to be 6 nm. The SnO₂-TiO₂ thin films were hydrophilic which on modification with stearic acid exhibit superhydrophobic behavior. The increase in hydrophobicity of SnO₂ film with stearic acid modification is attributed to the change in surface energy of the film. The films exhibit superhydrophilic behavior under UV irradiation for 1h. Thus, it is observed that stearic acid modified surfaces are superhydrophobic but convert into superhydrophilic on being subjected to UV irradiation. SnO₂-TiO₂ thin films have potential for self-cleaning applications because of photoinduced hydrophilicity under UV irradiation.Keywords: nanocomposite, self-cleaning, superhydrophobic, surface energy
Procedia PDF Downloads 1827245 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization
Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller
Abstract:
The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization
Procedia PDF Downloads 417244 Material Fracture Dynamic of Vertical Axis Wind Turbine Blade
Authors: Samir Lecheb, Ahmed Chellil, Hamza Mechakra, Brahim Safi, Houcine Kebir
Abstract:
In this paper we studied fracture and dynamic behavior of vertical axis wind turbine blade, the VAWT is a historical machine, it has many properties, structure, advantage, component to be able to produce the electricity. We modeled the blade design then imported to Abaqus software for analysis the modes shapes, frequencies, stress, strain, displacement and stress intensity factor SIF, after comparison we chose the idol material. Finally, the CTS test of glass epoxy reinforced polymer plates to obtain the material fracture toughness Kc.Keywords: blade, crack, frequency, material, SIF
Procedia PDF Downloads 5537243 Unsteady Characteristics Investigation on the Precessing Vortex Breakdown and Energy Separation in a Vortex Tube
Authors: Xiangji Guo, Bo Zhang
Abstract:
In this paper, the phenomenon of vortex breakdown in a vortex tube was analyzed within the scope of unsteady character in swirl flows. A 3-D Unsteady Reynolds-averaged Navier–Stokes (URANS) closed by the Reynolds Stress Model (RSM) was adopted to simulate the large-scale vortex structure in vortex tube, and the numerical model was verified by the steady results. The swirl number was calculated for the vortex tube and the flow field was classed as strong swirl flow. According to the results, a time-dependent spiral flow field gyrates around a central recirculation zone which is precessing around the axis of the tube, and manifests the flow structure is the spiral type (S-type) vortex breakdown. The vortex breakdown is crucial for the formation of the central recirculation zone (CRZ), a further discussion was about the affection on CRZ with the different external conditions of vortex tube, the study on the unsteady characters was expected to hope to design of vortex tube and analyze the energy separation effect.Keywords: vortex tube, vortex breakdown, central recirculation zone, unsteady, energy separation
Procedia PDF Downloads 3227242 Design and Implementation of a Nano-Power Wireless Sensor Device for Smart Home Security
Authors: Chia-Chi Chang
Abstract:
Most battery-driven wireless sensor devices will enter in sleep mode as soon as possible to extend the overall lifetime of a sensor network. It is necessary to turn off unnecessary radio and peripheral functions, especially the radio unit always consumes more energy than other components during wireless communication. The microcontroller is the most important part of the wireless sensor device. It is responsible for the manipulation of sensing data and communication protocols. The microcontroller always has different sleep modes, each with a different level of energy usage. The deeper the sleep, the lower the energy consumption. Most wireless sensor devices can only enter the sleep mode: the external low-frequency oscillator is still running to wake up the sleeping microcontroller when the sleep timer expires. In this paper, our sensor device can enter the extended sleep mode: none of the oscillator is running and the wireless sensor device has the nanoampere consumption and self-awaking ability. Finally, these wireless sensor devices were deployed in a smart home security network.Keywords: wireless sensor network, battery-driven, sleep mode, home security
Procedia PDF Downloads 3117241 Creating Energy Sustainability in an Enterprise
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure
Procedia PDF Downloads 1167240 Study on the Impact of Default Converter on the Quality of Energy Produced by DFIG Based Wind Turbine
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB/Simulink software illustrate the quality of the power generated at the default.Keywords: doubly fed induction generator (DFIG), wind energy, PWM inverter, modeling
Procedia PDF Downloads 3207239 Energy Mutual Funds: The Behavior of Environmental, Social and Governance Funds
Authors: Anna Paola Micheli, Anna Maria Calce, Loris Di Nallo
Abstract:
Sustainable finance identifies the process that leads, in the adoption of investment decisions, to take into account environmental and social factors, with the aim of orienting investments towards sustainable and long-term activities. Considering that the topic is at the center of the interest of national agendas, long-term investments will no longer be analyzed only by looking at financial data, but environmental, social, and governance (ESG) factors will be increasingly important and will play a fundamental role in determining the risk and return of an investment. Although this perspective does not deny the orientation to profit, ESG mutual funds represent sustainable finance applied to the world of mutual funds. So the goal of this paper is to verify this attitude, in particular in the energy sector. The choice of the sector is not casual: ESG is the acronym for environmental, social, and governance, and energy companies are strictly related to the environmental theme. The methodology adopted leads to a comparison between a sample of ESG funds and a sample of ESG funds with similar characteristics, using the most important indicators of literature: yield, standard deviation, and Sharpe index. The analysis is focused on equity funds. Results that are partial, due to the lack of historicity, show a good performance of ESG funds, testifying how a sustainable approach does not necessarily mean lower profits. It is clear that these first findings do not involve an absolute preference for ESG funds in terms of performance because the persistence of results is requested. Furthermore, these findings are to be verified in other sectors and in bond funds.Keywords: mutual funds, ESG, performance, energy
Procedia PDF Downloads 1197238 Recommendations for Environmental Impact Assessment of Geothermal Projects on Mature Oil Fields
Authors: Daria Karasalihovic Sedlar, Lucija Jukic, Ivan Smajla, Marija Macenic
Abstract:
This paper analyses possible geothermal energy production from a mature oil reservoir based on exploitation of underlying aquifer thermal energy for the purpose of heating public buildings. Research was conducted based on the case study of the City of Ivanic-Grad public buildings energy demand and Ivanic oil filed that is situated in the same area. Since the City of Ivanic is one of the few cities in the EU where hydrocarbon exploitation has been taking place for decades almost entirely in urban area, decommissioning of oil wells is inevitable; therefore, the research goal was to investigate how to extend the life-time of the reservoir by exploiting geothermal brine beneath the oil reservoir in an environmental friendly manner. This kind of a project is extremely complex in all segments, from documentation preparation, implementation of technological solutions, and providing ecological measures for environmentally acceptable geothermal energy production and utilization. New mining activities that will be needed for the development of geothermal project at the observed Hydrocarbon Exploitation Field Ivanic will be carried out in order to prepare wells for increasing geothermal brine production. These operations involve the conversion of existing wells (well completion for conversion of the observation wells to production ones) along with workover activities, installation of new heat exchangers, and pipelines. Since the wells are in the urban area of the City of Ivanic-Grad in high density populated area, the inhabitants will be exposed to the different environmental impacts during preparation phase of the project. For the purpose of performing workovers, it will be necessary to secure access to wellheads of existing wells. This paper gives guidelines for describing potential impacts on environment components that could occur during geothermal production preparation on existing mature oil filed, recommends possible protection measures to mitigate these impacts, and gives recommendations for environmental monitoring.Keywords: geothermal energy production, mature oil filed, environmental impact assessment, underlying aquifer thermal energy
Procedia PDF Downloads 1537237 Structural Behaviour of Concrete Energy Piles in Thermal Loadings
Authors: E. H. N. Gashti, M. Malaska, K. Kujala
Abstract:
The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6°C to 0°C (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the single-tube system.Keywords: concrete energy piles, stresses, displacements, thermo-mechanical behaviour, soil-structure interactions
Procedia PDF Downloads 2187236 Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones
Authors: Lucas Caldas, Pablo Paulse, Karla Hora
Abstract:
Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector.Keywords: bioclimatic zones, Brazil, shipping containers, thermal and energy performance
Procedia PDF Downloads 1767235 Comparison of Effect of Pre-Stressed Strand Diameters Providing Beamm to Column Connection
Authors: Mustafa Kaya
Abstract:
In this study, the effect of pre-stressed strand diameters, providing the beam-to-column connections, was investigated from both experimental, and analytical aspects. In the experimental studies, the strength, stiffness, and energy dissipation capacities of the precast specimens comprising two pre-stressed strand samples of 12.70 mm, and 15.24 mm diameters, were compared with the reference specimen. The precast specimen with strands of 15.24 mm reached 96% of the maximum strength of the reference specimen; the amount of energy dissipated by this specimen until end of the test reached 48% of the amount of energy dissipated by the reference sample, and the stiffness of the same specimen at a 1.5% drift of reached 77% of the stiffness of the reference specimen at this drift. Parallel results were obtained during the analytical studies from the aspects of strength, and behavior, but the initial stiffness of the analytical models was lower than that of the test specimen.Keywords: precast beam to column connection, moment resisting connection, post tensioned connections, finite element method
Procedia PDF Downloads 5567234 Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer
Authors: N. Metidji, N. Kasbadji Merzouk, O. Badaoui, R. Sellami, A. Djebli
Abstract:
The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste.Keywords: solar energy, solar dryer, energy conversion, orange drying, forced convection solar dryer
Procedia PDF Downloads 3597233 Environmental Evaluation of Alternative/Renewable Fuels Technology
Authors: Muhammad Hadi Ibrahim
Abstract:
The benefits of alternative/renewable fuels in general and a study of the environmental impacts of biofuels in particular have been reviewed in this paper. It is a known fact that, energy generation using fossil fuel produces many important pollutants including; nitrogen oxides, hydrocarbons, soot, dust, smoke and other particulate harmful matter. It’s believed that if carbon dioxide levels continue to increase drastically, the planet will become warmer and will most likely result in a variety of negative impacts including; sea-level rise, extreme and unpredictable weather events and an increased frequency of draughts in inland agricultural zones. Biofuels such as alcohols, biogas, etc. appear to be more viable alternatives, especially for use as fuels in diesel engines. The substitution of fossil fuel through increased utilization of biofuels produced in a sustainable manner, can contribute immensely towards a cleaner environment, reduction in greenhouse gas emissions and mitigation of climate change. Stakeholders in the energy sector can be sensitized by the findings of the research study and to consider the possible adverse effects in developing technologies for the production and combustion of biofuels.Keywords: emission, energy, renewable/alternative fuel, environment, pollution
Procedia PDF Downloads 2087232 Feasibility on Introducing an Alternative Solar Powered Propelling Mechanism for Multiday Fishing Boats in Sri Lanka
Authors: Oshada Gamage, Chamal Wimalasooriya, Chrismal Boteju, W. K. Wimalsiri
Abstract:
This paper presents a study on the feasibility of introducing a solar powered propelling mechanism to multi-day fishing boats as an alternative energy source. Since solar energy is readily available on the sea throughout the year, this free energy could be utilized to power multi-day fishing vessels. Multi-day boats have a large deck area where solar panels can be mounted above without much effort. This project involves studying the amount of power that can be generated using onboard solar panels and implementing an independent propelling system to run the boat. A chain drive system was designed to propel the boat, when the batteries are fully charged, from an electric motor using the same propeller. A 60 feet multi-day fishing boat built by a local boat manufacturer was chosen for the study. The service speed of the boat was around 6 knots with the electric motor, and the duration of cruising is 1 hour per day with around 11 hours of charging. 350-watt Mono-crystalline PV module, 75 kW HVH type motor, and 10 kWh lithium-ion battery packs were chosen for the study. From the calculations, it was obtained that the boat has 30 PV modules (10.5 kW), 5 batteries (47 kWh), The boat dimensions are 20 meter length of water line, 5.51 meter of beam, 1.8 meter of draught, and 77 ton of total displacement with the PV system net present value of USD 12445 for 20 years of operation and a payback period of around 8.2 years.Keywords: multiday fishing boats, photovoltaic cells, solar energy, solar powered boat
Procedia PDF Downloads 1527231 Numerical Investigation of Al2O3/Water Nanofluid Heat Transfer in a Microtube with Viscous Dissipation Effect
Authors: Misagh Irandoost Shahrestani, Hossein Shokouhmand, Mohammad Kalteh, Behrang Hasanpour
Abstract:
In this paper, nanofluid conjugate heat transfer through a microtube with viscous dissipation effect is investigated numerically. The fluid flow is considered as a laminar regime. A constant heat flux is applied on the microtube outer wall and the two ends of its wall are considered adiabatic. Conjugate heat transfer problem is solved and investigated for this geometry. It is shown that viscous dissipation effect which is induced by shear stresses can not be neglected in microtubes. Viscous heating behaves as an energy source in the fluid and affects the temperature distribution. The effect of Reynolds number, particle volume fraction and the nanoparticles diameter on the energy source are investigated and an attempt on establishing suitable equations for assessing the value of the energy source based on Re, Dp and Φ is performed and they are depicted as 3D diagrams. Finally, the significance of viscous dissipation and the influence of these parameters on convective heat transfer coefficient are studied.Keywords: convective heat transfer coefficient, heat transfer, microtube, nanofluid, viscous dissipation
Procedia PDF Downloads 5167230 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures
Authors: Mostafa Amirjan
Abstract:
In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.Keywords: hollow sphere structure foam, nanocomposite, thickness and diameter (t/D ), powder metallurgy
Procedia PDF Downloads 4567229 Cleaner Production Options for Fishery Wastes Around Lake Tana-Ethiopia
Authors: Abate Getnet Demisash, Beshatu Taye Hatew, Ababo Geleta Gudisa
Abstract:
As consumption trends of fish are rising in Ethiopia, assessment of the environmental performance of Fisheries becomes vital. Hence, Cleaner Production Assessment was conducted on Lake Tana No.1 Fish Supply Association. This paper focuses on determining the characteristics, quantity and setting up cleaner production option for the site with experimental investigation. The survey analysis showed that illegal waste dumping in Lake Tana is common practice in the area and some of the main reasons raised were they have no option than doing this for discharging fish wastes. Quantifying a fish waste by examination of records at the point of generation resulted in generation rate of 72,822.61 kg per year which is a significant amount of waste and needs management system. The result of the proximate analysis showed high free fat content of about 12.33% and this was a good candidate for the production of biodiesel that has been set as an option for fish waste utilization. Among the different waste management options, waste reduction by product optimization which involves biodiesel production was chosen as a potential method. Laboratory scale experiments were performed to produce renewable energy source from the wastes. The resulting biodiesel was characterized and found to have a density of 0.756kg/L, viscosity 0.24p and 153°C flash points which shows the product has values in compliance with American Society for Testing and Materials (ASTM) standards.Keywords: biodiesel, cleaner production, renewable energy, clean energy, waste to energy
Procedia PDF Downloads 1467228 Ground Source Ventilation and Solar PV Towards a Zero-Carbon House in Riyadh
Authors: Osamah S. Alanazi, Mohammad G. Kotbi, Mohammed O. AlFadil
Abstract:
While renewable energy technology is developing in Saudi Arabia, and the ambitious 2030 vision encourages the shift towards more efficient and clean energy usage. The research on the application of geothermal resources in residential use for the Saudi Arabian context will contribute towards a more sustainable environment. This paper is a part of an ongoing master's thesis, which its main goal is to investigate the possibility of achieving a zero-carbon house in Riyadh by applying a ground-coupled system into a current sustainable house that uses a grid-tied solar system. The current house was built and designed by King Saud University for the 2018 middle east solar decathlon competition. However, it failed to reach zero-carbon operation due to the high cooling demand. This study will redesign and validate the house using Revit and Carriers Hourly Analysis 'HAP' software with the use of ordinary least square 'OLS' regression. After that, a ground source ventilation system will be designed using the 'GCV Tool' to reduce cooling loads. After the application of the ground source system, the new electrical loads will be compared with the current house. Finally, a simple economic analysis that includes the cost of applying a ground source system will be reported. The findings of this study will indicate the possibility and feasibility of reaching a zero-carbon house in Riyadh, Saudi Arabia, using a ground-coupled ventilation system. While cooling in the residential sector is the dominant energy consumer in the Gulf region, this work will certainly help in moving towards using renewable sources to meet those demands. This paper will be limited to highlight the literature review, the methodology of the research, and the expected outcome.Keywords: renewable energy, zero-carbon houses, sustainable buildings, geothermal energy, solar PV, GCV Tool
Procedia PDF Downloads 1857227 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints
Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno
Abstract:
Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.Keywords: battery energy storage, power system stability, system strength, weak power system
Procedia PDF Downloads 647226 Effect of Operating Conditions on the Process Hydrogen Storage in Metal Hydride
Authors: A. Babou, Y. Kerboua Ziari, Y. Kerkoub
Abstract:
The risks of depletion of fossil fuel reserves and environmental problems caused by their consumption cause to consider alternative energy solutions. Hydrogen appears as a serious solution because its combustion produces only water. The objective of this study is to digitally analyze the effect of operating conditions on the process of absorption of hydrogen in a tank of metal hydride alloy Lanthanum - Nickel (LaNi 5). For this modeling of heat transfer and mass in the tank was carried .The results of numerical weather prediction are in good agreement with the experimental results.Keywords: hydrogen, storage, energy, fuel, simulation
Procedia PDF Downloads 3087225 Technology Valuation of Unconventional Gas R&D Project Using Real Option Approach
Authors: Young Yoon, Jinsoo Kim
Abstract:
The adoption of information and communication technologies (ICT) in all industry is growing under industry 4.0. Many oil companies also are increasingly adopting ICT to improve the efficiency of existing operations, take more accurate and quicker decision making and reduce entire cost by optimization. It is true that ICT is playing an important role in the process of unconventional oil and gas development and companies must take advantage of ICT to gain competitive advantage. In this study, real option approach has been applied to Unconventional gas R&D project to evaluate ICT of them. Many unconventional gas reserves such as shale gas and coal-bed methane(CBM) has developed due to technological improvement and high energy price. There are many uncertainties in unconventional development on the three stage(Exploration, Development, Production). The traditional quantitative benefits-cost method, such as net present value(NPV) is not sufficient for capturing ICT value. We attempted to evaluate the ICT valuation by applying the compound option model; the model is applied to real CBM project case, showing how it consider uncertainties. Variables are treated as uncertain and a Monte Carlo simulation is performed to consider variables effect. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).Keywords: information and communication technologies, R&D, real option, unconventional gas
Procedia PDF Downloads 2327224 Optimization of the Performance of a Solar Concentrator System with a Cavity Receiver Using the Genetic Algorithm
Authors: Foozhan Gharehkhani
Abstract:
The use of solar energy as a sustainable renewable energy source has gained significant attention in recent years. Solar concentrating systems (CSP), which direct solar radiation onto a receiver, are an effective means of producing high-temperature thermal energy. Cavity receivers, known for their high thermal efficiency and reduced heat losses, are particularly noteworthy in these systems. Optimizing their design can enhance energy efficiency and reduce costs. This study leverages the genetic algorithm, a powerful optimization tool inspired by natural evolution, to optimize the performance of a solar concentrator system with a cavity receiver, aiming for a more efficient and cost-effective design. In this study, a system consisting of a solar concentrator and a cavity receiver was analyzed. The concentrator was designed as a parabolic dish, and the receiver had a cylindrical cavity with a helical structure. The primary parameters were defined as the cavity diameter (D), the receiver height (h), and the helical pipe diameter (d). Initially, the system was optimized to achieve the maximum heat flux, and the optimal parameter values along with the maximum heat flux were obtained. Subsequently, a multi-objective optimization approach was applied, aiming to maximize the heat flux while minimizing the system construction cost. The optimization process was conducted using the genetic algorithm implemented in MATLAB with precise execution. The results of this study revealed that the optimal dimensions of the receiver, including the cavity diameter (D), receiver height (h), and helical pipe diameter (d), were determined to be 0.142 m, 0.1385 m, and 0.011 m, respectively. This optimization resulted in improvements of 3% in the cavity diameter, 8% in the height, and 5% in the helical pipe diameter. Furthermore, the results indicated that the primary focus of this research was the accurate thermal modeling of the solar collection system. The simulations and the obtained results demonstrated that the optimization applied to this system maximized its thermal performance and elevated its energy efficiency to a desirable level. Moreover, this study successfully modeled and controlled effective temperature variations at different angles of solar irradiation, highlighting significant improvements in system efficiency. The significance of this research lies in leveraging solar energy as one of the prominent renewable energy sources, playing a key role in replacing fossil fuels. Considering the environmental and economic challenges associated with the excessive use of fossil resources—such as increased greenhouse gas emissions, environmental degradation, and the depletion of fossil energy reserves—developing technologies related to renewable energy has become a vital priority. Among these, solar concentrating systems, capable of achieving high temperatures, are particularly important for industrial and heating applications. This research aims to optimize the performance of such systems through precise design and simulation, making a significant contribution to the advancement of advanced technologies and the efficient utilization of solar energy in Iran, thereby addressing the country's future energy needs effectively.Keywords: cavity receiver, genetic algorithm, optimization, solar concentrator system performance
Procedia PDF Downloads 147223 Nonlinear Finite Element Analysis of Concrete Filled Steel I-Girder Bridge
Authors: Waheed Ahmad Safi, Shunichi Nakamura
Abstract:
Concrete filled steel I-girder (CFIG) bridge was proposed and the bending and shear strength was confirmed by experiments. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used to the intermediate support of a continuous girder. Three-dimensional finite element models were established to simulate the bending and shear behaviors of CFIG and to clarify the load transfer mechanism. Steel plates and filled concrete were modeled as a three-dimensional 8-node solid element and steel reinforcement bars as a three-dimensional 2-node truss element. The elements were mostly divided into the 50 x 50 mm mesh size. The non-linear stress-strain relation is assumed for concrete in compression including the softening effect after the peak, and the stress increases linearly for concrete in tension until concrete cracking but then decreases due to tension stiffening effect. The stress-strain relation for steel plates was tri-linear and that for reinforcements was bi-linear. The concrete and the steel plates were rigidly connected. The developed FEM model was applied to simulate and analysis the bending behaviors of the CFIG specimens. The vertical displacements and the strains of steel plates and the filled concrete obtained by FEM agreed very well with the test results until the yield load. The specimens collapsed when the upper flange buckled or the concrete spalled off. These phenomena cannot be properly analyzed by FEM, which produces a small discrepancy at the ultimate states. The FEM model was also applied to simulate and analysis the shear tests of the CFIG specimens. The vertical displacements and strains of steel and concrete calculated by FEM model agreed well with the test results. A truss action was confirmed by the FEM and the experiment, clarifying that shear forces were mainly resisted by the tension strut of the steel plate and the compression strut of the filled concrete acting in the diagonal direction. A trail design with the CFIG was carried out for a four-span continuous highway bridge and the design method was established. Construction cost was estimated about 12% lower than that of a conventional steel I-section girder.Keywords: concrete filled steel I-girder, bending strength, FEM, limit states design, steel I-girder, shear strength
Procedia PDF Downloads 2237222 Analysis of Causality between Economic Growth and Carbon Emissions: The Case of Mexico 1971-2011
Authors: Mario Gómez, José Carlos Rodríguez
Abstract:
This paper analyzes the Environmental Kuznets Curve (EKC) hypothesis to test the causality relationship between economic activity, trade openness and carbon dioxide emissions in Mexico (1971-2011). The results achieved in this research show that there are three long-run relationships between production, trade openness, energy consumption and carbon dioxide emissions. The EKC hypothesis was not verified in this research. Indeed, it was found evidence of a short-term unidirectional causality from GDP and GDP squared to carbon dioxide emissions, from GDP, GDP squared and TO to EC, and bidirectional causality between TO and GDP. Finally, it was found evidence of long-term unidirectional causality from all variables to carbon emissions. These results suggest that a reduction in energy consumption, economic activity, or an increase in trade openness would reduce pollution.Keywords: causality, cointegration, energy consumption, economic growth, environmental Kuznets curve
Procedia PDF Downloads 3537221 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch
Authors: M. Talebzadegan, S. Bina, I. Riazi
Abstract:
The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.Keywords: Solar energy, Heat Demand, Renewable , Pollution
Procedia PDF Downloads 2547220 Estimation of Solar Radiation Power Using Reference Evaluation of Solar Transmittance, 2 Bands Model: Case Study of Semarang, Central Java, Indonesia
Authors: Benedictus Asriparusa
Abstract:
Solar radiation is a green renewable energy which has the potential to answer the needs of energy problems on the period. Knowing how to estimate the strength of the solar radiation force may be one solution of sustainable energy development in an integrated manner. Unfortunately, a fairly extensive area of Indonesia is still very low availability of solar radiation data. Therefore, we need a method to estimate the exact strength of solar radiation. In this study, author used a model Reference Evaluation of Solar Transmittance, 2 Bands (REST 2). Validation of REST 2 model has been performed in Spain, India, Colorado, Saudi Arabia, and several other areas. But it is not widely used in Indonesia. Indonesian region study area is represented by the area of Semarang, Central Java. Solar radiation values estimated using REST 2 model was then verified by field data and gives average RMSE value of 6.53%. Based on the value, it can be concluded that the model REST 2 can be used to estimate the value of solar radiation in clear sky conditions in parts of Indonesia.Keywords: estimation, solar radiation power, REST 2, solar transmittance
Procedia PDF Downloads 4317219 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis
Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh
Abstract:
In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.Keywords: coal fired power plants, environmental performance, data envelopment analysis, operational performance
Procedia PDF Downloads 4587218 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells
Authors: Saheed O. Akinwale, Olufemi A. Koya
Abstract:
Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness
Procedia PDF Downloads 2327217 Effects of Compensation on Distribution System Technical Losses
Authors: B. Kekezoglu, C. Kocatepe, O. Arikan, Y. Hacialiefendioglu, G. Ucar
Abstract:
One of the significant problems of energy systems is to supply economic and efficient energy to consumers. Therefore studies has been continued to reduce technical losses in the network. In this paper, the technical losses analyzed for a portion of European side of Istanbul MV distribution network for different compensation scenarios by considering real system and load data and results are presented. Investigated system is modeled with CYME Power Engineering Software and optimal capacity placement has been proposed to minimize losses.Keywords: distribution system, optimal capacitor placement, reactive power compensation, technical losses
Procedia PDF Downloads 678