Search results for: investor behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6588

Search results for: investor behavior

3978 Design, Implementation and Evaluation of Health and Social Justice Trainings in Nigeria

Authors: Juliet Sorensen, Anna Maitland

Abstract:

Introduction: Characterized by lack of water and sanitation, food insecurity, and low access to hospitals and clinics, informal urban settlements in Lagos, Nigeria have very poor health outcomes. With little education and a general inability to demand basic rights, these communities are often disempowered and isolated from understanding, claiming, or owning their health needs. Utilizing community-based participatory research characterized by interdisciplinary, cross-cultural partnerships, evidence-based assessments, and both primary and secondary source research, a holistic health education and advocacy program was developed in Lagos to address health barriers for targeted communities. This includes a first of its kind guide formulated to teach community-based health educators how to transmit health information to low-literacy Nigerian audiences while supporting behavior change models and social support mechanisms. This paper discusses the interdisciplinary contributions to developing a health education program while also looking at the need for greater beneficiary ownership and implementation of health justice and access. Methods: In March 2016, an interdisciplinary group of medical, legal, and business graduate students and faculty from Northwestern University conduced a Health Needs Assessment (HNA) in Lagos with a partner and a local non-governmental organization. The HNA revealed that members of informal urban communities in Lagos were lacking basic health literacy, but desired to remedy this lacuna. Further, the HNA revealed that even where the government mandates specific services, many vulnerable populations are unable to access these services. The HNA concluded that a program focused on education, advocacy, and organizing around anatomy, maternal and sexual health, infectious disease and malaria, HIV/AIDS, emergency care, and water and sanitation would respond to stated needs while also building capacity in communities to address health barriers. Results: Based on the HNA, including both primary and secondary source research on integrated health education approaches and behavior change models and responsive, adaptive material development, a holistic program was developed for the Lagos partners and first implemented in November 2016. This program trained community-nominated health educators in adult, low-literacy, knowledge exchange approaches, utilizing information identified by communities as a priority. After a second training in March 2017, these educators will teach community-based groups and will support and facilitate behavior change models and peer-support methods around basic issues like hand washing and disease transmission. They will be supported by community paralegals who will help ensure that newly trained community groups can act on education around access, such as receiving free vaccinations, maternal health care, and HIV/AIDS medicines. Materials will continue to be updated as needs and issues arise, with a focus on identifying best practices around health improvements that can be shared across these partner communities. Conclusion: These materials are the first of their kind, and address a void of health information and understanding pervasive in informal-urban Lagos communities. Initial feedback indicates high levels of commitment and interest, as well as investment by communities in these materials, largely because they are responsive, targeted, and build community capacity. This methodology is an important step in dignity-based health justice solutions, albeit in the process of refinement.

Keywords: community health educators, interdisciplinary and cross cultural partnerships, health justice and access, Nigeria

Procedia PDF Downloads 249
3977 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage

Procedia PDF Downloads 394
3976 Analysis of Maintenance Operations in an Industrial Bakery Line

Authors: Mehmet Savsar

Abstract:

This paper presents a practical case application of simulation modeling and analysis in a specific industrial setting. Various maintenance related parameters of the equipment in the system under consideration are determined and a simulation model is developed to study system behavior. System performance is determined based on established parameters and operational policies, which included system operation with and without preventive maintenance implementation. The results show that preventive maintenance practice has significant effects on improving system productivity. The simulation procedures outlined in this paper can be used by operation managers to perform production line analysis under different maintenance policies in various industrial settings.

Keywords: simulation, production line, machine failures, maintenance, industrial bakery

Procedia PDF Downloads 489
3975 Temperature Dependent Tribological Properties of Graphite

Authors: Pankaj Kumar Das, Niranjan Kumar, Prasun Chakraborti

Abstract:

Temperature dependent tribologiocal properties of nuclear grade turbostatic graphite were studied using 100Cr6 steel counterbody. High value of friction coefficient (0.25) and high wear loss was observed at room temperature and this value decreased to 0.1 at 150oC. Consequently, wear loss is also decreased. Such behavior is explained by oxidation/vaporization of graphite and water molecules. At room temperature, the adsorbed water in graphite does not decompose and effect of passivation mechanism does not work. However, at 150oC, the water decomposed into OH, atomic hydrogen and oxygen which efficiently passivates the carbon dangling bonds. This effect is known to decrease the energy of the contact and protect against abrasive wear.

Keywords: high temperature tribology, oxidation, turbostratic graphite, wear

Procedia PDF Downloads 518
3974 Phase Transition of Aqueous Ternary (THF + Polyvinylpyrrolidone + H2O) System as Revealed by Terahertz Time-Domain Spectroscopy

Authors: Hyery Kang, Dong-Yeun Koh, Yun-Ho Ahn, Huen Lee

Abstract:

Determination of the behavior of clathrate hydrate with inhibitor in the THz region will provide useful information about hydrate plug control in the upstream of the oil and gas industry. In this study, terahertz time-domain spectroscopy (THz-TDS) revealed the inhibition of the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different molecular weights. Distinct footprints of phase transition in the THz region (0.4–2.2 THz) were analyzed and absorption coefficients and real part of refractive indices are obtained in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy.

Keywords: clathrate hydrate, terahertz spectroscopy, tetrahydrofuran, inhibitor

Procedia PDF Downloads 341
3973 Insider Theft Detection in Organizations Using Keylogger and Machine Learning

Authors: Shamatha Shetty, Sakshi Dhabadi, Prerana M., Indushree B.

Abstract:

About 66% of firms claim that insider attacks are more likely to happen. The frequency of insider incidents has increased by 47% in the last two years. The goal of this work is to prevent dangerous employee behavior by using keyloggers and the Machine Learning (ML) model. Every keystroke that the user enters is recorded by the keylogging program, also known as keystroke logging. Keyloggers are used to stop improper use of the system. This enables us to collect all textual data, save it in a CSV file, and analyze it using an ML algorithm and the VirusTotal API. Many large companies use it to methodically monitor how their employees use computers, the internet, and email. We are utilizing the SVM algorithm and the VirusTotal API to improve overall efficiency and accuracy in identifying specific patterns and words to automate and offer the report for improved monitoring.

Keywords: cyber security, machine learning, cyclic process, email notification

Procedia PDF Downloads 59
3972 Molecular Junctions between Graphene Strips: Electronic and Transport Properties

Authors: Adel Belayadi, Ahmed Mougari, Boualem Bourahla

Abstract:

Molecular junctions are currently considered a promising style in the miniaturization of electronic devices. In this contribution, we provide a tight-binding model to investigate the quantum transport properties across-molecular junctions sandwiched between 2D-graphene nanoribbons in the zigzag direction. We investigate, in particular, the effect of embedded atoms such as Gold and Silicon across the molecular junction. The results exhibit a resonance behavior in terms of incident Fermi levels, depending on the molecular junction type. Additionally, the transport properties under a perpendicular magnetic field exhibit an oscillation for the transmittance versus the magnetic field strength.

Keywords: molecular junction, 2D-graphene nanoribbons, quantum transport properties, magnetic field

Procedia PDF Downloads 97
3971 Designing a Robust Controller for a 6 Linkage Robot

Authors: G. Khamooshian

Abstract:

One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.

Keywords: 3-RRS, 6 linkage, parallel robot, control

Procedia PDF Downloads 160
3970 Experimental Squeeze Flow of Bitumen: Rheological Properties

Authors: A. Kraiem, A. Ayadi

Abstract:

The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.

Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress

Procedia PDF Downloads 141
3969 Nonstationarity Modeling of Economic and Financial Time Series

Authors: C. Slim

Abstract:

Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series.

Keywords: stationarity, unit root tests, economic time series, ADF tests

Procedia PDF Downloads 424
3968 Correlation Matrix for Automatic Identification of Meal-Taking Activity

Authors: Ghazi Bouaziz, Abderrahim Derouiche, Damien Brulin, Hélène Pigot, Eric Campo

Abstract:

Automatic ADL classification is a crucial part of ambient assisted living technologies. It allows to monitor the daily life of the elderly and to detect any changes in their behavior that could be related to health problem. But detection of ADLs is a challenge, especially because each person has his/her own rhythm for performing them. Therefore, we used a correlation matrix to extract custom rules that enable to detect ADLs, including eating activity. Data collected from 3 different individuals between 35 and 105 days allows the extraction of personalized eating patterns. The comparison of the results of the process of eating activity extracted from the correlation matrices with the declarative data collected during the survey shows an accuracy of 90%.

Keywords: elderly monitoring, ADL identification, matrix correlation, meal-taking activity

Procedia PDF Downloads 95
3967 E-Resource Management: Digital Environment for a Library System

Authors: Vikram Munjal, Harpreet Munjal

Abstract:

A few years ago we could hardly think of Libraries' strategic plan that includes the bold and amazing prediction of a mostly digital environment for a library system. However, sheer hard work by the engineers, academicians, and librarians made it feasible. However, it requires huge expenditure and now a day‘s spending for electronic resources (e-resources) have been growing much more rapidly than have the materials budgets of which such resources are usually a part. And many libraries are spending a huge amount on e-resources. Libraries today are in the midst of a profound shift toward reliance on e-resources, and this reliance seems to have deepened in recent years as libraries have shed paper journal subscriptions to help pay for online access. This has been exercised only to cater user behavior and attitudes that seem to be changing even more quickly in this dynamic scenario.

Keywords: radio frequency identification, management, scanning, barcodes, checkout and tags

Procedia PDF Downloads 405
3966 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 73
3965 Searching k-Nearest Neighbors to be Appropriate under Gaming Environments

Authors: Jae Moon Lee

Abstract:

In general, algorithms to find continuous k-nearest neighbors have been researched on the location based services, monitoring periodically the moving objects such as vehicles and mobile phone. Those researches assume the environment that the number of query points is much less than that of moving objects and the query points are not moved but fixed. In gaming environments, this problem is when computing the next movement considering the neighbors such as flocking, crowd and robot simulations. In this case, every moving object becomes a query point so that the number of query point is same to that of moving objects and the query points are also moving. In this paper, we analyze the performance of the existing algorithms focused on location based services how they operate under gaming environments.

Keywords: flocking behavior, heterogeneous agents, similarity, simulation

Procedia PDF Downloads 303
3964 Influence of Confinement on Phase Behavior in Unconventional Gas Condensate Reservoirs

Authors: Szymon Kuczynski

Abstract:

Poland is characterized by the presence of numerous sedimentary basins and hydrocarbon provinces. Since 2006 exploration for hydrocarbons in Poland become gradually more focus on new unconventional targets, particularly on the shale gas potential of the Upper Ordovician and Lower Silurian in the Baltic-Podlasie-Lublin Basin. The first forecast prepared by US Energy Information Administration in 2011 indicated to 5.3 Tcm of natural gas. In 2012, Polish Geological Institute presented its own forecast which estimated maximum reserves on 1.92 Tcm. The difference in the estimates was caused by problems with calculations of the initial amount of adsorbed, as well as free, gas trapped in shale rocks (GIIP - Gas Initially in Place). This value is dependent from sorption capacity, gas saturation and mutual interactions between gas, water, and rock. Determination of the reservoir type in the initial exploration phase brings essential knowledge, which has an impact on decisions related to the production. The study of porosity impact for phase envelope shift eliminates errors and improves production profitability. Confinement phenomenon affects flow characteristics, fluid properties, and phase equilibrium. The thermodynamic behavior of confined fluids in porous media is subject to the basic considerations for industrial applications such as hydrocarbons production. In particular the knowledge of the phase equilibrium and the critical properties of the contained fluid is essential for the design and optimization of such process. In pores with a small diameter (nanopores), the effect of the wall interaction with the fluid particles becomes significant and occurs in shale formations. Nano pore size is similar to the fluid particles’ diameter and the area of particles which flow without interaction with pore wall is almost equal to the area where this phenomenon occurs. The molecular simulation studies have shown an effect of confinement to the pseudo critical properties. Therefore, the critical parameters pressure and temperature and the flow characteristics of hydrocarbons in terms of nano-scale are under the strong influence of fluid particles with the pore wall. It can be concluded that the impact of a single pore size is crucial when it comes to the nanoscale because there is possible the above-described effect. Nano- porosity makes it difficult to predict the flow of reservoir fluid. Research are conducted to explain the mechanisms of fluid flow in the nanopores and gas extraction from porous media by desorption.

Keywords: adsorption, capillary condensation, phase envelope, nanopores, unconventional natural gas

Procedia PDF Downloads 341
3963 Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV

Authors: Xiaolai Zhang, Haitao Zhang, Qiwen Sun, Weixin Qian, Weiyong Ying

Abstract:

High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed.

Keywords: Fischer-Tropsch synthesis, Fixed fluidized bed, LDV, Velocity

Procedia PDF Downloads 407
3962 Analysis of Epileptic Electroencephalogram Using Detrended Fluctuation and Recurrence Plots

Authors: Mrinalini Ranjan, Sudheesh Chethil

Abstract:

Epilepsy is a common neurological disorder characterised by the recurrence of seizures. Electroencephalogram (EEG) signals are complex biomedical signals which exhibit nonlinear and nonstationary behavior. We use two methods 1) Detrended Fluctuation Analysis (DFA) and 2) Recurrence Plots (RP) to capture this complex behavior of EEG signals. DFA considers fluctuation from local linear trends. Scale invariance of these signals is well captured in the multifractal characterisation using detrended fluctuation analysis (DFA). Analysis of long-range correlations is vital for understanding the dynamics of EEG signals. Correlation properties in the EEG signal are quantified by the calculation of a scaling exponent. We report the existence of two scaling behaviours in the epileptic EEG signals which quantify short and long-range correlations. To illustrate this, we perform DFA on extant ictal (seizure) and interictal (seizure free) datasets of different patients in different channels. We compute the short term and long scaling exponents and report a decrease in short range scaling exponent during seizure as compared to pre-seizure and a subsequent increase during post-seizure period, while the long-term scaling exponent shows an increase during seizure activity. Our calculation of long-term scaling exponent yields a value between 0.5 and 1, thus pointing to power law behaviour of long-range temporal correlations (LRTC). We perform this analysis for multiple channels and report similar behaviour. We find an increase in the long-term scaling exponent during seizure in all channels, which we attribute to an increase in persistent LRTC during seizure. The magnitude of the scaling exponent and its distribution in different channels can help in better identification of areas in brain most affected during seizure activity. The nature of epileptic seizures varies from patient-to-patient. To illustrate this, we report an increase in long-term scaling exponent for some patients which is also complemented by the recurrence plots (RP). RP is a graph that shows the time index of recurrence of a dynamical state. We perform Recurrence Quantitative analysis (RQA) and calculate RQA parameters like diagonal length, entropy, recurrence, determinism, etc. for ictal and interictal datasets. We find that the RQA parameters increase during seizure activity, indicating a transition. We observe that RQA parameters are higher during seizure period as compared to post seizure values, whereas for some patients post seizure values exceeded those during seizure. We attribute this to varying nature of seizure in different patients indicating a different route or mechanism during the transition. Our results can help in better understanding of the characterisation of epileptic EEG signals from a nonlinear analysis.

Keywords: detrended fluctuation, epilepsy, long range correlations, recurrence plots

Procedia PDF Downloads 179
3961 Review for Identifying Online Opinion Leaders

Authors: Yu Wang

Abstract:

Nowadays, Internet enables its users to share the information online and to interact with others. Facing with numerous information, these Internet users are confused and begin to rely on the opinion leaders’ recommendations. The online opinion leaders are the individuals who have professional knowledge, who utilize the online channels to spread word-of-mouth information and who can affect the attitudes or even the behavior of their followers to some degree. Because utilizing the online opinion leaders is seen as an important approach to affect the potential consumers, how to identify them has become one of the hottest topics in the related field. Hence, in this article, the concepts and characteristics are introduced, and the researches related to identifying opinion leaders are collected and divided into three categories. Finally, the implications for future studies are provided.

Keywords: online opinion leaders, user attributes analysis, text mining analysis, network structure analysis

Procedia PDF Downloads 223
3960 From Servicescape to Servicespace: Qualitative Research in a Post-Cartesian Retail Context

Authors: Chris Houliez

Abstract:

This study addresses the complex dynamics of the modern retail environment, focusing on how the ubiquitous nature of mobile communication technologies has reshaped the shopper experience and tested the limits of the conventional "servicescape" concept commonly used to describe retail experiences. The objective is to redefine the conceptualization of retail space by introducing an approach to space that aligns with a retail context where physical and digital interactions are increasingly intertwined. To offer a more shopper-centric understanding of the retail experience, this study draws from phenomenology, particularly Henri Lefebvre’s work on the production of space. The presented protocol differs from traditional methodologies by not making assumptions about what constitutes a retail space. Instead, it adopts a perspective based on Lefebvre’s seminal work, which posits that space is not a three-dimensional container commonly referred to as “servicescape” but is actively produced through shoppers’ spatial practices. This approach allows for an in-depth exploration of the retail experience by capturing the everyday spatial practices of shoppers without preconceived notions of what constitutes a retail space. The designed protocol was tested with eight participants during 209 hours of day-long field trips, immersing the researcher into the shopper's lived experience by combining multiple data collection methods, including participant observation, videography, photography, and both pre-fieldwork and post-fieldwork interviews. By giving equal importance to both locations and connections, this study unpacked various spatial practices that contribute to the production of retail space. These findings highlight the relative inadequacy of some traditional retail space conceptualizations, which often fail to capture the fluid nature of contemporary shopping experiences. The study's emphasis on the customization process, through which shoppers optimize their retail experience by producing a “fully lived retail space,” offers a more comprehensive understanding of consumer shopping behavior in the digital age. In conclusion, this research presents a significant shift in the conceptualization of retail space. By employing a phenomenological approach rooted in Lefebvre’s theory, the study provides a more efficient framework to understand the retail experience in the age of mobile communication technologies. Although this research is limited by its small sample size and the demographic profile of participants, it offers valuable insights into the spatial practices of modern shoppers and their implications for retail researchers and retailers alike.

Keywords: shopper behavior, mobile telecommunication technologies, qualitative research, servicescape, servicespace

Procedia PDF Downloads 26
3959 Teacher’s Self-Efficacy and Self-Perception of Teaching Professional Competences

Authors: V. Biasi, A. M. Ciraci, G. Domenici, N. Patrizi

Abstract:

We present two studies centered on the teacher’s perception of self-efficacy and professional competences. The first study aims to evaluate the levels of self-efficacy as attitude in 200 teachers of primary and secondary schools. Teacher self-efficacy is related to many educational outcomes: such as teachers’ persistence, enthusiasm, commitment and instructional behavior. High level of teacher self-efficacy beliefs enhance student motivation and pupil’s learning level. On this theoretical and empirical basis we are planning a second study oriented to assess teacher self-perception of competences that are linked to teacher self-efficacy. With the CDVR Questionnaire, 287 teachers graduated in Education Sciences in e-learning mode, showed an increase in their self-perception of didactic-evaluation and relational competences and an increased confidence also in their own professionalism.

Keywords: teacher competence, teacher self-efficacy, selfperception, self-report evaluation

Procedia PDF Downloads 524
3958 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: chaotic behavior, wavelet, noise reduction, river flow

Procedia PDF Downloads 470
3957 Memristive Properties of Nanostructured Porous Silicon

Authors: Madina Alimova, Margulan Ibraimov, Ayan Tileu

Abstract:

The paper describes methods for obtaining porous structures with the properties of a silicon-based memristor and explains the electrical properties of porous silicon films. Based on the results, there is a positive shift in the current-voltage characteristics (CVC) after each measurement, i.e., electrical properties depend not only on the applied voltage but also on the previous state. After 3 minutes of rest, the film returns to its original state (reset). The method for obtaining a porous silicon nanofilm with the properties of a memristor is simple and does not require additional effort. Based on the measurement results, the typical memristive behavior of the porous silicon nanofilm is analyzed.

Keywords: porous silicon, current-voltage characteristics, memristor, nanofilms

Procedia PDF Downloads 131
3956 Forward Conditional Restricted Boltzmann Machines for the Generation of Music

Authors: Johan Loeckx, Joeri Bultheel

Abstract:

Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.

Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)

Procedia PDF Downloads 524
3955 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: fuel cell, modelling, real time emulation, testing

Procedia PDF Downloads 338
3954 Chromatography Study of Fundamental Properties of Medical Radioisotope Astatine-211

Authors: Evgeny E. Tereshatov

Abstract:

Astatine-211 is considered one of the most promising radionuclides for Targeted Alpha Therapy. In order to develop reliable procedures to label biomolecules and utilize efficient delivery vehicle principles, one should understand the main chemical characteristics of astatine. The short half-life of 211At (~7.2 h) and absence of any stable isotopes of this element are limiting factors towards studying the behavior of astatine. Our team has developed a procedure for rapid and efficient isolation of astatine from irradiated bismuth material in nitric acid media based on 3-octanone and 1-octanol extraction chromatography resins. This process has been automated and it takes 20 min from the beginning of the target dissolution to the At-211 fraction elution. Our next step is to consider commercially available chromatography resins and their applicability in astatine purification in the same media. Results obtained along with the corresponding sorption mechanisms will be discussed.

Keywords: astatine-211, chromatography, automation, mechanism, radiopharmaceuticals

Procedia PDF Downloads 94
3953 Structural Equation Modeling Approach: Modeling the Impact of Social Marketing Programs on Combating Female Genital Mutilation in the Sudanese Society

Authors: Nada Abdelsadig Moahamed Saied

Abstract:

Female Genital Mutilation (FGM) and other similar traditional cultural practices pose a significant problem for Sudanese society. Such actions are severe and seriously detrimental to people's health since they are based on false social perceptions. To address these problems, numerous institutions and organizations were compelled to act rapidly. Female circumcision, or FGM, is one of the riskiest practices. It is referred to as the excision of the genitalia. Any surgeries involving the total or partial removal of the external female genitalia for non-medical reasons fall under this category. The results of FGM can vary depending on the kind and degree of the operation. These can be categorized as short-term, mid-term, or long-term issues. Infections, including the Human, blood, discomfort, and difficulty urinating are the immediate effects. FGM is defined by the World Health Organization (WHO) as practices that purposefully damage or modify female genital organs for non-medical purposes. It often takes place between the ages of one and fifteen. The girl's right to decide on important choices affecting her sexual and reproductive health is violated because the act is usually performed without her consent and frequently against her will. UNICEF, the United Nations International Children's Emergency Fund, aggressively combats the issue of FGM in Sudan. Numerous programs were started by NGOs to stop the practice. To our knowledge, no scientific study has been conducted to evaluate the effects of such social marketing techniques on simulating and comprehending society’s feelings surrounding FGM. This study proposes the development of a structural equation model aiming to determine the impact of awareness programs on people’s intentions to adopt the behavior of abandoning FGM based on theoretical models of behavior change. The model incorporates all the relevant factors that contribute to FGM and possible strategic actions to tackle this problem. The theoretical backdrop for FGM is presented in the next section, which also explains the practice's history, justifications, and potential treatments. The methodology section that follows describes the structural equation model. The proposed model, which compiles all the pertinent elements into a single image, is presented in the fourth part. Finally, conclusions are reached, and suggestions for further research are made.

Keywords: social marketing, policy-making, behavioral change, female genital mutilation, culture

Procedia PDF Downloads 79
3952 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations

Authors: M. Abdallah

Abstract:

Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.

Keywords: deep excavation, ground anchors, interaction soil-structure, struts

Procedia PDF Downloads 416
3951 Stability and Rheology of Sodium Diclofenac-Loaded and Unloaded Palm Kernel Oil Esters Nanoemulsion Systems

Authors: Malahat Rezaee, Mahiran Basri, Raja Noor Zaliha Raja Abdul Rahman, Abu Bakar Salleh

Abstract:

Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that have been progressively considered in pharmaceutical science for transdermal delivery of drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils; contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research was aimed to study the effect of O/S ratio on stability and rheological behavior of sodium diclofenac loaded and unloaded palm kernel oil esters nanoemulsion systems. The effect of different O/S ratio of 0.25, 0.50, 0.75, 1.00 and 1.25 on stability of the drug-loaded and unloaded nanoemulsion formulations was evaluated by centrifugation, freeze-thaw cycle and storage stability tests. Lecithin and cremophor EL were used as surfactant. The stability of the prepared nanoemulsion formulations was assessed based on the change in zeta potential and droplet size as a function of time. Instability mechanisms including coalescence and Ostwald ripening for the nanoemulsion system were discussed. In comparison between drug-loaded and unloaded nanoemulsion formulations, drug-loaded formulations represented smaller particle size and higher stability. In addition, the O/S ratio of 0.5 was found to be the best ratio of oil and surfactant for production of a nanoemulsion with the highest stability. The effect of O/S ratio on rheological properties of drug-loaded and unloaded nanoemulsion systems was studied by plotting the flow curves of shear stress (τ) and viscosity (η) as a function of shear rate (γ). The data were fitted to the Power Law model. The results showed that all nanoemulsion formulations exhibited non-Newtonian flow behaviour by displaying shear thinning behaviour. Viscosity and yield stress were also evaluated. The nanoemulsion formulation with the O/S ratio of 0.5 represented higher viscosity and K values. In addition, the sodium diclofenac loaded formulations had more viscosity and higher yield stress than drug-unloaded formulations.

Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, rheoligy, stability

Procedia PDF Downloads 424
3950 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 110
3949 Seismic Performance Point of RC Frame Buildings Using ATC-40, FEMA 356 and FEMA 440 Guidelines

Authors: Gram Y. Rivas Sanchez

Abstract:

The seismic design codes in the world allow the analysis of structures considering an elastic-linear behavior; however, against earthquakes, the structures exhibit non-linear behaviors that induce damage to their elements. For this reason, it is necessary to use non-linear methods to analyze these structures, being the dynamic methods that provide more reliable results but require a lot of computational costs; on the other hand, non-linear static methods do not have this disadvantage and are being used more and more. In the present work, the nonlinear static analysis (pushover) of RC frame buildings of three, five, and seven stories is carried out considering models of concentrated plasticity using plastic hinges; and the seismic performance points are determined using ATC-40, FEMA 356, and FEMA 440 guidelines. Using this last standard, the highest inelastic displacements and basal shears are obtained, providing designs that are more conservative.

Keywords: pushover, nonlinear, RC building, FEMA 440, ATC 40

Procedia PDF Downloads 147