Search results for: data security
24223 Active Contours for Image Segmentation Based on Complex Domain Approach
Authors: Sajid Hussain
Abstract:
The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.Keywords: image segmentation, active contour, level set, Mumford and Shah model
Procedia PDF Downloads 11424222 Discerning Divergent Nodes in Social Networks
Authors: Mehran Asadi, Afrand Agah
Abstract:
In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.Keywords: online social networks, data mining, social cloud computing, interaction and collaboration
Procedia PDF Downloads 15724221 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 36324220 Executive Order as an Effective Tool in Combating Insecurities and Human Rights Violations: The Case of the Special Anti-Robbery Squad and Youths in Nigeria
Authors: Cita Ayeni
Abstract:
Following countless violations of Human Rights in Nigeria by the various arms and agencies of government; from the Military to the Federal Police and other law enforcement agencies, Nigeria has been riddled with several reports of acts by these agencies against the citizens, ranging from illegal arrest and imprisonment, torture, disappearing, and extrajudicial killings, just to mention a few. This paper, focuses on SARS (Special Anti-Robbery Squad), a division of the Nigeria Police Force, and its reported threats to the people’s security, particularly the Nigerian youths, with continuous violence, extortion, illegal arrest and imprisonment, terror, and extrajudicial activities resulting in maiming and in most cases death, thus infringing on the human rights of the people it’s sworn to protect. This research further analyses how the activities of SARS has over the years instigated fear on the average Nigerian youth, preventing the free participation in daily life, education, job, and individual development, in turn impeding the realization of their full potentials for growth and participation in collective national development. This research analyzes the executive order by the then Acting President (Vice-President) of Nigeria, directing the overhauling of SARS, and its implementation by the Federal Police Force in determining if it’s enough to prevent or put a stop to the continuous Human Rights abuse and threat to the security of the individual citizen. Concluding that although the order by the Acting President was given with an intent to halt the various violations by SARS, and the Inspector General of Police’s (IGP) subsequent action by releasing a statement following the order, the bureaucracy in Nigeria, with a history of incompetency and a return to 'business as usual' after a reduced public outcry, it’s most likely that there will not be adequate follow up put in place and these violations would be slowly 'swept under the rug' with SARS officials not held accountable. It is recommended therefore that the Federal Government through the NPF, following the reforms made, in collaboration with the mentioned Independent Human Rights and civil societies organizations should periodically produce unbiased and publicly accessible reports on the implementation of these reforms and progress made. This will go a long way in assuring the public of actual fulfillment of the restructuring, reduce fear by the youths and restore some public faith in the government.Keywords: special anti-robbery squad, youths in Nigeria, overhaul, insecurities, human rights violations
Procedia PDF Downloads 30224219 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University
Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang
Abstract:
Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University
Procedia PDF Downloads 31524218 Hidden Critical Risk in the Construction Industry’s Technological Adoption: Cybercrime
Authors: Nuruddeen Usman, Usman Mohammed Gidado, Muhammad Ahmad Ibrahim
Abstract:
Construction industry is one of the sectors that are eyeing adoption of ICT for its development due to the advancement in technology. Though, many manufacturing sectors had been using it, but construction industry was left behind, especially in the developing nation like Nigeria. On account of that, the objective of this study is to conceptually and quantitatively synthesise whether the slow adoption of ICT by the construction industries can be attributable to cybercrime threats. The result of the investigation found that, the risk of cybercrime, and lack of adequate cyber security policies that can enforce and punish defaulters are among the things that hinder ICT adoption of the Nigerian construction industries. Therefore, there is need for the nations to educate their citizens on cybercrime risk, and to establish cybercrime police units that can be monitoring and controlling all online communications.Keywords: construction industry, cybercrime, information and communication technology adoption, risk
Procedia PDF Downloads 50924217 A Study of Blood Alcohol Concentration in People Arrested for Various Offences and Its Demographic Pattern
Authors: Tabin Millo, Khoob Chand, Ashok Kumar Jaiswal
Abstract:
Introduction: Various kinds of violence and offences are related to alcohol consumption by the offenders. The relationship between alcohol and violence is complex. But its study is important to achieve understanding of violence as well as alcohol related behavior. This study was done to know the blood alcohol concentration in people involved in various offences and its demographic pattern. The study was carried out in the forensic toxicology laboratory, department of Forensic Medicine, All India Institute of Medical Sciences, New Delhi, India. Material and methods: The blood samples were collected from the arrested people shortly after the commission of the offence by the emergency medical officers in the emergency department and forwarded to the forensic toxicology laboratory through the investigating officer. The blood samples were collected in EDTA vial with sodium fluoride preservative. The samples were analyzed by using gas chromatography with head space (GC-HS), which is ideal for alcohol estimation. The toxicology reports were given within a week. The data of seven years (2011-17) were analyzed for its alcohol concentration, associated crimes and its demographic pattern. Analysis and conclusion: Total 280 samples were analyzed in the period of 2011-2017. All were males except one female who was a bar dancer. The maximum cases were in the age group of 21-30 years (124 cases). The type of offences involved were road traffic accidents (RTA), assault cases, drunken driving, drinking in public place, drunk on duty, sexual offence, bestiality, eve teasing, fall etc. The maximum cases were of assault (75 cases) followed by RTA (64 cases). The maximum cases were in the alcohol concentration range of 101-150mg% (58 cases) followed by 51-100mg% (52 cases). The maximum blood alcohol level detected was 391.51 mg%, belonging to a security guard found unconscious. This study shows that alcohol consumption is associated with various kinds of violence and offences in society.Keywords: alcohol, crime, toxicology, violence
Procedia PDF Downloads 14324216 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data
Authors: Wann-Ming Wey
Abstract:
In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.Keywords: adaptive reuse, analytic network process, big data, land use strategy
Procedia PDF Downloads 20324215 Scientific Forecasting in International Relations
Authors: Djehich Mohamed Yousri
Abstract:
In this research paper, the future of international relations is believed to have an important place on the theoretical and applied levels because policy makers in the world are in dire need of such analyzes that are useful in drawing up the foreign policies of their countries, and protecting their national security from potential future threats, and in this context, The topic raised a lot of scientific controversy and intellectual debate, especially in terms of the extent of the effectiveness, accuracy, and ability of foresight methods to identify potential futures, and this is what attributed the controversy to the scientific foundations for foreseeing international relations. An arena for intellectual discussion between different thinkers in international relations belonging to different theoretical schools, which confirms to us the conceptual and implied development of prediction in order to reach the scientific level.Keywords: foresight, forecasting, international relations, international relations theory, concept of international relations
Procedia PDF Downloads 21424214 Generating Real-Time Visual Summaries from Located Sensor-Based Data with Chorems
Authors: Z. Bouattou, R. Laurini, H. Belbachir
Abstract:
This paper describes a new approach for the automatic generation of the visual summaries dealing with cartographic visualization methods and sensors real time data modeling. Hence, the concept of chorems seems an interesting candidate to visualize real time geographic database summaries. Chorems have been defined by Roger Brunet (1980) as schematized visual representations of territories. However, the time information is not yet handled in existing chorematic map approaches, issue has been discussed in this paper. Our approach is based on spatial analysis by interpolating the values recorded at the same time, by sensors available, so we have a number of distributed observations on study areas and used spatial interpolation methods to find the concentration fields, from these fields and by using some spatial data mining procedures on the fly, it is possible to extract important patterns as geographic rules. Then, those patterns are visualized as chorems.Keywords: geovisualization, spatial analytics, real-time, geographic data streams, sensors, chorems
Procedia PDF Downloads 40124213 An Online 3D Modeling Method Based on a Lossless Compression Algorithm
Authors: Jiankang Wang, Hongyang Yu
Abstract:
This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image
Procedia PDF Downloads 8224212 Intelligent IT Infrastructure in the Gas and Oil Industry
Authors: Ahmad Fahad Alotaibi, Khalid Hamed Hajri, Humoud Hudiban Rashidi
Abstract:
Intelligent information technology infrastructure is considered one of the enablers to enhance digital transformation in the gas and oil fields to optimize IT infrastructure reliability by supporting operations and maintenance in a safe and secure method to optimize resources. Smart IT buildings, communication rooms and shelters with intelligent technologies can strengthen the performance and profitability of gas and oil companies by ensuring business continuity. This paper describes the advantages of deploying intelligent IT infrastructure in the oil and gas industry by illustrating its positive impacts on some development aspects, for instance, operations, maintenance, safety, security and resource optimization. Moreover, it highlights the challenges and difficulties of providing smart IT services in a remote area and proposes solutions to overcome such difficulties.Keywords: intelligent IT infrastructure, remote areas, oil and gas field, digitalization
Procedia PDF Downloads 6024211 Understanding Strategic Engagement on the Conversation Table: Countering Terrorism in Nigeria
Authors: Anisah Ari
Abstract:
Effects of organized crime permeate all facets of life, including public health, socio-economic endeavors, and human security. If any element of this is affected, it impacts large-scale national and global interest. Seeking to address terrorist networks through technical thinking is like trying to kill a weed by just cutting off its branches. It will re-develop and expand in proportions beyond one’s imagination, even in horrific ways that threaten human security. The continent of Africa has been bedeviled by this menace, with little or no solution to the problem. Nigeria is dealing with a protracted insurgency that is perpetrated by a sect against any form of westernization. Reimagining approaches to dealing with pressing issues like terrorism may require engaging the right set of people in the conversation for any sustainable change. These are people who have lived through the daily effects of the violence that ensues from the activities of terrorist activities. Effective leadership is required for an inclusive process, where spaces are created for diverse voices to be heard, and multiple perspectives are listened to, and not just heard, that supports a determination of the realistic outcome. Addressing insurgency in Nigeria has experienced a lot of disinformation and uncertainty. This may be in part due to poor leadership or an iteration of technical solutions to adaptive challenge peacemaking efforts in Nigeria has focused on behaviors, attitudes and practices that contribute to violence. However, it is important to consider the underlying issues that build-up, ignite and fan the flames of violence—looking at conflict as a complex system, issues like climate change, low employment rates, corruption and the impunity of discrimination due to ethnicity and religion. This article will be looking at an option of the more relational way of addressing insurgency through adaptive approaches that embody engagement and solutions with the people rather than for the people. The construction of a local turn in peacebuilding is informed by the need to create a locally driven and sustained peace process that embodies the culture and practices of the people in enacting an everyday peace beyond just a perennial and universalist outlook. A critical analysis that explores the socially identified individuals and situations will be made, considering the more adaptive approach to a complex existential challenge rather than a universalist frame. Case Study and Ethnographic research approach to understand what other scholars have documented on the matter and also a first-hand understanding of the experiences and viewpoints of the participants.Keywords: terrorism, adaptive, peace, culture
Procedia PDF Downloads 10324210 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System
Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon
Abstract:
This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control
Procedia PDF Downloads 32024209 Logistics Information Systems in the Distribution of Flour in Nigeria
Authors: Cornelius Femi Popoola
Abstract:
This study investigated logistics information systems in the distribution of flour in Nigeria. A case study design was used and 50 staff of Honeywell Flour Mill was sampled for the study. Data generated through a questionnaire were analysed using correlation and regression analysis. The findings of the study revealed that logistic information systems such as e-commerce, interactive telephone systems and electronic data interchange positively correlated with the distribution of flour in Honeywell Flour Mill. Finding also deduced that e-commerce, interactive telephone systems and electronic data interchange jointly and positively contribute to the distribution of flour in Honeywell Flour Mill in Nigeria (R = .935; Adj. R2 = .642; F (3,47) = 14.739; p < .05). The study therefore recommended that Honeywell Flour Mill should upgrade their logistic information systems to computer-to-computer communication of business transactions and documents, as well adopt new technology such as, tracking-and-tracing systems (barcode scanning for packages and palettes), tracking vehicles with Global Positioning System (GPS), measuring vehicle performance with ‘black boxes’ (containing logistic data), and Automatic Equipment Identification (AEI) into their systems.Keywords: e-commerce, electronic data interchange, flour distribution, information system, interactive telephone systems
Procedia PDF Downloads 55324208 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 34524207 Spatial Variability of Brahmaputra River Flow Characteristics
Authors: Hemant Kumar
Abstract:
Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.Keywords: aerosol, change detection, spatial analysis, trend analysis
Procedia PDF Downloads 14724206 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change
Authors: Ermias A. Tegegn, Million Meshesha
Abstract:
Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model
Procedia PDF Downloads 14224205 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method
Authors: Laheeb M. Ibrahim, Ibrahim A. Salih
Abstract:
Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO
Procedia PDF Downloads 53324204 Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020
Authors: Salif Koné
Abstract:
We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario.Keywords: internal cycles, hydrometric data, niger river, gr2m and simulhyd framework, runoff coefficient of variation
Procedia PDF Downloads 9524203 Stakeholder Engagement to Address Urban Health Systems Gaps for Migrants
Authors: A. Chandra, M. Arthur, L. Mize, A. Pomeroy-Stevens
Abstract:
Background: Lower and middle-income countries (LMICs) in Asia face rapid urbanization resulting in both economic opportunities (the urban advantage) and emerging health challenges. Urban health risks are magnified in informal settlements and include infectious disease outbreaks, inadequate access to health services, and poor air quality. Over the coming years, urban spaces in Asia will face accelerating public health risks related to migration, climate change, and environmental health. These challenges are complex and require multi-sectoral and multi-stakeholder solutions. The Building Health Cities (BHC) program is funded by the United States Agency for International Development (USAID) to work with smart city initiatives in the Asia region. BHC approaches urban health challenges by addressing policies, planning, and services through a health equity lens, with a particular focus on informal settlements and migrant communities. The program works to develop data-driven decision-making, build inclusivity through stakeholder engagement, and facilitate the uptake of appropriate technology. Methodology: The BHC program has partnered with the smart city initiatives of Indore in India, Makassar in Indonesia, and Da Nang in Vietnam. Implementing partners support municipalities to improve health delivery and equity using two key approaches: political economy analysis and participatory systems mapping. Political economy analyses evaluate barriers to collective action, including corruption, security, accountability, and incentives. Systems mapping evaluates community health challenges using a cross-sectoral approach, analyzing the impact of economic, environmental, transport, security, health system, and built environment factors. The mapping exercise draws on the experience and expertise of a diverse cohort of stakeholders, including government officials, municipal service providers, and civil society organizations. Results: Systems mapping and political economy analyses identified significant barriers for health care in migrant populations. In Makassar, migrants are unable to obtain the necessary card that entitles them to subsidized health services. This finding is being used to engage with municipal governments to mitigate the barriers that limit migrant enrollment in the public social health insurance scheme. In Indore, the project identified poor drainage of storm and wastewater in migrant settlements as a cause of poor health. Unsafe and inadequate infrastructure placed residents of these settlements at risk for both waterborne diseases and injuries. The program also evaluated the capacity of urban primary health centers serving migrant communities, identifying challenges related to their hours of service and shortages of health workers. In Da Nang, the systems mapping process has only recently begun, with the formal partnership launched in December 2019. Conclusion: This paper explores lessons learned from BHC’s systems mapping, political economy analyses, and stakeholder engagement approaches. The paper shares progress related to the health of migrants in informal settlements. Case studies feature barriers identified and mitigating steps, including governance actions, taken by local stakeholders in partner cities. The paper includes an update on ongoing progress from Indore and Makassar and experience from the first six months of program implementation from Da Nang.Keywords: informal settlements, migration, stakeholder engagement mapping, urban health
Procedia PDF Downloads 11924202 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps
Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam
Abstract:
GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.Keywords: noise, image, GIS, digital map, inpainting
Procedia PDF Downloads 35224201 Evaluation of Urban Parks Based on POI Data: Taking Futian District of Shenzhen as an Example
Authors: Juanling Lin
Abstract:
The construction of urban parks is an important part of eco-city construction, and the intervention of big data provides a more scientific and rational platform for the assessment of urban parks by identifying and correcting the irrationality of urban park planning from the macroscopic level and then promoting the rational planning of urban parks. The study builds an urban park assessment system based on urban road network data and POI data, taking Futian District of Shenzhen as the research object, and utilizes the GIS geographic information system to assess the park system of Futian District in five aspects: park spatial distribution, accessibility, service capacity, demand, and supply-demand relationship. The urban park assessment system can effectively reflect the current situation of urban park construction and provide a useful exploration for realizing the rationality and fairness of urban park planning.Keywords: urban parks, assessment system, POI, supply and demand
Procedia PDF Downloads 4224200 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model
Authors: Alam Ali, Ashok Kumar Pathak
Abstract:
Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique
Procedia PDF Downloads 7224199 Rohingya Problem and the Impending Crisis: Outcome of Deliberate Denial of Citizenship Status and Prejudiced Refugee Laws in South East Asia
Authors: Priyal Sepaha
Abstract:
A refugee crisis is manifested by challenges, both for the refugees and the asylum giving state. The situation turns into a mega-crisis when the situation is prejudicially handled by the home state, inappropriate refugee laws, exploding refugee population, and above all, no hope of any foreseeable solution or remedy. This paper studies the impact on the capability of stateless Rohingyas to migrate and seek refuge due to the enforcement of rigid criteria of movement imposed both by Myanmar as well as the adjoining countries in the name of national security. This theoretical study identifies the issues and the key factors and players which have precipitated the crisis. It further discusses the possible ramifications in the home, asylum giving, and the adjoining countries for not discharging their roles aptly. Additionally, an attempt has been made to understand the scarce response given to the impending crisis by the regional organizations like SAARC, ASEAN and CHOGAM as well as international organizations like United Nations Human Rights Council, Security Council, Office of High Commissioner for Refugees and so on, in the name of inadequacy of monetary funds and physical resources. Based on the refugee laws and practices pertaining to the case of Rohingyas, this paper analyses that the Rohingya Crisis is in dire need of an effective action plan to curb and resolve the biggest humanitarian crisis situation of the century. This mounting human tragedy can be mitigated permanently, by strengthening existing and creating new interdependencies among all stakeholders, as further ignorance can drive the countries of the Indian Sub-continent, in particular, and South East Asia, by and large into a violent civil war for seizing long-awaited civil rights by the marginalized Rohingyas. To curb this mass crisis, it will require the application of coercive pressure and diplomatic pursuance on the home country to acknowledge the rights of its fleeing citizens. This further necessitates mustering adequate monetary funds and physical resources for the asylum providing state. Additional challenges such as devising mechanisms for the refugee’s safe return, comprehensive planning for their holistic economic development and rehabilitation plan are needed. These, however, can only come into effect with a conscious strive by the regional and international community to fulfil their assigned role.Keywords: asylum, citizenship, crisis, humanitarian, human rights, refugee, rohingya
Procedia PDF Downloads 13224198 Toward a Risk Assessment Model Based on Multi-Agent System for Cloud Consumer
Authors: Saadia Drissi
Abstract:
The cloud computing is an innovative paradigm that introduces several changes in technology that have resulted a new ways for cloud providers to deliver their services to cloud consumers mainly in term of security risk assessment, thus, adapting a current risk assessment tools to cloud computing is a very difficult task due to its several characteristics that challenge the effectiveness of risk assessment approaches. As consequence, there is a need of risk assessment model adapted to cloud computing. This paper requires a new risk assessment model based on multi-agent system and AHP model as fundamental steps towards the development of flexible risk assessment approach regarding cloud consumers.Keywords: cloud computing, risk assessment model, multi-agent system, AHP model, cloud consumer
Procedia PDF Downloads 54524197 Social Media as a Tool for Medication Adherence and Personal Health Management
Authors: Huang Wei-Chi, Li Wei, Yu Tien-Chieh
Abstract:
Medication adherence is crucial for treatment success. Adherence problem is common in patients with polypharmacy, especially in the geriatric population who are vulnerable to multiple chronic conditions but averagely less knowledgeable about diseases and medications. In order to help patients take medications appropriately and enhance the understanding of diseases or medications, a Line official account named e-Pharmacist was designed. The line is a popular freeware app with the highest penetration rate (95.7%) in Taiwan. The interface of e-Pharmacist is user-friendly for easy-to-read and convenient operating. Differ from other medication adherence apps, users just added e-Pharmacist as a LINE friend without installing any more apps and the drug lists were automatically downloaded from the personal electronic medical records with security permission. Over and above medication reminder, several additional capabilities were set up and engaged in the platform of e-Pharmacist including prescription refill reservation, laboratory examination consultation, medical appointment registration, and “Daily Health Log” where patients can record and track data of blood pressure/blood sugar and daily meals for self-health management as well as can share the important information to clinical professionals when seeking medical help. Additionally, a Line chatbot was utilized to provide tailored medicine information for the individual user. From July 2020 to March 2022, around 3000 patients added e-pharmacist as Line friends. Every day more than 1500 patients receive messages from e-pharmacist to notify them to take medicine. Thanks to the e-pharmacist alert system and Chatbot, the low-compliance patients (defined by Program on Adherence to Medication, PAM) significantly dropped from 36% to 6%, whereas the high-compliance patients dramatically increased from 13% to 77%. The user satisfaction is 98%. In brief, an e-pharmacist is not only a medication reminder but also a tailored personal assistant with value-added service for health management.Keywords: e-pharmacist, self-health management, medication reminder, value-added service
Procedia PDF Downloads 16024196 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques
Authors: Om Viroje
Abstract:
Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience
Procedia PDF Downloads 1424195 Assessing the Benefits of Super Depo Sutorejo as a Model of integration of Waste Pickers in a Sustainable City Waste Management
Authors: Yohanes Kambaru Windi, Loetfia Dwi Rahariyani, Dyah Wijayanti, Eko Rustamaji
Abstract:
Surabaya, the second largest city in Indonesia, has been struggling for years with waste production and its management. Nearly 11,000 tons of waste are generated daily by domestic, commercial and industrial areas. It is predicted that approximately 1,300 tons of waste overflew the Benowo Landfill daily in 2013 and projected that the landfill operation will be critical in 2015. The Super Depo Sutorejo (SDS) is a pilot project on waste management launched by the government of Surabaya in March 2013. The project is aimed to reduce the amount of waste dumped in landfill by sorting the recyclable and organic waste for composting by employing waste pickers to sort the waste before transported to landfill. This study is intended to assess the capacity of SDS to process and reduce waste and its complementary benefits. It also overviews the benefits of the project to the waste pickers in term of satisfaction to the job. Waste processing data-sheets were used to assess the difference between input and outputs waste. A survey was distributed to 30 waste pickers and interviews were conducted as a further insight on a particular issue. The analysis showed that SDS enable to reduce waste up to 50% before dumped in the final disposal area. The cost-benefits analysis using cost differential calculation revealed the economic benefit is considerable low, but composting may substitute tangible benefits for maintain the city’s parks. Waste pickers are mostly satisfied with their job (i.e. Salary, health coverage, job security), services and facilities available in SDS and enjoyed rewarding social life within the project. It is concluded that SDS is an effective and efficient model for sustainable waste management and reliable to be developed in developing countries. It is a strategic approach to empower and open up working opportunity for the poor urban community and prolong the operation of landfills.Keywords: cost-benefits, integration, satisfaction, waste management
Procedia PDF Downloads 47624194 The Online Power of Values: Adolescents’ Values as Predicting Factors of Their Online Bystanders’ Behavior While Witnessing Cyberbullying
Authors: Sharon Cayzer-Haller, Shir Ginosar-Yaari, Ariel Knafo-Noam
Abstract:
The 21st century emerged as the digital century, and it is marked by a wide range of technological developments and changes, followed by potential changes in human communication skills. This technological revolution has changed human means of communication in many different ways: children and adolescents are spending much of their time in front of screens, participating in all sorts of online activities (even more so since the outbreak of COVID-19). The current study focuses on the role of values in adolescents' online bystanders' behavior. Values are cognitive, abstract representations of desirable goals that motivate behavior, and we hypothesized finding significant associations between specific values and differential online bystanders' feelings and behavior. Data was collected through online questionnaires that measured the participants' values, using Schwartz's short version of the Portrait Values Questionnaire (Schwartz, 2012). Participants’ online behavior was assessed in a questionnaire addressing reactions to situations of cyber shaming and cyberbullying, and specifically positive feelings and pro-social behavior (e.g., more supportive reactions) toward the victims, as opposed to different offensive behavioral reactions (such as laughing at the victim or ignoring the situation). Participants were recruited with a commercial research panel company, and 308 Israeli adolescents' values and online behavior were examined (mean age 15.2). As hypothesized, results show significant associations between self-transcendence values (universalism and benevolence) and conservation values (conformity, tradition, and security). These two groups of values were positively correlated with pro-social bystanders' feelings and behavior. On the opposite side of the values scale, the value of power was negatively associated with the participants' pro-social behavior, and positively associated with offensive behavioral reactions. Further research is needed, but we conclude that values serve as crucial guiding factors in directing adolescents' online feelings and behavior.Keywords: adolescents, values, cyberbullying, online behavior, power
Procedia PDF Downloads 66