Search results for: building retention
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4894

Search results for: building retention

2284 Rhizospheric Oxygen Release of Hydroponically Grown Wetland Macrophytes as Passive Source for Cathodic Reduction in Microbial Fuel Cell

Authors: Chabungbam Niranjit Khuman, Makarand Madhao Ghangrekar, Arunabha Mitra

Abstract:

The cost of aeration is one of the limiting factors in the upscaling of microbial fuel cells (MFC) for field-scale applications. Wetland macrophytes have the ability to release oxygen into the water to maintain aerobic conditions in their root zone. In this experiment, the efficacy of rhizospheric oxygen release of wetland macrophytes as a source of oxygen in the cathodic chamber of MFC was conducted. The experiment was conducted in an MFC consisting of a three-liter anodic chamber made of ceramic cylinder and a 27 L cathodic chamber. Untreated carbon felts were used as electrodes (i.e., anode and cathode) and connected to an external load of 100 Ω using stainless steel wire. Wetland macrophytes (Canna indica) were grown in the cathodic chamber of the MFC in a hydroponic fashion using a styrofoam sheet (termed as macrophytes assisted-microbial fuel cell, M-MFC). The catholyte (i.e., water) in the M-MFC had negligible contact with atmospheric air due to the styrofoam sheet used for maintaining the hydroponic condition. There was no mixing of the catholyte in the M-MFC. Sucrose based synthetic wastewater having chemical oxygen demand (COD) of 3000 mg/L was fed into the anodic chamber of the MFC in fed-batch mode with a liquid retention time of four days. The C. indica thrived well throughout the duration of the experiment without much care. The average dissolved oxygen (DO) concentration and pH value in the M-MFC were 3.25 mg/L and 7.07, respectively, in the catholyte. Since the catholyte was not in contact with air, the DO in the catholyte might be considered as solely liberated from the rhizospheric oxygen release of C. indica. The maximum COD removal efficiency of M-MFC observed during the experiment was 76.9%. The inadequacy of terminal electron acceptor in the cathodic chamber in M-MFC might have hampered the electron transfer, which in turn, led to slower specific microbial activity, thereby resulting in lower COD removal efficiency than the traditional MFC with aerated catholyte. The average operating voltage (OV) and open-circuit voltage (OCV) of 294 mV and 594 mV, respectively, were observed in M-MFC. The maximum power density observed during polarization was 381 mW/m³, and the maximum sustainable power density observed during the experiment was 397 mW/m³ in M-MFC. The maximum normalized energy recovery and coulombic efficiency of 38.09 Wh/m³ and 1.27%, respectively, were observed. Therefore, it was evidenced that rhizospheric oxygen release of wetland macrophytes (C. indica) was capable of sustaining the cathodic reaction in MFC for field-scale applications.

Keywords: hydroponic, microbial fuel cell, rhizospheric oxygen release, wetland macrophytes

Procedia PDF Downloads 137
2283 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 48
2282 Islam in Nation Building: Case Studies of Kazakhstan and Kyrgyzstan

Authors: Etibar Guliyev, Durdana Jafarli

Abstract:

The breakdown of the Soviet Union in the early 1990s and the 9/11 attacks resulted in the global changes created a totally new geopolitical situation for the Muslim populated republics of the former Soviet Union. Located between great powers such as China and Russia, as well as theocratic states like Iran and Afghanistan, the newly independent Central Asian states were facing a dilemma to choose a new politico-ideological course for development. Policies dubbed Perestroyka and Glasnost leading to the collapse of the world’s once superpower brought about a considerable rise in the national and religious self-consciousness of the Muslim population of the USSR where the religion was prohibited under the strict communist rule. Moreover, the religious movements prohibited during the Soviet era acted as a part of national straggle to gain their freedom from Moscow. The policies adopted by the Central Asian countries to manage the religious revival and extremism in their countries vary dramatically from each other. As Kazakhstan and Kyrgyzstan are located between Russia and China and hosting a considerable number of the Russian population, these countries treated Islamic revival more tolerantly trying benefit from it in the nation-building process. The importance of the topic could be explained with the fact that it investigates an alternative way of management of religious activities and movements. The recent developments in the Middle East, Syria and Iraq in particular, and the fact that hundreds of fighters from the Central Asian republics joined the ISIL terrorist organization once again highlights the implications of the proper regulation of religious activities not only for domestic, but also for regional and global politics. The paper is based on multiple research methods. The process trace method was exploited to better understand the Russification and anti-religious policies to which the Central Asian countries were subject during the Soviet era. The comparative analyse method was also used to better understand the common and distinct features of the politics of religion of Kazakhstan and Kyrgyzstan and the rest of the Central Asian countries. Various legislation acts, as well as secondary sources were investigated to this end. Mostly constructivist approach and a theory suggesting that religion supports national identity when there is a third cohesion that threatens both and when elements of national identity are weak. Preliminary findings suggest that in line with policies aimed at gradual reduction of Russian influence, as well as in the face of ever-increasing migration from China, the mentioned countries incorporated some Islamic elements into domestic policies as a part and parcel of national culture. Kazakhstan and Kyrgyzstan did not suppress religious activities, which was case in neighboring states, but allowed in a controlled way Islamic movements to have a relatively freedom of action which in turn led to the less violent religious extremism further boosting national identity.

Keywords: identity, Islam, nationalism, terrorism

Procedia PDF Downloads 292
2281 The Effectiveness of Blended Learning in Pre-Registration Nurse Education: A Mixed Methods Systematic Review and Met Analysis

Authors: Albert Amagyei, Julia Carroll, Amanda R. Amorim Adegboye, Laura Strumidlo, Rosie Kneafsey

Abstract:

Introduction: Classroom-based learning has persisted as the mainstream model of pre-registration nurse education. This model is often rigid, teacher-centered, and unable to support active learning and the practical learning needs of nursing students. Health Education England (HEE), a public body of the Department of Health and Social Care, hypothesises that blended learning (BL) programmes may address health system and nursing profession challenges, such as nursing shortages and lack of digital expertise, by exploring opportunities for providing predominantly online, remote-access study which may increase nursing student recruitment, offering alternate pathways to nursing other than the traditional classroom route. This study will provide evidence for blended learning strategies adopted in nursing education as well as examine nursing student learning experiences concerning the challenges and opportunities related to using blended learning within nursing education. Objective: This review will explore the challenges and opportunities of BL within pre-registration nurse education from the student's perspective. Methods: The search was completed within five databases. Eligible studies were appraised independently by four reviewers. The JBI-convergent segregated approach for mixed methods review was used to assess and synthesize the data. The study’s protocol has been registered with the International Register of Systematic Reviews with registration number// PROSPERO (CRD42023423532). Results: Twenty-seven (27) studies (21 quantitative and 6 qualitative) were included in the review. The study confirmed that BL positively impacts nursing students' learning outcomes, as demonstrated by the findings of the meta-analysis and meta-synthesis. Conclusion: The review compared BL to traditional learning, simulation, laboratory, and online learning on nursing students’ learning and programme outcomes as well as learning behaviour and experience. The results show that BL could effectively improve nursing students’ knowledge, academic achievement, critical skills, and clinical performance as well as enhance learner satisfaction and programme retention. The review findings outline that students’ background characteristics, BL design, and format significantly impact the success of the BL nursing programme.

Keywords: nursing student, blended learning, pre-registration nurse education, online learning

Procedia PDF Downloads 57
2280 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents

Authors: Prasanna Haddela

Abstract:

Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.

Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm

Procedia PDF Downloads 118
2279 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures

Procedia PDF Downloads 231
2278 Through 7S Model to Promote the Service Innovation Management

Authors: Cheng Fang Hsu

Abstract:

Call center is the core of building customer relationship management system. Under the strong competitive stress, it becomes a new profiting challenge for a successful enterprise. Call center is a department not only to provide customer service but also to bring business profit. This is the qualitative case study in Taiwan bank service industry which goes on deeper exploration, and analysis by business interviews and industrial analysis. This study starts from the establishment, development, and management after the reforming of the case call center. Through SWOT analysis, and industrial analysis, this study adopted 7S model to explain how the call center reforms from service oriented to profit oriented and from cost management to profit management. The results indicated how service innovation management promotes call center to be operated as a market profit competition center. The recommendations are indicated to support the call center on marketing profit by service innovation management.

Keywords: call center, 7S model, service innovation management, bioinformatics

Procedia PDF Downloads 493
2277 Investigation of the Progressive Collapse Potential in Steel Buildings with Composite Floor System

Authors: Pouya Kaafi, Gholamreza Ghodrati Amiri

Abstract:

Abnormal loads due to natural events, implementation errors and some other issues can lead to occurrence of progressive collapse in structures. Most of the past researches consist of 2- Dimensional (2D) models of steel frames without consideration of the floor system effects, which reduces the accuracy of the modeling. While employing a 3-Dimensional (3D) model and modeling the concrete slab system for the floors have a crucial role in the progressive collapse evaluation. In this research, a 3D finite element model of a 5-story steel building is modeled by the ABAQUS software once with modeling the slabs, and the next time without considering them. Then, the progressive collapse potential is evaluated. The results of the analyses indicate that the lack of the consideration of the slabs during the analyses, can lead to inaccuracy in assessing the progressive failure potential of the structure.

Keywords: abnormal loads, composite floor system, intermediate steel moment resisting frame system, progressive collapse

Procedia PDF Downloads 459
2276 Expanding the Evaluation Criteria for a Wind Turbine Performance

Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin

Abstract:

The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.

Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses

Procedia PDF Downloads 393
2275 User Experience and Impact of AI Features in AutoCAD

Authors: Sarah Alnafea, Basmah Alalsheikh, Hadab Alkathiri

Abstract:

For over 30 years, AutoCAD, a powerful CAD software developed by Autodesk, has been an imperative need for design in industries such as engineering, building, and architecture. With the emerge of advanced technology, AutoCAD has undergone a revolutionary change with the involvement of artificial intelligence capabilities that have enhanced the productivity and efficiency at work and quality in the design for the users. This paper investigates the role AI in AutoCAD, especially in intelligent automation, generative design, automated design ideas, natural language processing, and predictive analytics. To identify further, A survey among users was also conducted to assess the adoption and satisfaction of AI features and identify areas for improvement. The Competitive standing of AutoCAD is further crosschecked against other AI-enabled CAD software packages, including SolidWorks, Fusion 360, and Rhino.In this paper, an overview of the current impacts of AI in AutoCAD is given, along with some recommendations for the future road of AI development to meet users’ requirements

Keywords: artificail inteligence, natural language proccesing, intelligent automation, generative design

Procedia PDF Downloads 15
2274 College Faculty Perceptions of Instructional Strategies That Are Effective for Students with Dyslexia

Authors: Samantha R. Dutra

Abstract:

There are many issues that students face in college, such as academic-based struggles, financial issues, family responsibilities, and vocational problems. Students with dyslexia struggle even more with these problems compared to other students. This qualitative study examines faculty perceptions of instructing students with dyslexia. This study is important to the human services and post-secondary educational fields due to the increase in disabled students enrolled in college. This study is also substantial because of the reported bias faced by students with dyslexia and their academic failure. When students with LDs such as dyslexia experience bias, discrimination, and isolation, they are more apt to not seek accommodations, lack communication with faculty, and are more likely to drop out or fail. College students with dyslexia often take longer to complete their post-secondary education and are more likely to withdraw or drop out without earning a degree. Faculty attitudes and academic cultures are major barriers to the success and use of accommodations as well as modified instruction for students with disabilities, which leads to student success. Faculty members are often uneducated or misinformed regarding students with dyslexia. More importantly, many faculty members are unaware of the many ethical and legal implications that they face regarding accommodating students with dyslexia. Instructor expectations can generally be defined as the understanding and perceptions of students regarding their academic success. Skewed instructor expectations can affect how instructors interact with their students and can also affect student success. This is true for students with dyslexia in that instructors may have lower and biased expectations of these students and, therefore, directly impact students’ academic successes and failures. It is vital to understand how instructor attitudes affect the academic achievement of dyslexic students. This study will examine faculty perceptions of instructing students with dyslexia and faculty attitudes towards accommodations and institutional support. The literature concludes that students with dyslexia have many deficits and several learning needs. Furthermore, these are the students with the highest dropout and failure rates, as well as the lowest retention rates. Disabled students generally have many reasons why accommodations and supports just do not help. Some research suggests that accommodations do help students and show positive outcomes. Many improvements need to be made between student support service personnel, faculty, and administrators regarding providing access and adequate supports for students with dyslexia. As the research also suggests, providing more efficient and effective accommodations may increase positive student as well as faculty attitudes in college, and may improve student outcomes overall.

Keywords: dyslexia, faculty perception, higher education, learning disability

Procedia PDF Downloads 144
2273 Hand Hygiene Habits of Ghanaian Youths in Accra

Authors: Cecilia Amponsem-Boateng, Timothy B. Oppong, Haiyan Yang, Guangcai Duan

Abstract:

The human palm has been identified as one of the richest habitats for human microbial accommodation making hand hygiene essential to primary prevention of infection. Since the hand is in constant contact with fomites which have been proven to be mostly contaminated, building hand hygiene habits is essential for the prevention of infection. This research was conducted to assess the hand hygiene habits of Ghanaian youths in Accra. This study used a survey as a quantitative method of research. The findings of the study revealed that out of the 254 participants who fully answered the questionnaire, 22% had the habit of washing their hands after outings while only 51.6% had the habit of washing their hands after using the bathroom. However, about 60% of the participants said they sometimes ate with their hands while 28.9% had the habit of eating with the hand very often, a situation that put them at risk of infection from their hands since some participants had poor handwashing habits; prompting the need for continuous education on hand hygiene.

Keywords: hand hygiene, hand hygiene habit, hand washing, hand sanitizer use

Procedia PDF Downloads 112
2272 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 164
2271 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 327
2270 Advancements in Truss Design for High-Performance Facades and Roof System: A Structural Analysis

Authors: Milind Anurag

Abstract:

This study investigates cutting-edge truss design improvements, which are specifically adapted to satisfy the structural demands and difficulties associated with high-performance facades and roofs in modern architectural environments. With a growing emphasis on sustainability, energy efficiency, and eye-catching architectural aesthetics, the structural components that support these characteristics play an important part in attaining the right balance of form and function. The paper seeks to contribute to the evolution of truss design methods by combining data from these investigations, giving significant insights for architects, engineers, and researchers interested in the creation of high-performance building envelopes. The findings of this study are meant to inform future design standards and practices, promoting the development of structures that seamlessly integrate architectural innovation with structural robustness and environmental responsibility.

Keywords: truss design, high-performance, facades, finite element analysis, structural efficiency

Procedia PDF Downloads 60
2269 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 55
2268 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: cutting condition, surface roughness, decision tree, CART algorithm

Procedia PDF Downloads 379
2267 Insight on Passive Design for Energy Efficiency in Commercial Building for Hot and Humid Climate

Authors: Aravind J.

Abstract:

Passive design can be referred to a way of designing buildings that takes advantage of the prevailing climate and natural energy resources. Which will be a key to reduce the increasing energy usage in commercial buildings. Most of the small scale commercial buildings made are merely a thermal mass inbuilt with active systems to bring lively conditions. By bringing the passive design strategies for energy efficiency in commercial buildings will reduce the usage of active systems. Thus the energy usage can be controlled through analysis of daylighting and improved living conditions in the indoor spaces by using passive techniques. And comparative study on different passive design systems and conventional methods will be approached for commercial buildings in hot and humid region. Possible effects of existing risks implied with solution for those problems is also a part of the paper. The result will be carried on with the design programme to prove the workability of the strategies.

Keywords: passive design, energy efficiency, commercial buildings, hot and humid climate

Procedia PDF Downloads 372
2266 Manufacturing Commercial Bricks with Construction and Demolition Wastes

Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal

Abstract:

This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.

Keywords: commercial brick, construction and demolition waste, manufacturing, recycling

Procedia PDF Downloads 362
2265 Determination of Weathering at Kilistra Ancient City by Using Non-Destructive Techniques, Central Anatolia, Turkey

Authors: İsmail İnce, Osman Günaydin, Fatma Özer

Abstract:

Stones used in the construction of historical structures are exposed to various direct or indirect atmospheric effects depending on climatic conditions. Building stones deteriorate partially or fully as a result of this exposure. The historic structures are important symbols of any cultural heritage. Therefore, it is important to protect and restore these historical structures. The aim of this study is to determine the weathering conditions at the Kilistra ancient city. It is located in the southwest of the Konya city, Central Anatolia, and was built by carving into pyroclastic rocks during the Byzantine Era. For this purpose, the petrographic and mechanical properties of the pyroclastic rocks were determined. In the assessment of weathering of structures in the ancient city, in-situ non-destructive testing (i.e., Schmidt hardness rebound value, relative humidity measurement) methods were applied.

Keywords: cultural heritage, Kilistra ancient city, non-destructive techniques, weathering

Procedia PDF Downloads 361
2264 Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

Keywords: CO₂, energy intensity map, geographic information system (GIS), Hungary, Jewish quarter, rehabilitation

Procedia PDF Downloads 299
2263 Improving Physical, Social, and Mental Health Outcomes for People Living with an Intellectual Disability through Cycling

Authors: Sarah Faulkner, Patrick Faulkner, Caroline Ellison

Abstract:

Improved mental and physical health, community connection, and increased life satisfaction has been strongly associated with bike riding for those with and without a disability. However, much evidence suggests that people living with a disability face increased barriers to engaging in cycling compared to members of the general population. People with an intellectual disability often live more sedentary and socially isolated lives that negatively impact their mental and physical health, as well as life satisfaction. This paper is based on preliminary findings from a three-year intervention cycling project funded by the South Australian Government. The cycling project was developed in partnership with community stakeholders that provided weekly instruction, training, and support to individuals living with intellectual disabilities to increase their capacity in cycling. This project aimed to support people living with intellectual disabilities to foster and facilitate improved physical and mental health, confidence, and independence and enhance social networking through their engagement in community cycling. The program applied principles of social role valorisation (SRV) theory as its guiding framework. Preliminary data collected is based on qualitative interviews with over 50 program participants, results from two participant wellness questionnaires, as well as a perceptually regulated exercise test administered throughout the project implementation. Preliminary findings are further supplemented with ethnographic analyses by the researchers who took a phenology of life experience approach. Preliminary findings of the program suggest a variety of social motivations behind participants' desire to learn cycling that acknowledges previous barriers to engagement and cycling’s role to address feelings of loneliness and social isolation. Meaningful health benefits can be achieved as demonstrated by increases in predicted V02 max measures, suggesting that physical intervention can not only improve physical health outcomes but also provide a variety of other social benefits. Initial engagement in the project has demonstrated an increase in participants' sense of confidence, well-being, and physical fitness. Implementation of the project in partnership with a variety of community stakeholders has identified a number of critical factors and processes necessary for future service replication, sustainability, and success. Findings from this intervention study contribute to the development of a knowledge base on how best to support individuals living with an intellectual disability to partake in bike riding and increase positive outcomes associated with their capacity building, social interaction, increased physical activity, physical health, and mental well-being. The initial findings of this study provide critical academic insights into the social and physical benefits of cycling for people living with a disability, as well as practical advice for future human service applications.

Keywords: cycling, disability, social inclusion, capacity building

Procedia PDF Downloads 73
2262 Investigation on Morphologies, Forming Mechanism, Photocatalytic and Electronic Properties of Co-Zn Ferrite Nanostructure Grown on the Reduced Graphene Oxide Support

Authors: Qinglei Liu, Ali Charkhesht, Tiva Sharifi, Ashkan Bahadoran

Abstract:

Graphene sheets are promising nanoscale building blocks as a support material for the dispersion of nanoparticles. In this work, a solvothermal method employed to directly grow Co1-xZnxFe2O4 ferrite nanospheres on graphene oxide support that is subsequently reduced to graphene. The samples morphology, structure and crystallography were investigated using field-emission scanning electron microscopy (FE-SEM) and powder X-ray diffraction (XRD). The influences of the Zn2+ content on photocatalytic activity, electrical conductivity and magnetic property of the samples are also investigated. The results showed that Co1-x Znx Fe2 O4 nanoparticles are dispersed on graphene sheets and obtained nanocomposites are soft magnetic materials. In addition the samples showed excellent photocatalytic activity under visible light irradiation.

Keywords: reduced graphene oxide, ferrite, magnetic nanocomposite, photocatalytic activity, solvothermal method

Procedia PDF Downloads 256
2261 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks

Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li

Abstract:

Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.

Keywords: bidirectional encoder representations from transformers, BERT, chatbot, cryptocurrency, deep learning

Procedia PDF Downloads 153
2260 Gamification to Enhance Learning Using Gagne's Learning Model

Authors: M. L. McLain, R. Sreelakshmi, Abhishek, Rajeshwaran, Bhavani Rao, Kamal Bijlani, R. Jayakrishnan

Abstract:

Technology enhanced learning has brought drastic changes in the field of education in the modern world. In this study we explore a novel way to improve how high school students learn by building a serious game that uses a pedagogical model developed by Robert Gagne. By integrating serious game with principles of Gagne’s learning model can provide engaging and meaningful instructions to students. The game developed in this study is a waste sorting game that can easily and succinctly demonstrate the principles of this learning model. All the tasks in the game that the player has to accomplish correspond to Gagne’s “Nine Events of Learning”. A quiz is incorporated in order to get data on the progress made by the player in understanding the concept and as well as to assess them. Additionally, an experimental study was conducted which demonstrates that game based learning using Gagne’s event is more effective than a traditional classroom setup.

Keywords: game based learning, sorting and recycling of waste, Gagne’s learning model, e-Learning, technology enhanced learning

Procedia PDF Downloads 636
2259 Eco-Infrastructures: A Multidimensional System Approach for Urban Ecology

Authors: T. A. Mona M. Salem, Ali F. Bakr

Abstract:

Given the potential devastation associated with future climate change related disasters, it is vital to change the way we build and manage our cities, through new strategies to reconfigure them and their infrastructures in ways that help secure their reproduction. This leads to a kaleidoscopic view of the city that recognizes the interrelationships of energy, water, transportation, and solid waste. These interrelationships apply across sectors and with respect to the built form of the city. The paper aims at a long-term climate resilience of cities and their critical infrastructures, and sets out an argument for including an eco-infrastructure-based approach in strategies to address climate change. As these ecosystems have a critical role to play in building resilience and reducing vulnerabilities in cities, communities and economies at risk, the enhanced protection and management of ecosystems, biological resources and habitats can mitigate impacts and contribute to solutions as nations and cities strive to adapt to climate change.

Keywords: ecology, ecosystem, infrastructure, climate change, urban

Procedia PDF Downloads 312
2258 A Rare Cause of Abdominal Pain Post Caesarean Section

Authors: Madeleine Cox

Abstract:

Objective: discussion of diagnosis of vernix caseosa peritonitis, recovery and subsequent caesarean seciton Case: 30 year old G4P1 presented in labour at 40 weeks, planning a vaginal birth afterprevious caesarean section. She underwent an emergency caesarean section due to concerns for fetal wellbeing on CTG. She was found to have a thin lower segment with a very small area of dehiscence centrally. The operation was uncomplicated, and she recovered and went home 2 days later. She then represented to the emergency department day 6 post partum feeling very unwell, with significant abdominal pain, tachycardia as well as urinary retention. Raised white cell count of 13.7 with neutrophils of 11.64, CRP of 153. An abdominal ultrasound was poorly tolerated by the patient and did not aide in the diagnosis. Chest and abdominal xray were normal. She underwent a CT chest and abdomen, which found a small volume of free fluid with no apparent collection. Given no obvious cause of her symptoms were found and the patient did not improve, she had a repeat CT 2 days later, which showed progression of free fluid. A diagnostic laparoscopy was performed with general surgeons, which reveled turbid fluid, an inflamed appendix which was removed. The patient improved remarkably post operatively. The histology showed periappendicitis with acute appendicitis with marked serosal inflammatory reaction to vernix caseosa. Following this, the patient went on to recover well. 4 years later, the patient was booked for an elective caesarean section, on entry into the abdomen, there were very minimal adhesions, and the surgery and her subsequent recovery was uncomplicated. Discussion: this case represents the diagnostic dilemma of a patient who presents unwell without a clear cause. In this circumstance, multiple modes of imaging did not aide in her diagnosis, and so she underwent diagnostic surgery. It is important to evaluate if a patient is or is not responding to the typical causes of post operative pain and adjust management accordingly. A multiteam approach can help to provide a diagnosis for these patients. Conclusion: Vernix caseosa peritonitis is a rare cause of acute abdomen post partum. There are few reports in the literature of the initial presentation and no reports on the possible effects on future pregnancies. This patient did not have any complications in her following pregnancy or delivery secondary to her diagnosis of vernix caseosa peritonitis. This may assist in counselling other women who have had this uncommon diagnosis.

Keywords: peritonitis, obstetrics, caesarean section, pain

Procedia PDF Downloads 108
2257 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery

Authors: Abebe Taye

Abstract:

The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.

Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability

Procedia PDF Downloads 80
2256 Corporate Cash Holding and Mutual Funds Flow: Global Evidence

Authors: Abdulaziz Alomran

Abstract:

This study investigates the impact of corporate cash holdings on equity mutual fund flow using large international sample from 23 countries. Building on the economic mechanisms of what drives investors' decisions when they construct their portfolio, we argue that corporate cash holding level has a significant effect on future cash flow. We find that there is a negative relationship between mutual fund flow and corporate cash holdings which indicate the significant role cash holding decisions have on mutual fund industry. Finally, we present evidence that the negative relationship between fund money sensitivity and level of cash in listed firms varies based on the region of the market. Overall, to explain these results, we highlight the important implications for investors and fund managers in mutual fund industry.

Keywords: corporate cash holdings, mutual funds, fund flow, region effect

Procedia PDF Downloads 3
2255 Optimization Techniques for Microwave Structures

Authors: Malika Ourabia

Abstract:

A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.

Keywords: segmentation, s parameters, simulation, optimization

Procedia PDF Downloads 532