Search results for: noise estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2971

Search results for: noise estimation

391 Constraints on Source Rock Organic Matter Biodegradation in the Biogenic Gas Fields in the Sanhu Depression, Qaidam Basin, Northwestern China: A Study of Compound Concentration and Concentration Ratio Changes Using GC-MS Data

Authors: Mengsha Yin

Abstract:

Extractable organic matter (EOM) from thirty-six biogenic gas source rocks from the Sanhu Depression in Qaidam Basin in northwestern China were obtained via Soxhlet extraction. Twenty-nine of them were conducted SARA (Saturates, Aromatics, Resins and Asphaltenes) separation for bulk composition analysis. Saturated and aromatic fractions of all the extractions were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) to investigate the compound compositions. More abundant n-alkanes, naphthalene, phenanthrene, dibenzothiophene and their alkylated products occur in samples in shallower depths. From 2000m downward, concentrations of these compounds increase sharply, and concentration ratios of more-over-less biodegradation susceptible compounds coincidently decrease dramatically. ∑iC15-16, 18-20/∑nC15-16, 18-20 and hopanoids/∑n-alkanes concentration ratios and mono- and tri-aromatic sterane concentrations and concentration ratios frequently fluctuate with depth rather than trend with it, reflecting effects from organic input and paleoenvironments other than biodegradation. Saturated and aromatic compound distributions on the saturates and aromatics total ion chromatogram (TIC) traces of samples display different degrees of biodegradation. Dramatic and simultaneous variations in compound concentrations and their ratios at 2000m and their changes with depth underneath cooperatively justified the crucial control of burial depth on organic matter biodegradation scales in source rocks and prompted the proposition that 2000m is the bottom depth boundary for active microbial activities in this study. The study helps to better curb the conditions where effective source rocks occur in terms of depth in the Sanhu biogenic gas fields and calls for additional attention to source rock pore size estimation during biogenic gas source rock appraisals.

Keywords: pore space, Sanhu depression, saturated and aromatic hydrocarbon compound concentration, source rock organic matter biodegradation, total ion chromatogram

Procedia PDF Downloads 156
390 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor

Authors: Pooja Seth, Shruti Aggarwal

Abstract:

Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.

Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method

Procedia PDF Downloads 404
389 Assessment of the Performance of the Sonoreactors Operated at Different Ultrasound Frequencies, to Remove Pollutants from Aqueous Media

Authors: Gabriela Rivadeneyra-Romero, Claudia del C. Gutierrez Torres, Sergio A. Martinez-Delgadillo, Victor X. Mendoza-Escamilla, Alejandro Alonzo-Garcia

Abstract:

Ultrasonic degradation is currently being used in sonochemical reactors to degrade pollutant compounds from aqueous media, as emerging contaminants (e.g. pharmaceuticals, drugs and personal care products.) because they can produce possible ecological impacts on the environment. For this reason, it is important to develop appropriate water and wastewater treatments able to reduce pollution and increase reuse. Pollutants such as textile dyes, aromatic and phenolic compounds, cholorobenzene, bisphenol-A and carboxylic acid and other organic pollutants, can be removed from wastewaters by sonochemical oxidation. The effect on the removal of pollutants depends on the type of the ultrasonic frequency used; however, not much studies have been done related to the behavior of the fluid into the sonoreactors operated at different ultrasonic frequencies. Based on the above, it is necessary to study the hydrodynamic behavior of the liquid generated by the ultrasonic irradiation to design efficient sonoreactors to reduce treatment times and costs. In this work, it was studied the hydrodynamic behavior of the fluid in sonochemical reactors at different frequencies (250 kHz, 500 kHz and 1000 kHz). The performances of the sonoreactors at those frequencies were simulated using computational fluid dynamics (CFD). Due to there is great sound speed gradient between piezoelectric and fluid, k-e models were used. Piezoelectric was defined as a vibration surface, to evaluate the different frequencies effect on the fluid into sonochemical reactor. Structured hexahedral cells were used to mesh the computational liquid domain, and fine triangular cells were used to mesh the piezoelectric transducers. Unsteady state conditions were used in the solver. Estimation of the dissipation rate, flow field velocities, Reynolds stress and turbulent quantities were evaluated by CFD and 2D-PIV measurements. Test results show that there is no necessary correlation between an increase of the ultrasonic frequency and the pollutant degradation, moreover, the reactor geometry and power density are important factors that should be considered in the sonochemical reactor design.

Keywords: CFD, reactor, ultrasound, wastewater

Procedia PDF Downloads 190
388 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: interferometry, MIMO RADAR, SAR, tomography

Procedia PDF Downloads 195
387 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media

Procedia PDF Downloads 105
386 Evaluation of a Piecewise Linear Mixed-Effects Model in the Analysis of Randomized Cross-over Trial

Authors: Moses Mwangi, Geert Verbeke, Geert Molenberghs

Abstract:

Cross-over designs are commonly used in randomized clinical trials to estimate efficacy of a new treatment with respect to a reference treatment (placebo or standard). The main advantage of using cross-over design over conventional parallel design is its flexibility, where every subject become its own control, thereby reducing confounding effect. Jones & Kenward, discuss in detail more recent developments in the analysis of cross-over trials. We revisit the simple piecewise linear mixed-effects model, proposed by Mwangi et. al, (in press) for its first application in the analysis of cross-over trials. We compared performance of the proposed piecewise linear mixed-effects model with two commonly cited statistical models namely, (1) Grizzle model; and (2) Jones & Kenward model, used in estimation of the treatment effect, in the analysis of randomized cross-over trial. We estimate two performance measurements (mean square error (MSE) and coverage probability) for the three methods, using data simulated from the proposed piecewise linear mixed-effects model. Piecewise linear mixed-effects model yielded lowest MSE estimates compared to Grizzle and Jones & Kenward models for both small (Nobs=20) and large (Nobs=600) sample sizes. It’s coverage probability were highest compared to Grizzle and Jones & Kenward models for both small and large sample sizes. A piecewise linear mixed-effects model is a better estimator of treatment effect than its two competing estimators (Grizzle and Jones & Kenward models) in the analysis of cross-over trials. The data generating mechanism used in this paper captures two time periods for a simple 2-Treatments x 2-Periods cross-over design. Its application is extendible to more complex cross-over designs with multiple treatments and periods. In addition, it is important to note that, even for single response models, adding more random effects increases the complexity of the model and thus may be difficult or impossible to fit in some cases.

Keywords: Evaluation, Grizzle model, Jones & Kenward model, Performance measures, Simulation

Procedia PDF Downloads 122
385 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 11
384 Drivers of Liking: Probiotic Petit Suisse Cheese

Authors: Helena Bolini, Erick Esmerino, Adriano Cruz, Juliana Paixao

Abstract:

The currently concern for health has increased demand for low-calorie ingredients and functional foods as probiotics. Understand the reasons that infer on food choice, besides a challenging task, it is important step for development and/or reformulation of existing food products. The use of appropriate multivariate statistical techniques, such as External Preference Map (PrefMap), associated with regression by Partial Least Squares (PLS) can help in determining those factors. Thus, this study aimed to determine, through PLS regression analysis, the sensory attributes considered drivers of liking in probiotic petit suisse cheeses, strawberry flavor, sweetened with different sweeteners. Five samples in same equivalent sweetness: PROB1 (Sucralose 0.0243%), PROB2 (Stevia 0.1520%), PROB3 (Aspartame 0.0877%), PROB4 (Neotame 0.0025%) and PROB5 (Sucrose 15.2%) determined by just-about-right and magnitude estimation methods, and three commercial samples COM1, COM2 and COM3, were studied. Analysis was done over data coming from QDA, performed by 12 expert (highly trained assessors) on 20 descriptor terms, correlated with data from assessment of overall liking in acceptance test, carried out by 125 consumers, on all samples. Sequentially, results were submitted to PLS regression using XLSTAT software from Byossistemes. As shown in results, it was possible determine, that three sensory descriptor terms might be considered drivers of liking of probiotic petit suisse cheese samples added with sweeteners (p<0.05). The milk flavor was noticed as a sensory characteristic with positive impact on acceptance, while descriptors bitter taste and sweet aftertaste were perceived as descriptor terms with negative impact on acceptance of petit suisse probiotic cheeses. It was possible conclude that PLS regression analysis is a practical and useful tool in determining drivers of liking of probiotic petit suisse cheeses sweetened with artificial and natural sweeteners, allowing food industry to understand and improve their formulations maximizing the acceptability of their products.

Keywords: acceptance, consumer, quantitative descriptive analysis, sweetener

Procedia PDF Downloads 446
383 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities

Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra

Abstract:

Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.

Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics

Procedia PDF Downloads 143
382 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change

Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems

Procedia PDF Downloads 65
381 Management in the Transport of Pigs to Slaughterhouses in the Valle De Aburrá, Antioquia

Authors: Natalia Uribe Corrales, María Fernanda Benavides Erazo, Santiago Henao Villegas

Abstract:

Introduction: Transport is a crucial link in the porcine chain because it is considered a stressful event in the animal, due to it is a new environment, which generates new interactions, together with factors such as speed, noise, temperature changes, vibrations, deprivation of food and water. Therefore, inadequate handling at this stage can lead to bruises, musculoskeletal injuries, fatigue, and mortality, resulting in canal seizures and economic losses. Objective: To characterize the transport and driving practices for the mobilization of standing pigs directed to slaughter plants in the Valle de Aburrá, Antioquia, Colombia in 2017. Methods: A descriptive cross-sectional study was carried out with the transporters arriving at the slaughterhouses approved by National Institute for Food and Medicine Surveillance (INVIMA) during 2017 in the Valle de Aburrá. The process of obtaining the samples was made from probabilistic sampling. Variables such as journey time, mechanical technical certificate, training in animal welfare, driving speed, material, and condition of floors and separators, supervision of animals during the trip, load density and mortality were analyzed. It was approved by the ethics committee for the use and care of animals CICUA of CES University, Act number 14 of 2015. Results: 190 trucks were analyzed, finding that 12.4% did not have updated mechanical technical certificate; the transporters experience in pig’s transportation was an average of 9.4 years (d.e.7.5). The 85.8% reported not having received training in animal welfare. Other results were that the average speed was 63.04km/hr (d.e 13.46) and the 62% had floors in good condition; nevertheless, the 48% had bad conditions on separators. On the other hand, the 88% did not supervise their animals during the journey, although the 62.2% had an adequate loading density, in relation to the average mortality was 0.2 deaths/travel (d.e. 0.5). Conclusions: Trainers should be encouraged on issues such as proper maintenance of vehicles, animal welfare, obligatory review of animals during mobilization and speed of driving, as these poorly managed indicators generate stress in animals, increasing generation of injuries as well as possible accidents; also, it is necessary to continue to improve aspects such as aluminum floors and separators that favor easy cleaning and maintenance, as well as the appropriate handling in the density of load that generates animal welfare.

Keywords: animal welfare, driving practices, pigs, truck infrastructure

Procedia PDF Downloads 208
380 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 157
379 Fatigue Analysis and Life Estimation of the Helicopter Horizontal Tail under Cyclic Loading by Using Finite Element Method

Authors: Defne Uz

Abstract:

Horizontal Tail of helicopter is exposed to repeated oscillatory loading generated by aerodynamic and inertial loads, and bending moments depending on operating conditions and maneuvers of the helicopter. In order to ensure that maximum stress levels do not exceed certain fatigue limit of the material and to prevent damage, a numerical analysis approach can be utilized through the Finite Element Method. Therefore, in this paper, fatigue analysis of the Horizontal Tail model is studied numerically to predict high-cycle and low-cycle fatigue life related to defined loading. The analysis estimates the stress field at stress concentration regions such as around fastener holes where the maximum principal stresses are considered for each load case. Critical element identification of the main load carrying structural components of the model with rivet holes is performed as a post-process since critical regions with high-stress values are used as an input for fatigue life calculation. Once the maximum stress is obtained at the critical element and the related mean and alternating components, it is compared with the endurance limit by applying Soderberg approach. The constant life straight line provides the limit for several combinations of mean and alternating stresses. The life calculation based on S-N (Stress-Number of Cycles) curve is also applied with fully reversed loading to determine the number of cycles corresponds to the oscillatory stress with zero means. The results determine the appropriateness of the design of the model for its fatigue strength and the number of cycles that the model can withstand for the calculated stress. The effect of correctly determining the critical rivet holes is investigated by analyzing stresses at different structural parts in the model. In the case of low life prediction, alternative design solutions are developed, and flight hours can be estimated for the fatigue safe operation of the model.

Keywords: fatigue analysis, finite element method, helicopter horizontal tail, life prediction, stress concentration

Procedia PDF Downloads 145
378 Estimation of Dynamic Characteristics of a Middle Rise Steel Reinforced Concrete Building Using Long-Term

Authors: Fumiya Sugino, Naohiro Nakamura, Yuji Miyazu

Abstract:

In earthquake resistant design of buildings, evaluation of vibration characteristics is important. In recent years, due to the increment of super high-rise buildings, the evaluation of response is important for not only the first mode but also higher modes. The knowledge of vibration characteristics in buildings is mostly limited to the first mode and the knowledge of higher modes is still insufficient. In this paper, using earthquake observation records of a SRC building by applying frequency filter to ARX model, characteristics of first and second modes were studied. First, we studied the change of the eigen frequency and the damping ratio during the 3.11 earthquake. The eigen frequency gradually decreases from the time of earthquake occurrence, and it is almost stable after about 150 seconds have passed. At this time, the decreasing rates of the 1st and 2nd eigen frequencies are both about 0.7. Although the damping ratio has more large error than the eigen frequency, both the 1st and 2nd damping ratio are 3 to 5%. Also, there is a strong correlation between the 1st and 2nd eigen frequency, and the regression line is y=3.17x. In the damping ratio, the regression line is y=0.90x. Therefore 1st and 2nd damping ratios are approximately the same degree. Next, we study the eigen frequency and damping ratio from 1998 after 3.11 earthquakes, the final year is 2014. In all the considered earthquakes, they are connected in order of occurrence respectively. The eigen frequency slowly declined from immediately after completion, and tend to stabilize after several years. Although it has declined greatly after the 3.11 earthquake. Both the decresing rate of the 1st and 2nd eigen frequencies until about 7 years later are about 0.8. For the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1% and the 2nd increases by less than 1%. For the eigen frequency, there is a strong correlation between the 1st and 2nd, and the regression line is y=3.17x. For the damping ratio, the regression line is y=1.01x. Therefore, it can be said that the 1st and 2nd damping ratio is approximately the same degree. Based on the above results, changes in eigen frequency and damping ratio are summarized as follows. In the long-term study of the eigen frequency, both the 1st and 2nd gradually declined from immediately after completion, and tended to stabilize after a few years. Further it declined after the 3.11 earthquake. In addition, there is a strong correlation between the 1st and 2nd, and the declining time and the decreasing rate are the same degree. In the long-term study of the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1%, the 2nd increases by less than 1%. Also, the 1st and 2nd are approximately the same degree.

Keywords: eigenfrequency, damping ratio, ARX model, earthquake observation records

Procedia PDF Downloads 217
377 Identification of Architectural Design Error Risk Factors in Construction Projects Using IDEF0 Technique

Authors: Sahar Tabarroki, Ahad Nazari

Abstract:

The design process is one of the most key project processes in the construction industry. Although architects have the responsibility to produce complete, accurate, and coordinated documents, architectural design is accompanied by many errors. A design error occurs when the constraints and requirements of the design are not satisfied. Errors are potentially costly and time-consuming to correct if not caught early during the design phase, and they become expensive in either construction documents or in the construction phase. The aim of this research is to identify the risk factors of architectural design errors, so identification of risks is necessary. First, a literature review in the design process was conducted and then a questionnaire was designed to identify the risks and risk factors. The questions in the form of the questionnaire were based on the “similar service description of study and supervision of architectural works” published by “Vice Presidency of Strategic Planning & Supervision of I.R. Iran” as the base of architects’ tasks. Second, the top 10 risks of architectural activities were identified. To determine the positions of possible causes of risks with respect to architectural activities, these activities were located in a design process modeled by the IDEF0 technique. The research was carried out by choosing a case study, checking the design drawings, interviewing its architect and client, and providing a checklist in order to identify the concrete examples of architectural design errors. The results revealed that activities such as “defining the current and future requirements of the project”, “studies and space planning,” and “time and cost estimation of suggested solution” has a higher error risk than others. Moreover, the most important causes include “unclear goals of a client”, “time force by a client”, and “lack of knowledge of architects about the requirements of end-users”. For error detecting in the case study, lack of criteria, standards and design criteria, and lack of coordination among them, was a barrier, anyway, “lack of coordination between architectural design and electrical and mechanical facility”, “violation of the standard dimensions and sizes in space designing”, “design omissions” were identified as the most important design errors.

Keywords: architectural design, design error, risk management, risk factor

Procedia PDF Downloads 130
376 Experimental Study of Sand-Silt Mixtures with Torsional and Flexural Resonant Column Tests

Authors: Meghdad Payan, Kostas Senetakis, Arman Khoshghalb, Nasser Khalili

Abstract:

Dynamic properties of soils, especially at the range of very small strains, are of particular interest in geotechnical engineering practice for characterization of the behavior of geo-structures subjected to a variety of stress states. This study reports on the small-strain dynamic properties of sand-silt mixtures with particular emphasis on the effect of non-plastic fines content on the small strain shear modulus (Gmax), Young’s Modulus (Emax), material damping (Ds,min) and Poisson’s Ratio (v). Several clean sands with a wide range of grain size characteristics and particle shape are mixed with variable percentages of a silica non-plastic silt as fines content. Prepared specimens of sand-silt mixtures at different initial void ratios are subjected to sequential torsional and flexural resonant column tests with elastic dynamic properties measured along an isotropic stress path up to 800 kPa. It is shown that while at low percentages of fines content, there is a significant difference between the dynamic properties of the various samples due to the different characteristics of the sand portion of the mixtures, this variance diminishes as the fines content increases and the soil behavior becomes mainly silt-dominant, rendering no significant influence of sand properties on the elastic dynamic parameters. Indeed, beyond a specific portion of fines content, around 20% to 30% typically denoted as threshold fines content, silt is controlling the behavior of the mixture. Using the experimental results, new expressions for the prediction of small-strain dynamic properties of sand-silt mixtures are developed accounting for the percentage of silt and the characteristics of the sand portion. These expressions are general in nature and are capable of evaluating the elastic dynamic properties of sand-silt mixtures with any types of parent sand in the whole range of silt percentage. The inefficiency of skeleton void ratio concept in the estimation of small-strain stiffness of sand-silt mixtures is also illustrated.

Keywords: damping ratio, Poisson’s ratio, resonant column, sand-silt mixture, shear modulus, Young’s modulus

Procedia PDF Downloads 250
375 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 149
374 Barriers and Opportunities in Apprenticeship Training: How to Complete a Vocational Upper Secondary Qualification with Intermediate Finnish Language Skills

Authors: Inkeri Jaaskelainen

Abstract:

The aim of this study is to shed light on what is it like to study in apprenticeship training using intermediate (or even lower level) Finnish. The aim is to find out and describe these students' experiences and feelings while acquiring a profession in Finnish as it is important to understand how immigrant background adult learners learn and how their needs could be better taken into account. Many students choose apprenticeships and start vocational training while their language skills in Finnish are still very weak. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances, and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other, and so are their ways to learn. Both duties at work and school assignments require reasonably good general language skills, and, especially at work, language skills are also a safety issue. The empirical target of this study is a group of students with an immigrant background who studied in various fields with intensive L2 support in 2016–2018 and who by now have completed a vocational upper secondary qualification. The interview material for this narrative study was collected from those who completed apprenticeship training in 2019–2020. The data collection methods used are a structured thematic interview, a questionnaire, and observational data. Interviewees with an immigrant background have an inconsistent cultural and educational background - some have completed an academic degree in their country of origin while others have learned to read and write only in Finland. The analysis of the material utilizes thematic analysis, which is used to examine learning and related experiences. Learning a language at work is very different from traditional classroom teaching. With evolving language skills, at an intermediate level at best, rushing and stressing makes it even more difficult to understand and increases the fear of failure. Constant noise, rapidly changing situations, and uncertainty undermine the learning and well-being of apprentices. According to preliminary results, apprenticeship training is well suited to the needs of an adult immigrant student. In apprenticeship training, students need a lot of support for learning and understanding a new communication and working culture. Stress can result in, e.g., fatigue, frustration, and difficulties in remembering and understanding. Apprenticeship training can be seen as a good path to working life. However, L2 support is a very important part of apprenticeship training, and it indeed helps students to believe that one day they will graduate and even get employed in their new country.

Keywords: apprenticeship training, vocational basic degree, Finnish learning, wee-being

Procedia PDF Downloads 133
373 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 155
372 International Entrepreneurial Orientation and Institutionalism: The Effect on International Performance for Latin American SMEs

Authors: William Castillo, Hugo Viza, Arturo Vargas

Abstract:

The Pacific Alliance is a trade bloc that is composed of four emerging economies: Chile, Colombia, Peru, and Mexico. These economies have gained macroeconomic stability in the past decade and as a consequence present future economic progress. Under this positive scenario, international business firms have flourished. However, the literature in this region has been widely unexamined. Therefore, it is critical to fill this theoretical gap, especially considering that Latin America is starting to become a global player and it possesses a different institutional context than developed markets. This paper analyzes the effect of international entrepreneurial orientation and institutionalism on international performance, for the Pacific Alliance small-to-medium enterprises (SMEs). The literature considers international entrepreneurial orientation to be a powerful managerial capability – along the resource based view- that firms can leverage to obtain a satisfactory international performance. Thereby, obtaining a competitive advantage through the correct allocation of key resources to exploit the capabilities here involved. Entrepreneurial Orientation is defined around five factors: innovation, proactiveness, risk-taking, competitive aggressiveness, and autonomy. Nevertheless, the institutional environment – both local and foreign, adversely affects International Performance; this is especially the case for emerging markets with uncertain scenarios. In this way, the study analyzes an Entrepreneurial Orientation, key endogenous variable of international performance, and Institutionalism, an exogenous variable. The survey data consists of Pacific Alliance SMEs that have foreign operations in at least another country in the trade bloc. Findings are still in an ongoing research process. Later, the study will undertake a structural equation modeling (SEM) using the variance-based partial least square estimation procedure. The software that is going to be used is the SmartPLS. This research contributes to the theoretical discussion of a largely postponed topic: SMEs in Latin America, that has had limited academic research. Also, it has practical implication for decision-makers and policy-makers, providing insights into what is behind international performance.

Keywords: institutional theory, international entrepreneurial orientation, international performance, SMEs, Pacific Alliance

Procedia PDF Downloads 248
371 Carrying Capacity Estimation for Small Hydro Plant Located in Torrential Rivers

Authors: Elena Carcano, James Ball, Betty Tiko

Abstract:

Carrying capacity refers to the maximum population that a given level of resources can sustain over a specific period. In undisturbed environments, the maximum population is determined by the availability and distribution of resources, as well as the competition for their utilization. This information is typically obtained through long-term data collection. In regulated environments, where resources are artificially modified, populations must adapt to changing conditions, which can lead to additional challenges due to fluctuations in resource availability over time and throughout development. An example of this is observed in hydropower plants, which alter water flow and impact fish migration patterns and behaviors. To assess how fish species can adapt to these changes, specialized surveys are conducted, which provide valuable information on fish populations, sample sizes, and density before and after flow modifications. In such situations, it is highly recommended to conduct hydrological and biological monitoring to gain insight into how flow reductions affect species adaptability and to prevent unfavorable exploitation conditions. This analysis involves several planned steps that help design appropriate hydropower production while simultaneously addressing environmental needs. Consequently, the study aims to strike a balance between technical assessment, biological requirements, and societal expectations. Beginning with a small hydro project that requires restoration, this analysis focuses on the lower tail of the Flow Duration Curve (FDC), where both hydrological and environmental goals can be met. The proposed approach involves determining the threshold condition that is tolerable for the most vulnerable species sampled (Telestes Muticellus) by identifying a low flow value from the long-term FDC. The results establish a practical connection between hydrological and environmental information and simplify the process by establishing a single reference flow value that represents the minimum environmental flow that should be maintained.

Keywords: carrying capacity, fish bypass ladder, long-term streamflow duration curve, eta-beta method, environmental flow

Procedia PDF Downloads 40
370 The Impact of Informal Care on Health Behavior among Older People with Chronic Diseases: A Study in China Using Propensity Score Matching

Authors: Hong Wu, Naiji Lu

Abstract:

Improvement of health behavior among people with chronic diseases is vital for increasing longevity and enhancing quality of life. This paper researched the causal effects of informal care on the compliance with doctor’s health advices – smoking control, dietetic regulation, weight control and keep exercising – among older people with chronic diseases in China, which is facing the challenge of aging. We addressed the selection bias by using propensity score matching in the estimation process. We used the 2011-2012 national baseline data of the China Health and Retirement Longitudinal Study. Our results showed informal care can help improve health behavior of older people. First, informal care improved the compliance of smoking controls: whether smoke, frequency of smoking, and the time lag between wake up and the first cigarette was all lower for these older people with informal care; Second, for dietetic regulation, older people with informal care had more meals every day than older people without informal care; Third, three variables: BMI, whether gain weight and whether lose weight were used to measure the outcome of weight control. There were no significant difference between group with informal care and that without for BMI and the possibility of losing weight. Older people with informal care had lower possibility of gain weight than that without; Last, for the advice of keeping exercising, informal care increased the probability of walking exercise, however, the difference between groups for moderate and vigorous exercise were not significant. Our results indicate policy makers who aim to decrease accidents should take informal care to elders into account and provide an appropriate policy to meet the demand of informal care. Our birth policy and postponed retirement policy may decrease the informal caregiving hours, so adjustments of these policies are important and urgent to meet the current situation of aged tendency of population. In addition, government could give more support to develop organizations to provide formal care, such as nursing home. We infer that formal care is also useful for health behavior improvements.

Keywords: chronic diseases, compliance, CHARLS, health advice, informal care, older people, propensity score matching

Procedia PDF Downloads 405
369 Serum Vitamin D and Carboxy-Terminal TelopeptideType I Collagen Levels: As Markers for Bone Health Affection in Patients Treated with Different Antiepileptic Drugs

Authors: Moetazza M. Al-Shafei, Hala Abdel Karim, Eitedal M. Daoud, Hassan Zaki Hassuna

Abstract:

Epilepsy is a common neurological disorder affecting all age groups. It is one of the world's most prevalent non-communicable diseases. Increased evidence suggesting that long term usage of anti-epileptic drugs can have adverse effects on bone mineralization and bone molding .Aiming to study these effects and to give guide lines to support bone health through early intervention. From Neurology Out-Patient Clinic kaser Elaini University Hospital, 60 Patients were enrolled, 40 patients on antiepileptic drugs for at least two years and 20 controls matched with age and sex, epileptic but before starting treatment both chosen under specific criteria. Patients were divided into four groups, three groups with monotherapy treated with either Phynetoin, Valporic acid or Carbamazipine and fourth group treated with both Valporic acid and Carbamazipine. Estimation of serum Carboxy-Terminal Telopeptide of Type I- Collagen(ICTP) bone resorption marker, serum 25(OH )vit D3, calcium ,magnesium and phosphorus were done .Results showed that all patients on AED had significant low levels of 25(OH) vit D3 (p<0.001) ,with significant elevation of ICTP (P<0.05) versus controls. In group treated with Phynotoin highly significant elevation of (ICTP) marker and decrease of both serum 25(OH) vit D3 (P<0, 0001) and serum calcium(P<0.05)versus control. Double drug group showed significant decrease of serum 25(OH) vit D3 (P<0.0001) and decrease in Phosphorus (P<0.05) versus controls. Serum magnesium showed no significant differences between studied groups. We concluded that Anti- epileptic drugs appears to be an aggravating factor on bone mineralization ,so therapeutically it can be worth wile to supplement calcium and vitamin D even before initiation of antiepileptic therapy. ICTP marker can be used to evaluate change in bone resorption before and during AED therapy.

Keywords: antiepileptic drugs, bone minerals, carboxy teminal telopeptidetype-1-collagen bone resorption marker, vitamin D

Procedia PDF Downloads 493
368 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups

Authors: Lily Ingsrisawang, Tasanee Nacharoen

Abstract:

Introduction: The problems of unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many research papers found that the performance of existing classifier tends to be biased towards the majority class. The k -nearest neighbors’ nonparametric discriminant analysis is one method that was proposed for classifying unbalanced classes with good performance. Hence, the methods of discriminant analysis are of interest to us in investigating misclassification error rates for class-imbalanced data of three diabetes risk groups. Objective: The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification application of class-imbalanced data of diabetes risk groups. Methods: Data from a healthy project for 599 staffs in a government hospital in Bangkok were obtained for the classification problem. The staffs were diagnosed into one of three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data along with the variables; diabetes risk group, age, gender, cholesterol, and BMI was analyzed and bootstrapped up to 50 and 100 samples, 599 observations per sample, for additional estimation of misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples show non-normality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. In finding the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions with three choices of (0.90:0.05:0.05), (0.80: 0.10: 0.10) or (0.70, 0.15, 0.15). Results: The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k = 3 or k = 4 and the prior probabilities of {non-risk:risk:diabetic} as {0.90:0.05:0.05} or {0.80:0.10:0.10} gave the smallest error rate of misclassification. Conclusion: The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.

Keywords: error rate, bootstrap, diabetes risk groups, k-nearest neighbors

Procedia PDF Downloads 434
367 Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE

Authors: Parimalah Velo, Ahmad Zakaria

Abstract:

Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data.

Keywords: gamma camera, Geant4 application of tomographic emission (GATE), Monte Carlo, thyroid imaging

Procedia PDF Downloads 271
366 Design and Manufacture of Removable Nosecone Tips with Integrated Pitot Tubes for High Power Sounding Rocketry

Authors: Bjorn Kierulf, Arun Chundru

Abstract:

Over the past decade, collegiate rocketry teams have emerged across the country with various goals: space, liquid-fueled flight, etc. A critical piece of the development of knowledge within a club is the use of so-called "sounding rockets," whose goal is to take in-flight measurements that inform future rocket design. Common measurements include acceleration from inertial measurement units (IMU's), and altitude from barometers. With a properly tuned filter, these measurements can be used to find velocity, but are susceptible to noise, offset, and filter settings. Instead, velocity can be measured more directly and more instantaneously using a pitot tube, which operates by measuring the stagnation pressure. At supersonic speeds, an additional thermodynamic property is necessary to constrain the upstream state. One possibility is the stagnation temperature, measured by a thermocouple in the pitot tube. The routing of the pitot tube from the nosecone tip down to a pressure transducer is complicated by the nosecone's structure. Commercial-off-the-shelf (COTS) nosecones come with a removable metal tip (without a pitot tube). This provides the opportunity to make custom tips with integrated measurement systems without making the nosecone from scratch. The main design constraint is how the nosecone tip is held down onto the nosecone, using the tension in a threaded rod anchored to a bulkhead below. Because the threaded rod connects into a threaded hole in the center of the nosecone tip, the pitot tube follows a winding path, and the pressure fitting is off-center. Two designs will be presented in the paper, one with a curved pitot tube and a coaxial design that eliminates the need for the winding path by routing pressure through a structural tube. Additionally, three manufacturing methods will be presented for these designs: bound powder filament metal 3D printing, stereo-lithography (SLA) 3D printing, and traditional machining. These will employ three different materials, copper, steel, and proprietary resin. These manufacturing methods and materials are relatively low cost, thus accessible to student researchers. These designs and materials cover multiple use cases, based on how fast the sounding rocket is expected to travel and how important heating effects are - to measure and to avoid melting. This paper will include drawings showing key features and an overview of the design changes necessitated by the manufacture. It will also include a look at the successful use of these nosecone tips and the data they have gathered to date.

Keywords: additive manufacturing, machining, pitot tube, sounding rocketry

Procedia PDF Downloads 164
365 The Use of a Novel Visual Kinetic Demonstration Technique in Student Skill Acquisition of the Sellick Cricoid Force Manoeuvre

Authors: L. Nathaniel-Wurie

Abstract:

The Sellick manoeuvre a.k.a the application of cricoid force (CF), was first described by Brian Sellick in 1961. CF is the application of digital pressure against the cricoid cartilage with the intention of posterior force causing oesophageal compression against the vertebrae. This is designed to prevent passive regurgitation of gastric contents, which is a major cause of morbidity and mortality during emergency airway management inside and outside of the hospital. To the authors knowledge, there is no universally standardised training modality and, therefore, no reliable way to examine if there are appropriate outcomes. If force is not measured during training, how can one surmise that appropriate, accurate, or precise amounts of force are being used routinely. Poor homogeneity in teaching and untested outcomes will correlate with reduced efficacy and increased adverse effects. For this study, the accuracy of force delivery in trained professionals was tested, and outcomes contrasted against a novice control and a novice study group. In this study, 20 operating department practitioners were tested (with a mean experience of 5.3years of performing CF). Subsequent contrast with 40 novice students who were randomised into one of two arms. ‘Arm A’ were explained the procedure, then shown the procedure then asked to perform CF with the corresponding force measurement being taken three times. Arm B had the same process as arm A then before being tested, they had 10, and 30 Newtons applied to their hands to increase intuitive understanding of what the required force equated to, then were asked to apply the equivalent amount of force against a visible force metre and asked to hold that force for 20 seconds which allowed direct visualisation and correction of any over or under estimation. Following this, Arm B were then asked to perform the manoeuvre, and the force generated measured three times. This study shows that there is a wide distribution of force produced by trained professionals and novices performing the procedure for the first time. Our methodology for teaching the manoeuvre shows an improved accuracy, precision, and homogeneity within the group when compared to novices and even outperforms trained practitioners. In conclusion, if this methodology is adopted, it may correlate with higher clinical outcomes, less adverse events, and more successful airway management in critical medical scenarios.

Keywords: airway, cricoid, medical education, sellick

Procedia PDF Downloads 79
364 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai

Authors: Raj Banerjee, Aniruddha Sengupta

Abstract:

An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.

Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum

Procedia PDF Downloads 180
363 Tea and Its Working Methodology in the Biomass Estimation of Poplar Species

Authors: Pratima Poudel, Austin Himes, Heidi Renninger, Eric McConnel

Abstract:

Populus spp. (poplar) are the fastest-growing trees in North America, making them ideal for a range of applications as they can achieve high yields on short rotations and regenerate by coppice. Furthermore, poplar undergoes biochemical conversion to fuels without complexity, making it one of the most promising, purpose-grown, woody perennial energy sources. Employing wood-based biomass for bioenergy offers numerous benefits, including reducing greenhouse gas (GHG) emissions compared to non-renewable traditional fuels, the preservation of robust forest ecosystems, and creating economic prospects for rural communities.In order to gain a better understanding of the potential use of poplar as a biomass feedstock for biofuel in the southeastern US, the conducted a techno-economic assessment (TEA). This assessment is an analytical approach that integrates technical and economic factors of a production system to evaluate its economic viability. the TEA specifically focused on a short rotation coppice system employing a single-pass cut-and-chip harvesting method for poplar. It encompassed all the costs associated with establishing dedicated poplar plantations, including land rent, site preparation, planting, fertilizers, and herbicides. Additionally, we performed a sensitivity analysis to evaluate how different costs can affect the economic performance of the poplar cropping system. This analysis aimed to determine the minimum average delivered selling price for one metric ton of biomass necessary to achieve a desired rate of return over the cropping period. To inform the TEA, data on the establishment, crop care activities, and crop yields were derived from a field study conducted at the Mississippi Agricultural and Forestry Experiment Station's Bearden Dairy Research Center in Oktibbeha County and Pontotoc Ridge-Flatwood Branch Experiment Station in Pontotoc County.

Keywords: biomass, populus species, sensitivity analysis, technoeconomic analysis

Procedia PDF Downloads 83
362 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators

Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros

Abstract:

Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.

Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis

Procedia PDF Downloads 139