Search results for: liquid cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5460

Search results for: liquid cell

2880 Pressure Regulator Optimization in LPG Fuel Injection Systems

Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner

Abstract:

LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.

Keywords: temperature, pressure regulator, LPG, PID

Procedia PDF Downloads 518
2879 Phenolic Composition and Contribution of Individual Compounds to Antioxidant Activity of Malus domestica Borkh Fruit Cultivars

Authors: Raudone Lina, Raudonis Raimondas, Liaudanskas Mindaugas, Pukalskas Audrius, Viskelis Pranas, Janulis Valdimaras

Abstract:

Human health fortification, its protection and disease prophylaxis are the main problems of the health care systems. Plant origin materials and their preparations are applied for the prevention of the common diseases. Oxidative stress takes part in the pathogenesis of many autoimmune, neurodegenerative, tumor and ageing processes. The antioxidants are able to protect the human body from the free radicals and to stop the progression of numerous chronic diseases. The research of plant origin materials is relevant for the search of natural antioxidants. A group of compounds that gained scientific attention due to antioxidant properties and effects on human health are phenolic compounds. Phenolic compounds are widely abundant in various parts of plants, i.e. leaves, stems, roots, flowers and fruits. Most commonly consumed fruits all over the world are apples. It is very important to analyze the antioxidant activity of apples as they are extensively used in the prevention of various diseases. The aim of this study was to determine the antioxidant profiles of Malus domestica Borkh fruit cultivars (Aldas, Auksis, Connel Red, Ligol, Lodel, Rajka) and to identify the phenolic compounds with potent contribution to antioxidant activity. Nineteen constituents were identified in apple cultivars using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Phytochemical profile was constituted of phenolic acids, procyanidins, quercetin derivatives and dihydrochalcones. Reducing and radical scavenging activities of individual constituents were determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP and ABTS assay, respectively. Significant differences of total radical scavenging and reducing activity (expressed as trolox equivalents, TE µmol/g) were determined between the investigated cultivars. Chlorogenic acid and complex of procyanidins were the main contributors to antioxidant activity determining up to 35 % and 55 % of total TE values, respectively. Determined phenolic composition and antioxidant activity significantly depend on apple cultivars. It is important to determine the individual compounds that are significant for antioxidant activity and that could be investigated in vivo systems. The identification of the antioxidants provides information for the further research of standardized extracts that could be used for pharmaceutical preparations with specific phenolic traits.

Keywords: FRAP, ABTS, antioxidant, phenolic, apples, chlorogenic acid

Procedia PDF Downloads 411
2878 Synergistic Anti-Proliferation Effect of PLK-1 Inhibitor and Livistona Chinensis Fruit Extracts on Lung Adenocarcinoma A549 Cells

Authors: Min-Chien Su, Tzu-Hsuan Hsu, Guan-Xuan Wu, Shyh-Ming Kuo

Abstract:

Lung cancer is one of the clinically challenging malignant diseases worldwide. For efficient therapeutics in cancer, combination therapy has developed to acquire a better outcome. PLK-1 was one of the major factors affecting cell mitosis in cancer cells, its inhibitor Bi6727 was proven effective in treating several different cancers namely oral cancer, colon cancer and lung cancer. Despite its low toxicity toward normal cells compared to traditional chemotherapy, it is still yet to be evaluated in detail. Livistona Chinensis (LC) is a Chinese herb that used as a traditional prescription to treat lung cancer. Due to the uncertainty of the efficacy of LC, we utilized a water extraction method to extract the Livistona Chinensis and then lyophilized into powder for further study. In this study we investigated the antiproliferation activities of Bi6727 and LC extracts (LCE) on A549 non-small lung cancer cells. The IC50 of Bi6727 and LCE on A549 are 60 nM and 0.8 mg/mL, respectively. The fluorescent staining images shown nucleolus damage in cells treated with Bi6727 and mitochondrial damage after treated with LCE. A549 cells treated with Bi6727 and LCE showed increased expression of Bax, Caspase-3 and Caspase-9 proteins from Western blot assay. LCE also inhibited A549 cells growth keeping cells at G2-M phase from cell cycle assay. Apoptosis assay results showed that LCE induced late apoptosis of A549 cells. JC-1 assay showed that the mitochondria damaged at the LCE concentration of 0.4 mg/mL. In our preliminary anti-proliferation test of combined LCE and Bi-6727 on A549 cells, we found a dramatically decrease in proliferation after treated with LCE first for 24-h and then Bi-6727 for extra 24-h. This was an important finding regarding synergistic anti-proliferation effect of these drugs, However, the usage, the application sequence of LCE and Bi-6727 on A549 cells and their related mechanisms still need to be evaluated. In summary, the drugs exerted anti-proliferation effect on A549 cells independently. We hopefully combine the usage of these two drugs will bring a different and potential outcome in treating lung cancer.

Keywords: anti-proliferation, A549, Livistona Chinensis fruit extracts, PLK-1 inhibitor

Procedia PDF Downloads 144
2877 Selection the Most Suitable Method for DNA Extraction from Muscle of Iran's Canned Tuna by Comparison of Different DNA Extraction Methods

Authors: Marjan Heidarzadeh

Abstract:

High quality and purity of DNA isolated from canned tuna is essential for species identification. In this study, the efficiency of five different methods for DNA extraction was compared. Method of national standard in Iran, the CTAB precipitation method, Wizard DNA Clean Up system, Nucleospin and GenomicPrep were employed. DNA was extracted from two different canned tuna in brine and oil of the same tuna species. Three samples of each type of product were analyzed with the different methods. The quantity and quality of DNA extracted was evaluated using the 260 nm absorbance and ratio A260/A280 by spectrophotometer picodrop. Results showed that the DNA extraction from canned tuna preserved in different liquid media could be optimized by employing a specific DNA extraction method in each case. Best results were obtained with CTAB method for canned tuna in oil and with Wizard method for canned tuna in brine.

Keywords: canned tuna PCR, DNA, DNA extraction methods, species identification

Procedia PDF Downloads 659
2876 Production of Biodiesel Using Brine Waste as a Heterogeneous Catalyst

Authors: Hilary Rutto, Linda Sibali

Abstract:

In these modern times, we constantly search for new and innovative technologies to lift the burden of our extreme energy demand. The overall purpose of biofuel production research is to source an alternative energy source to replace the normal use of fossil fuel as liquid petroleum products. This experiment looks at the basis of biodiesel production with regards to alternative catalysts that can be used to produce biodiesel. The key factors that will be addressed during the experiments will focus on temperature variation, catalyst additions to the overall reaction, methanol to oil ratio, and the impact of agitation on the reaction. Brine samples sources from nearby plants will be evaluated and tested thoroughly and the key characteristics of these brine samples analysed for the verification of its use as a possible catalyst in biodiesel production. The one factor at a time experimental approach was used in this experiment, and the recycle and reuse characteristics of the heterogeneous catalyst was evaluated.

Keywords: brine sludge, heterogenous catalyst, biodiesel, one factor

Procedia PDF Downloads 175
2875 Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals

Authors: C. C. Lin, S. C. Kan, C. W. Yeh, C. I Chen, C. J. Shieh, Y. C. Liu

Abstract:

In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol.

Keywords: lipid-deprived residuals of microalgae, cellulosome, cellulose, reducing sugars, kinetics

Procedia PDF Downloads 407
2874 Comparative in vitro Anticancer Activity of Two Siddha Formulations: Neeradi Muthu Vallathymezugu and Thamira Kattu Chendooram

Authors: Vasudha Devi, Arul Amuthan, K. Narayanan, Praveen KS, Venkata Rao J

Abstract:

Background: Siddha Medicine is one of the Indian traditional medical systems, in which the cancer disease is mentioned as 'putrunoi' which literally means the disease of growth like termite mound. There are number of formulations available for the treatment of cancer disease. Neeradi muthu vallathymezugu (NMV) and thamira kattu chendooram (TKC) are two drugs commonly prescribed by Siddha physicians. These drugs have been clinically reported to be safe and effective when given orally. Though these formulations are in practice for centuries, no efforts have been made to standardize them and explore their anti-cancer potential systematically. Objective: To compare the cytotoxic activity of NMV and TKC with doxorubicin using cancer cell lines. Materials and methods: For this study, ethanol extract of NMV was taken, whereas TKC was used as such. In vitro cytotoxic activity was evaluated by sulphorhodamine (SRB) assay against human hepatic cancer cells (HepG2), human breast cancer cells (MCF-7) and human cervical cancer cells [KeLa]. Doxorubicin was used as the standard. The SRB assay is based on the ability of cellular proteins to bind with sulphorhodamine-B. The number of live cells in drug treated cell lines directly affects the color formation in the assay, which is estimated calorimetrically by measuring the absorbance at 540 nm to calculate the cytotoxicity (inhibitory concentration - IC50 value) of the drug. Results: The IC50values of NMV, TKC and doxorubicin against HepG2 were 3.08 µg/ml, 20.21 µg/ml and 1.21µg/ml respectively. In MCF-7, it was 11.75 µg/ml, 17.67 µg/ml and 2.8µg/ml. In HeLa, the values were 24.76 µg/ml, 73.35 µg/ml and 1.12µg/ml. Conclusions: The study proves the possible anti-cancer potential of these two formulations. Compared to TKC, NMV showed good cytotoxic effect even at low dose. Human hepatic cancer cells responded well even at very low dose, when compared to other cancer cells. Though, cytotoxic potential of these compounds was found to be less compared to doxorubicin, the isolated lead compound may have the potential to be used as an anticancer drug clinically.

Keywords: Neeradi muthu vallathymezugu (Hydnocarpus laurifolia), thamira kattu chendooram, cytotoxicity, in-vitro, Siddha Medicine

Procedia PDF Downloads 481
2873 Effect of Collection Technique of Blood on Clinical Pathology

Authors: Marwa Elkalla, E. Ali Abdelfadil, Ali. Mohamed. M. Sami, Ali M. Abdel-Monem

Abstract:

To assess the impact of the blood collection technique on clinical pathology markers and to establish reference intervals, a study was performed using normal, healthy C57BL/6 mice. Both sexes were employed, and they were randomly assigned to different groups depending on the phlebotomy technique used. The blood was drawn in one of four ways: intracardiac (IC), caudal vena cava (VC), caudal vena cava (VC) plus a peritoneal collection of any extravasated blood, or retroorbital phlebotomy (RO). Several serum biochemistries, such as a liver function test, a complete blood count with differentials, and a platelet count, were analysed from the blood and serum samples analysed. Red blood cell count, haemoglobin (p >0.002), hematocrit, alkaline phosphatase, albumin, total protein, and creatinine were all significantly greater in female mice. Platelet counts, specific white blood cell numbers (total, neutrophil, lymphocyte, and eosinophil counts), globulin, amylase, and the BUN/creatinine ratio were all greater in males. The VC approach seemed marginally superior to the IC approach for the characteristics under consideration and was linked to the least variation among both sexes. Transaminase levels showed the greatest variation between study groups. The aspartate aminotransferase (AST) values were linked with decreased fluctuation for the VC approach, but the alanine aminotransferase (ALT) values were similar between the IC and VC groups. There was a lot of diversity and range in transaminase levels between the MC and RO groups. We found that the RO approach, the only one tested that allowed for repeated sample collection, yielded acceptable ALT readings. The findings show that the test results are significantly affected by the phlebotomy technique and that the VC or IC techniques provide the most reliable data. When organising a study and comparing data to reference ranges, the ranges supplied here by collection method and sex can be utilised to determine the best approach to data collection. The authors suggest establishing norms based on the procedures used by each individual researcher in his or her own lab.

Keywords: clinical, pathology, blood, effect

Procedia PDF Downloads 99
2872 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application

Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian

Abstract:

The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.

Keywords: hole transporting layer, lead-free, perovskite solar cell, SCAPS-1D, Sn-Ge based

Procedia PDF Downloads 159
2871 Hepatocyte-Intrinsic NF-κB Signaling Is Essential to Control a Systemic Viral Infection

Authors: Sukumar Namineni, Tracy O'Connor, Ulrich Kalinke, Percy Knolle, Mathias Heikenwaelder

Abstract:

The liver is one of the pivotal organs in vertebrate animals, serving a multitude of functions such as metabolism, detoxification and protein synthesis and including a predominant role in innate immunity. The innate immune mechanisms pertaining to liver in controlling viral infections have largely been attributed to the Kupffer cells, the locally resident macrophages. However, all the cells of liver are equipped with innate immune functions including, in particular, the hepatocytes. Hence, our aim in this study was to elucidate the innate immune contribution of hepatocytes in viral clearance using mice lacking Ikkβ specifically in the hepatocytes, termed IkkβΔᴴᵉᵖ mice. Blockade of Ikkβ activation in IkkβΔᴴᵉᵖ mice affects the downstream signaling of canonical NF-κB signaling by preventing the nuclear translocation of NF-κB, an important step required for the initiation of innate immune responses. Interestingly, infection of IkkβΔᴴᵉᵖ mice with lymphocytic choriomeningitis virus (LCMV) led to strongly increased hepatic viral titers – mainly confined in clusters of infected hepatocytes. This was due to reduced interferon stimulated gene (ISG) expression during the onset of infection and a reduced CD8+ T-cell-mediated response. Decreased ISG production correlated with increased liver LCMV protein and LCMV in isolated hepatocytes from IkkβΔᴴᵉᵖ mice. A similar phenotype was found in LCMV-infected mice lacking interferon signaling in hepatocytes (IFNARΔᴴᵉᵖ) suggesting a link between NFkB and interferon signaling in hepatocytes. We also observed a failure of interferon-mediated inhibition of HBV replication in HepaRG cells treated with NF-kB inhibitors corroborating our initial findings with LCMV infections. Collectively, these results clearly highlight a previously unknown and influential role of hepatocytes in the induction of innate immune responses leading to viral clearance during a systemic viral infection with LCMV-WE.

Keywords: CD8+ T cell responses, innate immune mechanisms in the liver, interferon signaling, interferon stimulated genes, NF-kB signaling, viral clearance

Procedia PDF Downloads 194
2870 Studies on Radio Frequency Sputtered Copper Zinc Tin Sulphide Absorber Layers for Thin Film Solar Cells

Authors: G. Balaji, R. Balasundaraprabhu, S. Prasanna, M. D. Kannan, K. Sivakumaran, David Mcilroy

Abstract:

Copper Zin tin sulphide (Cu2ZnSnS4 or CZTS) is found to be better alternative to Copper Indium gallium diselenide as absorber layers in thin film based solar cells due to the utilisation of earth-abundant materials in the midst of lower toxicity. In the present study, Cu2ZnSnS4 thin films were prepared on soda lime glass using (CuS, ZnS, SnS) targets and were deposited by three different stacking orders, using RF Magnetron sputtering. The substrate temperature was fixed at 300 °C during the depositions. CZTS thin films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-Vis-NIR spectroscopy. All the samples exhibited X-ray peaks pertaining to (112) kesterite phase of CZTS, along with the presence of a predominant wurtzite CZTS phase. X-ray photoelectron spectroscopy revealed the presence of all the elements in all the samples. The change in stacking order clearly shows that it affects the structural and phase properties of the films. Relative atomic concentrations of Zn, Cu, Sn and S, which are determined by high-resolution XPS core level spectra integrated peak areas revealed that the CZTS films exhibit inhomogeneity in both stoichiometry and elemental composition. Raman spectroscopy studies on the film showed the presence of CZTS phase. The energy band gap of the CZTS thin films was found to be in the range of 1.5 eV to 1.6 eV. The films were then annealed at 450 °C for 5 hrs and it was found that the predominant nature of the X-ray peaks has transformed from Wurtzite to Kesterite phase which is highly desirable for absorber layers in thin film solar cells. The optimized CZTS layer was used as an absorber layer in thin film solar cells. ZnS and CdS were used as buffer layers which in turn prepared by Hot wall epitaxy technique. Gallium doped Zinc oxide was used as a transparent conducting oxide. The solar cell structure Glass/Mo/CZTS/CdS or ZnS/GZO has been fabricated, and solar cell parameters were measured.

Keywords: earth-abundant, Kesterite, RF sputtering, thin film solar cells

Procedia PDF Downloads 284
2869 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications

Authors: António J. Gano, Carmen Rangel

Abstract:

Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.

Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS

Procedia PDF Downloads 110
2868 Durable Phantom Production Identical to Breast Tissue for Use in Breast Cancer Detection Research Studies

Authors: Hayrettin Eroglu, Adem Kara

Abstract:

Recently there has been significant attention given to imaging of the biological tissues via microwave imaging techniques. In this study, a phantom for the test and calibration of Microwave imaging used in detecting unhealthy breast structure or tumors was produced by using sol gel method. The liquid and gel phantoms being used nowadays are not durable due to evaporation and their organic ingredients, hence a new design was proposed. This phantom was fabricated from materials that were widely available (water, salt, gelatin, and glycerol) and was easy to make. This phantom was aimed to be better from the ones already proposed in the literature in terms of its durability and stability. S Parameters of phantom was measured with 1-18 GHz Probe Kit and permittivity was calculated via Debye method in “85070” commercial software. One, three, and five-week measurements were taken for this phantom. Finally, it was verified that measurement results were very close to the real biological tissue measurement results.

Keywords: phantom, breast tissue, cancer, microwave imaging

Procedia PDF Downloads 361
2867 Amine Sulphonic Acid Additives for Improving Energy Storage Capacity in Alkaline Gallocyanine Flow Batteries

Authors: Eduardo Martínez González, Mousumi Dey, Pekka Peljo

Abstract:

Transitioning to a renewable energy model is inevitable owing to the effects of climate change. These energies are aimed at sustainability and a positive impact on the environment, but they are intermittent energies; their connection to the electrical grid depends on creating long-term, efficient, and low-cost energy storage devices. Redox flow batteries are attractive technologies to address this problem, as they store energy in solution through external tanks known as posolyte (solution to storage positive charge) and negolyte (solution to storage negative charge). During the charging process of the device, the posolyte and negolyte solutions are pumped into an electrochemical cell (which has the anode and cathode separated by an ionic membrane), where they undergo oxidation and reduction reactions at electrodes, respectively. The electrogenerated species should be stable and diffuse into the bulk solution. It has been possible to connect gigantic redox flow batteries to the electrical grid. However, the devices created do not fit with the sustainability criteria since their electroactive material consists of vanadium (material scarce and expensive) solutions dissolved in an acidic medium (e.g., 9 mol L-1 of H₂SO₄) that is highly corrosive; so, work is being done on the design of organic-electroactive electrolytes (posolytes and nogolytes) for their operation at different pH values, including neutral medium. As a main characteristic, negolyte species should have low reduction potential values, while the reverse is true for the oxidation process of posolytes. A wide variety of negolytes that store 1 and up to 2 electrons per molecule (in aqueous medium) have been publised. Gallocyanine compound was recently introduced as an electroactive material for developing alkaline flow battery negolytes. The system can storage two electrons per molecule, but its unexpectedly low water solubility was improved with an amino sulphonic acid additive. The cycling stability of and improved gallocyanine electrolyte was demonstrated by operating a flow battery cell (pairing the system to a posolyte composed of ferri/ferrocyanide solution) outside a glovebox. We also discovered that the additive improves the solubility of gallocyanine, but there is a kinetic price to pay for this advantage. Therefore, in this work, the effect of different amino sulphonic acid derivatives on the kinetics and solubility of gallocyanine compound was studied at alkaline solutions. The additive providing a faster electron transfer rate and high solubility was tested in a flow battery cell. An aqueous organic flow battery electrolyte working outside a glovebox with 15 mAhL-1 will be discussed. Acknowledgments: To Bi3BoostFlowBat Project (2021-2025), funded by the European Research Concil. For support with infrastructure, reagents, and a postdoctoral fellowship to Dr. Martínez-González.

Keywords: alkaline flow battery, gallocyanine electroactive material, amine-sulphonic acid additives, improved solubility

Procedia PDF Downloads 32
2866 Q Eqchi Mayan Piper and Cissampelos Species Alter Reporter Genes and Endogenous Genes Expression in Mc-7 Cells

Authors: Sheila M. Wicks, Gail Mahady, Udesh Patel, Joanna Michel, Armando Caceres

Abstract:

Introduction: The genus piperaceae contains approximately 1000 species of herbs scrubs small trees and hanging vines distributed in both hemispheres. During our ethno medical work in Guatemala of the 27 plant families documented for us e by the Qeqchi Maya for reproductive disorders the most prominent were the Piperaceae (15%) and Menispermiaceae. Our Previous work showed that extracts from form Piper and Cissampelos species bound to both and progesterone and the estrogen receptors. In this work active extracts from Piper aeruginosibaccum Trelease, P auritum, P tuerckheimii and Cissampels tropaeolifolia were tested in functionalized cell based assays including a SEAP reporter gene and by qPCR of ER-responsive gene expression in MCF-7cells. In the reporter gene assay P aeruginosibaccum was estrogenic and enhanced E2 EFFECTS IN MCF-7 CELLS. P. tuerckheimi was not estrogenic alone but significantly enhanced the effects of E2 on SEAP reporter gene expression. Both altered mRNA expression of E2 responsive genes in MCF-7. Methods: this is collaborative project between University of Illinois at Chicago and University of San Carlos Guatemala City. 144 spices of plants were collected in Guatemala of which 57 used to treat a variety of women's reproductive health. The Genus Piperaraceae contains approximately 1000 species of herbs scrubs and small trees. Active extracts of the plants were tested in functionalized in cell-based bioassays including SEAP reporter genes. Results demonstrated altered mRNA expression of E2 responsive genes in MC-7 cells plants were collected in Guatemala of which 57 used. Conclusion of the 5 plants tested all were shown to contain components of binding to estrogenic receptor to a greater or lesser degree. These effects support the use of QEqchi Maya women in Guatemala for reproductive.

Keywords: reporter genes, MC7, guatemala piperaceae, reproductive health

Procedia PDF Downloads 250
2865 Neuroprotective Effect of Vildagliptin against Cerebral Ischemia in Rats

Authors: Salma A. El-Marasy, Rehab F. Abdel-Rahman, Reham M. Abd-Elsalam

Abstract:

The burden of stroke is intensely increasing worldwide. Brain injury following transient or permanent focal cerebral ischemia develops ischemic stroke as a consequence of a complex series of pathophysiological events. The aim of this study is to evaluate the possible neuroprotective effect of a dipeptidyl peptidase-4 inhibitor, vildagliptin, independent on its insulinotropic properties in non-diabetic rats subjected to cerebral ischemia. Anaesthetized Wistar rats were subjected to either left middle cerebral artery occlusion (MCAO) or sham operation followed by reperfusion after 30 min of MCAO. The other three groups were orally administered vildagliptin at 3 dose levels (2.5, 5, 10 mg/kg) for 3 successive weeks before subjected to left focal cerebral ischemia/reperfusion and till the end of the study. Neurological deficit scores and motor activity were assessed 24h following reperfusion. 48h following reperfusion, rats were euthanized and their left brain hemispheres were harvested and used in the biochemical, histopathological, and immunohistochemical investigations. Vildagliptin pretreatment improved neurological score deficit, locomotor activity and motor coordination in MCAO rats. Moreover, vildagliptin reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), phosphotylinosital 3 kinase (PI3K), phosphorylated of protein kinase B (p-AKT), and mechanistic target of rapamycin (mTOR) brain contents in addition to reducing protein expression of caspase-3. Also, vildagliptin showed a dose-dependent attenuation in neuronal cell loss and histopathological alterations in MCAO rats. This study proves that vildagliptin exerted the neuroprotective effect in a dose-dependent manner as shown in amelioration of neuronal cell loss and histopathological damage in MCAO rats, which may be mediated by attenuating neuronal and motor deficits, it’s anti-oxidant property, activation of PI3K/AKT/mTOR pathway and its anti-apoptotic effect.

Keywords: caspase-3, cerebral ischemia, dipeptidyl peptidase-4 inhibitor, oxidative stress, PI3K/AKT/mTOR pathway, rats, vildagliptin

Procedia PDF Downloads 159
2864 Pva-bg58s-cl-based Barrier Membranes For Guided Tissue/bone Regeneration Therapy

Authors: Isabela S. Gonçalves, Vitor G. P. Lima, Tiago M. B. Campos, Marcos Jacobovitz, Luana M. R. Vasconcellos, Ivone R. Oliveira

Abstract:

Periodontitis is an infectious disease of multifactorial origin, which originates from a periodontogenic bacterial biofilm that colonizes the surfaces of the teeth, resulting in an inflammatory reaction to microbial aggression. In the absence of adequate treatment, it can lead to the gradual destruction of the periodontal ligaments, cementum and alveolar bone. In guided tissue/bone regeneration therapy (GTR/GBR), a barrier membrane is placed between the fibrous tissues and the bone defect to prevent unwanted incursions of fibrous tissues into the bone defect, thus allowing the regeneration of quality bone. Currently, there are a significant number of biodegradable barrier membranes available on the market. However, a very common problem is that the membranes are not bioactive/osteogenic, that is, they are incapable of inducing a favorable osteogenic response and integration with the host tissue, resulting in many cases in displacement/expulsion of the membrane, requiring a new surgical procedure and replacement of the implant. Aiming to improve the bioactive and osteogenic properties of the membrane, this work evaluated the production of membranes that integrate the biocompatibility of the hydrophilic synthetic polymer (polyvinyl alcohol - PVA) with the osteogenic effects of chlorinated bioactive glasses (BG58S-Cl), using the electrospinning equipment (AeroSpinner L1.0 from Areka) which allows the execution of spinning by high voltage and/or blowing in solution and with a high production rate, enabling development on an industrial scale. In the formulation of bioactive glasses, the replacement of nitrates by chlorinated molecules has shown to be a promising alternative, since the chloride ion is naturally present in the body and, with its presence in the bioactive glass, the biocompatibility of the material increases. Thus, in this work, chlorinated bioactive glasses were synthesized by the sol-gel route using the compounds tetraethyl orthosilicate (TEOS), calcium chloride dihydrate and monobasic ammonium phosphate with pH adjustments with 37% HCl (1.5 or 2.5) and different calcination temperatures (500, 600 and 700 °C) were evaluated. The BG-58S-Cl powders obtained were characterized by pH, conductivity and zeta potential x time curves and by SEM/FEG, FTIR-ATR and Raman tests. The material produced under the selected conditions was evaluated in relation to the milling procedure, obtaining particles suitable for incorporation into PVA polymer solutions to be electrospun (D50 = 22 µm). Membranes were produced and evaluated regarding the influence of the crosslinking agent content as well as the crosslinking treatment temperature (3, 5 and 10 wt% citric acid) and (130 or 175 oC) and were characterized by SEM/FEG, FTIR, TG and DSC. From the optimization of the crosslinking conditions, membranes were prepared by adding BG58S-Cl powder (5 and 10 wt%) to the PVA solutions and were characterized by SEM-FEG, DSC, bioactivity in SBF and behavior in cell culture (cell viability, total protein content, alkaline phosphatase, mineralization nodules). The micrographs showed homogeneity of the distribution of BG58S-Cl particles throughout the sample, favoring cell differentiation.

Keywords: barrier membranes, chlorinated bioactive glasses, polyvinyl alcohol, tissue regeneration.

Procedia PDF Downloads 21
2863 Photo-Degradation of a Pharmaceutical Product in the Presence of a Catalyst Supported on a Silicoaluminophosphate Solid

Authors: I. Ben Kaddour, S. Larbaoui

Abstract:

Since their first synthesis in 1984, silicoaluminophosphates have proven their effectiveness as a good adsorbent and catalyst in several environmental and energy applications. In this work, the photocatalytic reaction of the photo-degradation of a pharmaceutical product in water was carried out in the presence of a series of materials based on titanium oxide, anatase phase, supported on the microporous framework of the SAPO4-5 at different levels, under ultraviolet light. These photo-catalysts were characterized by different physicochemical analysis methods in order to determine their structural, textural, and morphological properties, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), microscopy scanning electronics (SEM), nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS). In this study, liquid chromatography coupled with spectroscopy of mass (LC-MS) was used to determine the nature of the intermediate products formed during the photocatalytic degradation of DCF.

Keywords: photocatalysis, titanium dioxide, SAPO-5, diclofenac

Procedia PDF Downloads 72
2862 Anabasine Intoxication and its Relation to Plant Development Stages

Authors: Thaís T. Valério Caetano, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein

Abstract:

Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil for a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.

Keywords: nicotiana glauca graham, global invasive species database, alkaloids, toxic

Procedia PDF Downloads 96
2861 Study the Performance of Metal-Organic Framework in Adsorptive Desulfurization for Gas Oil

Authors: Hoda A. Mohammed, Esraa M. El-Fawal, Howaida M. Abd El-Salam

Abstract:

Organic sulfurs in fuel oil cause serious environmental pollution and health problems. The important future direction for liquid fuel desulfurization is adsorptive desulfurization technology due to its simplicity, mild operating condition, and low cost. In this work, the well-prepared Nickel NPs were incorporated in a highly porous metal-organic framework MIL-101(Cr)) to produce Ni/Cr-MOF composite. Besides, the synthesis of Ni/Cr-MOF in the presence of Bi₂MoO₆/AC to prepare Bi₂MoO₆/AC@Ni/Cr-MOF. All the prepared composites were synthesized via a facile technique under ambient conditions to remove organosulfur compounds. The XRD, FT-IR, SEM, and BET techniques were used to characterize the prepared composites. The desulfurization performance of real gas oil by Bi₂MoO₆/AC, Ni/Cr-MOF, and Bi₂MoO₆/AC@Ni/Cr-MOF was investigated at different adsorbent doses and contact times. Bi₂MoO₆/AC@Ni/Cr-MOF shows the highest desulfurization performance, with removal efficiency reached to 80% at optimum conditions for a contact time of 4 hours.

Keywords: desulfurization, gas oil, metal-organic framework, sorption characteristics

Procedia PDF Downloads 85
2860 In Vitro Studies on Antimicrobial Activities of Lactic Acid Bacteria Isolated from Fresh Fruits for Biocontrol of Pathogens

Authors: Okolie Pius Ifeanyi, Emerenini Emilymary Chima

Abstract:

Aims: The study investigated the diversity and identities of Lactic Acid Bacteria (LAB) isolated from different fresh fruits using Molecular Nested PCR analysis and the efficacy of cell free supernatants from Lactic Acid Bacteria (LAB) isolated from fresh fruits for in vitro control of some tomato pathogens. Study Design: Nested PCR approach was used in this study employing universal 16S rRNA gene primers in the first round PCR and LAB specific Primers in the second round PCR with the view of generating specific Nested PCR products for the LAB diversity present in the samples. The inhibitory potentials of supernatant obtained from LAB isolates of fruits origin that were molecularly characterized were investigated against some tomato phytopathogens using agar-well method with the view to develop biological agents for some tomato disease causing organisms. Methodology: Gram positive, catalase negative strains of LAB were isolated from fresh fruits on Man Rogosa and Sharpe agar (Lab M) using streaking method. Isolates obtained were molecularly characterized by means of genomic DNA extraction kit (Norgen Biotek, Canada) method. Standard methods were used for Nested Polymerase Chain Reaction (PCR) amplification targeting the 16S rRNA gene using universal 16S rRNA gene and LAB specific primers, agarose gel electrophoresis, purification and sequencing of generated Nested PCR products (Macrogen Inc., USA). The partial sequences obtained were identified by blasting in the non-redundant nucleotide database of National Center for Biotechnology Information (NCBI). The antimicrobial activities of characterized LAB against some tomato phytopathogenic bacteria which include (Xanthomonas campestries, Erwinia caratovora, and Pseudomonas syringae) were obtained by using the agar well diffusion method. Results: The partial sequences obtained were deposited in the database of National Centre for Biotechnology Information (NCBI). Isolates were identified based upon the sequences as Weissella cibaria (4, 18.18%), Weissella confusa (3, 13.64%), Leuconostoc paramensenteroides (1, 4.55%), Lactobacillus plantarum (8, 36.36%), Lactobacillus paraplantarum (1, 4.55%) and Lactobacillus pentosus (1, 4.55%). The cell free supernatants of LAB from fresh fruits origin (Weissella cibaria, Weissella confusa, Leuconostoc paramensenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus) can inhibits these bacteria by creating clear zones of inhibition around the wells containing cell free supernatants of the above mentioned strains of lactic acid bacteria. Conclusion: This study shows that potentially LAB can be quickly characterized by molecular methods to specie level by nested PCR analysis of the bacteria isolate genomic DNA using universal 16S rRNA primers and LAB specific primer. Tomato disease causing organisms can be most likely biologically controlled by using extracts from LAB. This finding will reduce the potential hazard from the use of chemical herbicides on plant.

Keywords: nested pcr, molecular characterization, 16s rRNA gene, lactic acid bacteria

Procedia PDF Downloads 417
2859 Immune Modulation and Cytomegalovirus Reactivation in Sepsis-Induced Immunosuppression

Authors: G. Lambe, D. Mansukhani, A. Shetty, S. Khodaiji, C. Rodrigues, F. Kapadia

Abstract:

Introduction: Sepsis is known to cause impairment of both innate and adaptive immunity and involves an early uncontrolled inflammatory response, followed by a protracting immunosuppression phase, which includes decreased expression of cell receptors, T cell anergy and exhaustion, impaired cytokine production, which may cause high risk for secondary infections due to reduced response to antigens. Although human cytomegalovirus (CMV) is widely recognized as a serious viral pathogen in sepsis and immunocompromised patients, the incidence of CMV reactivation in patients with sepsis lacking strong evidence of immunosuppression is not well defined. Therefore, it is important to determine an association between CMV reactivation and sepsis-induced immunosuppression. Aim: To determine the association between incidence of CMV reactivation and immune modulation in sepsis-induced immunosuppression with time. Material and Methods: Ten CMV-seropositive adult patients with severe sepsis were included in this study. Blood samples were collected on Day 0, and further weekly up to 21 days. CMV load was quantified by real-time PCR using plasma. The expression of immunosuppression markers, namely, HLA-DR, PD-1, and regulatory T cells, were determined by flow cytometry using whole blood. Results: At Day 0, no CMV reactivation was observed in 6/10 patients. In these patients, the median length for reactivation was 14 days (range, 7-14 days). The remaining four patients, at Day 0, had a mean viral load of 1802+2599 copies/ml, which increased with time. At Day 21, the mean viral load for all 10 patients was 60949+179700 copies/ml, indicating that viremia increased with the length of stay in the hospital. HLA-DR expression on monocytes significantly increased from Day 0 to Day 7 (p = 0.001), following which no significant change was observed until Day 21, for all patients except 3. In these three patients, HLA-DR expression on monocytes showed a decrease at elevated viral load (>5000 copies/ml), indicating immune suppression. However, the other markers, PD-1 and regulatory T cells, did not show any significant changes. Conclusion: These preliminary findings suggest that CMV reactivation can occur in patients with severe sepsis. In fact, the viral load continued to increase with the length of stay in the hospital. Immune suppression, indicated by decreased expression of HLA-DR alone, was observed in three patients with elevated viral load.

Keywords: CMV reactivation, immune suppression, sepsis immune modulation, CMV viral load

Procedia PDF Downloads 152
2858 Regulation of Differentiating Intramuscular Stromal Vascular Cells Isolated from Hanwoo Beef Cattle by Retinoic Acid and Calcium

Authors: Seong Gu Hwang, Young Kyoon Oh, Joseph F. dela Cruz

Abstract:

Marbling, or intramuscular fat, has been consistently identified as one of the top beef quality problems. Intramuscular adipocytes distribute throughout the perimysial connective tissue of skeletal muscle and are the major site for the deposition of intramuscular fat, which is essential for the eating quality of meat. The stromal vascular fraction of the skeletal muscle contains progenitor cells that can be enhanced to differentiate to adipocytes and increase intramuscular fat. Primary cultures of bovine intramuscular stromal vascular cells were used in this study to elucidate the effects of extracellular calcium and retinoic acid concentration on adipocyte differentiation. Cell viability assay revealed that even at different concentrations of calcium and retinoic acid, there was no significant difference on cell viability. Monitoring of the adipocyte differentiation showed that bovine intramuscular stromal vascular cells cultured in a low concentration of extracellular calcium and retinoic acid had a better degree of fat accumulation. The mRNA and protein expressions of PPARγ, C/EBPα, SREBP-1c and aP2 were analyzed and showed a significant upregulation upon the reduction in the level of extracellular calcium and retinoic acid. The upregulation of these adipogenic related genes means that the decreasing concentration of calcium and retinoic acid is able to stimulate the adipogenic differentiation of bovine intramuscular stromal vascular cells. To further elucidate the effect of calcium, the expression level of calreticulin was measured. Calreticulin which is known to be an inhibitor of PPARγ was down regulated by the decreased level of calcium and retinoic acid in the culture media. The same tendency was observed on retinoic acid receptors RARα and CRABP-II. These receptors are recognized as adipogenic inhibitors, and the downregulation of their expression allowed a better level of differentiation in bovine intramuscular stromal vascular cells. In conclusion, data show that decreasing the level of extracellular calcium and retinoic acid can significantly promote adipogenesis in intramuscular stromal vascular cells of Hanwoo beef cattle. These findings may provide new insights in enhancing intramuscular adipogenesis and marbling in beef cattle.

Keywords: calcium, calreticulin, hanwoo beef, retinoic acid

Procedia PDF Downloads 309
2857 Scientific and Regulatory Challenges of Advanced Therapy Medicinal Products

Authors: Alaa Abdellatif, Gabrièle Breda

Abstract:

Background. Advanced therapy medicinal products (ATMPs) are innovative therapies that mainly target orphan diseases and high unmet medical needs. ATMP includes gene therapy medicinal products (GTMP), somatic cell therapy medicinal products (CTMP), and tissue-engineered therapies (TEP). Since legislation opened the way in 2007, 25 ATMPs have been approved in the EU, which is about the same amount as the U.S. Food and Drug Administration. However, not all of the ATMPs that have been approved have successfully reached the market and retained their approval. Objectives. We aim to understand all the factors limiting the market access to very promising therapies in a systemic approach, to be able to overcome these problems, in the future, with scientific, regulatory and commercial innovations. Further to recent reviews that focus either on specific countries, products, or dimensions, we will address all the challenges faced by ATMP development today. Methodology. We used mixed methods and a multi-level approach for data collection. First, we performed an updated academic literature review on ATMP development and their scientific and market access challenges (papers published between 2018 and April 2023). Second, we analyzed industry feedback from cell and gene therapy webinars and white papers published by providers and pharmaceutical industries. Finally, we established a comparative analysis of the regulatory guidelines published by EMA and the FDA for ATMP approval. Results: The main challenges in bringing these therapies to market are the high development costs. Developing ATMPs is expensive due to the need for specialized manufacturing processes. Furthermore, the regulatory pathways for ATMPs are often complex and can vary between countries, making it challenging to obtain approval and ensure compliance with different regulations. As a result of the high costs associated with ATMPs, challenges in obtaining reimbursement from healthcare payers lead to limited patient access to these treatments. ATMPs are often developed for orphan diseases, which means that the patient population is limited for clinical trials which can make it challenging to demonstrate their safety and efficacy. In addition, the complex manufacturing processes required for ATMPs can make it challenging to scale up production to meet demand, which can limit their availability and increase costs. Finally, ATMPs face safety and efficacy challenges: dangerous adverse events of these therapies like toxicity related to the use of viral vectors or cell therapy, starting material and donor-related aspects. Conclusion. As a result of our mixed method analysis, we found that ATMPs face a number of challenges in their development, regulatory approval, and commercialization and that addressing these challenges requires collaboration between industry, regulators, healthcare providers, and patient groups. This first analysis will help us to address, for each challenge, proper and innovative solution(s) in order to increase the number of ATMPs approved and reach the patients

Keywords: advanced therapy medicinal products (ATMPs), product development, market access, innovation

Procedia PDF Downloads 81
2856 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications

Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi

Abstract:

Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.

Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery

Procedia PDF Downloads 113
2855 Anabasine Intoxication and Its Relation to Plant Develoment Stages

Authors: Thaís T. Valério Caetano, Lívia de Carvalho Ferreira, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein

Abstract:

Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil during a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.

Keywords: alkaloid production, invasive species, nicotiana glauca, plant phenology

Procedia PDF Downloads 90
2854 Synthesis and Characterization of Chitosan Microparticles for Scaffold Structure and Bioprinting

Authors: J. E. Mendes, T. T. de Barros, O. B. G. de Assis, J. D. C. Pessoa

Abstract:

Chitosan, a natural polysaccharide of β-1,4-linked glucosamine residues, is a biopolymer obtained primarily from the exoskeletons of crustaceans. Interest in polymeric materials increases year by year. Chitosan is one of the most plentiful biomaterials, with a wide range of pharmaceutical, biomedical, industrial and agricultural applications. Chitosan nanoparticles were synthesized via the ionotropic gelation of chitosan with sodium tripolyphosphate (TPP). Two concentrations of chitosan microparticles (0.1 and 0.2%) were synthesized. In this study, it was possible to synthesize and characterize microparticles of chitosan biomaterial and this will be used for future applications in cell anchorage for 3D bioprinting.

Keywords: chitosan microparticles, biomaterial, scaffold, bioprinting

Procedia PDF Downloads 326
2853 Diagnostic Accuracy in the Detection of Cervical Lymph Node Metastases in Head and Neck Squamous Cell Carcinoma Patients: A Comparison of Sonography, CT, PET/CT and MRI

Authors: Di Luo, Maria Buchberger, Anja Pickhard

Abstract:

Objectives: The purpose of this study was to assess and compare the diagnostic accuracy of four common morphological approaches, including sonography, computed tomography (CT), positron emission tomography/computed tomography (PET/CT), and magnetic resonance imaging (MRI) for the evaluation of cervical lymph node metastases in head and neck squamous cell carcinoma (HNSCC) patients. Material and Methods: Included in this retrospective study were 26 patients diagnosed with HNSCC between 2010 and 2011 who all underwent sonography, CT, PET/CT, and MRI imaging before neck dissection. Morphological data were compared to the corresponding histopathological results. Statistical analysis was performed with SPSS statistic software (version 26.0), calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for detection of cervical lymph node metastases. Results: The 5-year survival rate of the patient collective was 55.5%.Risk factors for survival included initial primary tumor stage, initial lymph node stage, initial metastasis status, and therapeutic approaches. Cox regression showed initial metastasis status(HR 8.671, 95%CI 1.316-57.123, p=0.025) and therapeutic approaches(HR 6.699, 95%CI 1.746-25.700, p=0.006)to be independent predictive risk factors for survival. Sensitivity was highest for MRI (96% compared to 85% for sonography and 89% for CT and PET/CT). Specificity was comparable with 95 % for CT and 98 % for sonography and PET/CT, but only 68% for MRI. While the MRI showed the least PPV (34%) compared to all other methods (85% for sonography,75% for CT, and 86% for PET/CT), the NPV was comparable in all methods(98-99%). The overall accuracy of cervical lymph node metastases detection was comparable for sonography, CT, and PET/CT with 96%,97%,94%, respectively, while MRI had only 72% accuracy. Conclusion: Since the initial status of metastasis is an independent predictive risk factor for patients’ survival, efficient detection is crucial to plan adequate therapeutic approaches. Sonography, CT, and PET/CT have better diagnostic accuracy than MRI for the evaluation of cervical lymph node metastases in HNSCC patients.

Keywords: cervical lymph node metastases, diagnostic accuracy, head and neck squamous carcinoma, risk factors, survival

Procedia PDF Downloads 136
2852 Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology

Authors: Qasim Zaheer, Jehanzeb Masud

Abstract:

The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results.

Keywords: Kelvin Helmholtz instability, embedded LES, complex flow field, ejector pump

Procedia PDF Downloads 300
2851 Report on Yessotoxins and Pectenotoxins in Shellfish from the North Black Sea Coast of Bulgaria

Authors: Zlatina Peteva, Stanislava Georgieva, Mona Stancheva, Lubomir Makedonsky

Abstract:

Yessotoxins (YTX) and pectenotoxins (PTX) are lipophilic polyether marine biotoxins that accumulate in shellfish and are regulated in the European Union. Aim of this study is investigation of the presence of YTXs and PTXs in Black Sea mussel (Mytilus galloprovincialis) on the North Black Sea cast of Bulgaria. YTX and PTX-2 have been identified in samples of the digestive glands of wild and cultivated samples. Mussel samples are harvested from two locations in important farming area on the Bulgarian North Black Sea coast in the period September 2016 – May 2017. Samples are analyzed by liquid chromatography tandem mass spectrometry (LC–MS/MS). In about 50 % of the samples analyzed the obtained concentration of YTX ranged from 10 – 5000 pg/g hepatopancreas and PTX-2 ranged from 300-7000 pg/g hepatopancreas. This is to our knowledge the first report of occurrence of lipophilic toxins in mussels from Bulgaria.

Keywords: yessotoxins, pectenotoxins, Black sea, mussels

Procedia PDF Downloads 154