Search results for: inclusive business models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10116

Search results for: inclusive business models

7536 Improvement of the Melon (Cucumis melo L.) through Genetic Gain and Discriminant Function

Authors: M. R. Naroui Rad, H. Fanaei, A. Ghalandarzehi

Abstract:

To find out the yield of melon, the traits are vital. This research was performed with the objective to assess the impact of nine different morphological traits on the production of 20 melon landraces in the sistan weather region. For all the traits genetic variation was noted. Minimum genetical variance (9.66) along with high genetic interaction with the environment led to low heritability (0.24) of the yield. The broad sense heritability of the traits that were included into the differentiating model was more than it was in the production. In this study, the five selected traits, number of fruit, fruit weight, fruit width, flesh diameter and plant yield can differentiate the genotypes with high or low production. This demonstrated the significance of these 5 traits in plant breeding programs. Discriminant function of these 5 traits, particularly, the weight of the fruit, in case of the current outputs was employed as an all-inclusive parameter for pointing out landraces with the highest yield. 75% of variation in yield can be explained with this index, and the weight of fruit also has substantial relation with the total production (r=0.72**). This factor can be highly beneficial in case of future breeding program selections.

Keywords: melon, discriminant analysis, genetic components, yield, selection

Procedia PDF Downloads 333
7535 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 49
7534 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data

Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates

Abstract:

Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.

Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.

Procedia PDF Downloads 97
7533 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
7532 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110
7531 An Investigation into Why Very Few Small Start-Ups Business Survive for Longer Than Three Years: An Explanatory Study in the Context of Saudi Arabia

Authors: Motaz Alsolaim

Abstract:

Nowadays, the challenges of running a start-up can be very complex and are perhaps more difficult than at any other time in the past. Changes in technology, manufacturing innovation, and product development, combined with intense competition and market regulations are factors that have put pressure on classic ways of managing firms, thereby forcing change. As a result, the rate of closure, exit or discontinuation of start-ups and young businesses is very high. Despite the essential role of small firms in an economy, they still tend to face obstacles that exert a negative influence on their performance and rate of survival. In fact, it is not easy to determine with any certainty the reasons why small firms fail. For this reason, failure itself is not clearly defined, and its exact causes are hard to diagnose. In this current study, therefore, the barriers to survival will be covered more broadly, especially personal/entrepreneurial, enterprise and environmental factors with regard to various possible reasons for this failure, in order to determine the best solutions and make appropriate recommendations. Methodology: It could be argued that mixed methods might help to improve entrepreneurship research addressing challenges emphasis in previous studies and to achieve the triangulation. Calls for the combined use of quantitative and qualitative research were also made in the entrepreneurship field since entrepreneurship is a multi-faceted area of research. Therefore, explanatory sequential mixed method was used, using questionnaire online survey for entrepreneurs, followed by semi-structure interview. Collecting over 750 surveys and accepting 296 valid surveys, after that 13 interviews from government official seniors, businessmen successful entrepreneurs, and non-successful entrepreneurs. Findings: The first phase findings ( quantitative) shows the obstacles to survive; starting from the personal/ entrepreneurial factors such as; past work experience, lack of skills and interest, are positive factors, while; gender, age and education level of the owner are negative factors. Internal factors such as lack of marketing research and weak business planning are positive. The environmental factors; in economic perspectives; difficulty to find labors, in socio-cultural perspectives; Social restriction and traditions found to be a negative factors. In other hand, from the political perspective; cost of compliance and insufficient government plans found to be a positive factors for small business failure. From infrastructure perspective; lack of skills labor, high level of bureaucracy and lack of information are positive factors. Conclusion: This paper serves to enrich the understanding of failure factors in MENA region more precisely in SA, by minimizing the probability of failure in small-micro entrepreneurial start-up in SA, in the light of the Saudi government’s Vision 2030 plan.

Keywords: small business barriers, start-up business, entrepreneurship, Saudi Arabia

Procedia PDF Downloads 177
7530 Disablism in Saudi Mainstream Schools: Disabled Teachers’ Experiences and Perspectives

Authors: Ali Aldakhil

Abstract:

This paper explores the many faces of the barriers and exclusionary attitudes and practices that disabled teachers and students experience in a school where they teach or attend. Critical disability studies and inclusive education theory were used to conceptualise this inquiry and ground it in the literature. These theories were used because they magnify and expose the problems of disability/disablism as within-society instead of within-individual. Similarly, disability-first language was used in this study because it seeks to expose the social oppression and discrimination of disabled. Data were generated through conducting in-depth semi-structured interviews with six disabled teachers who teach disabled children in a Saudi mainstream school. Thematic analysis of data concludes that the school is fettered by disabling barriers, attitudes, and practices, which reflect the dominant culture of disablism that disabled people encounter in the Saudi society on a daily basis. This leads to the conclusion that overall deconstruction and reformation of Saudi mainstream schools are needed, including non-disabled people’s attitudes, policy, spaces, and overall arrangements of teaching and learning.

Keywords: disablism, disability studies, mainstream schools, Saudi Arabia

Procedia PDF Downloads 159
7529 Implementation of an Open Source ERP for SMEs in the Automotive Sector in Peru: A Case Study

Authors: Gerson E. Cornejo, Luis A. Gamarra, David S. Mauricio

Abstract:

The Enterprise Resource Planning Systems (ERP) allows the integration of all the business processes of the functional areas of the companies, in order to automate and standardize the processes, obtain accurate information and improve decision making in time real. In Peru, 79% of medium and small companies (SMEs) do not use any management software, this is because it is believed that ERPs are expensive, complex and difficult to implement. However, for more than 20 years there have been Open Source ERPs, which are more accessible and have the same benefit as proprietary ERPs, but there is little information on the implementation process. In this work is made a case of study, in order to show the implementation process of an Open Source ERP, Odoo, based on the ASAP methodology (Accelerated SAP) and applied to a company of corrective and preventive maintenance services of vehicles. The ERP allowed the SME to standardize its business processes, increase its productivity, reducing up to 40% certain processes. The study of this case shows that it is feasible and profitable to implement an Open Source ERP in SMEs in the Automotive Sector of Peru. In addition, it is shown that the ASAP methodology is adequate to carry out Open Source ERPs implementation projects.

Keywords: ASAP, automotive sector, ERP implementation, open source

Procedia PDF Downloads 336
7528 Innovating Development: An Exploratory Study of Social Enterprises in Nigeria

Authors: Akor Omachile Opaluwah

Abstract:

Entrepreneurs are heralded as a very vital force in the growth of economies. This is because they create businesses, employ people, have direct access to the local consumer, and primarily utilize local sources of raw materials, have an understanding of the immediate need of consumers, and they have the capacity to keep in motion the economy. The rise of social enterprises takes these advantages further beyond the business and economic benefits. These Social enterprises help address developmental issues in the society while maintaining a profit for their investors and shareholders. These combined roles create a unique synergy between the civil society and the market, therefore placing the social enterprise in a position where they can access directly, the benefits of the market while meeting the needs of the citizens and their environment. With such a unique position, social enterprises hold a place in the development discourse that has previously been left unexplored. This hybridisation of the functions of civil societies and the market can provide to development, practices, and benefits that have previously been only available in trace amounts. It, therefore, is imperative to understand the efficacy of social enterprises. With the discourse of social enterprises still in its early stages. This paper looks at selected social enterprise cases in Nigeria and analyses their approach and contribution to development.

Keywords: business, civil society, development, entrepreneurs, innovation, market, Nigeria, social enterprise

Procedia PDF Downloads 388
7527 Applying Napoleoni's 'Shell-State' Concept to Jihadist Organisations's Rise in Mali, Nigeria and Syria/Iraq, 2011-2015

Authors: Francesco Saverio Angiò

Abstract:

The Islamic State of Iraq and the Levant / Syria (ISIL/S), Al-Qaeda in the Islamic Maghreb (AQIM) and People Committed to the Propagation of the Prophet's Teachings and Jihad, also known as ‘Boko Haram’ (BH), have fought successfully against Syria and Iraq, Mali, Nigeria’s government, respectively. According to Napoleoni, the ‘shell-state’ concept can explain the economic dimension and the financing model of the ISIL insurgency. However, she argues that AQIM and BH did not properly plan their financial model. Consequently, her idea would not be suitable to these groups. Nevertheless, AQIM and BH’s economic performances and their (short) territorialisation suggest that their financing models respond to a well-defined strategy, which they were able to adapt to new circumstances. Therefore, Napoleoni’s idea of ‘shell-state’ can be applied to the three jihadist armed groups. In the last five years, together with other similar entities, ISIL/S, AQIM and BH have been fighting against governments with insurgent tactics and terrorism acts, conquering and ruling a quasi-state; a physical space they presented as legitimate territorial entity, thanks to a puritan version of the Islamic law. In these territories, they have exploited the traditional local economic networks. In addition, they have contributed to the development of legal and illegal transnational business activities. They have also established a justice system and created an administrative structure to supply services. Napoleoni’s ‘shell-state’ can describe the evolution of ISIL/S, AQIM and BH, which has switched from an insurgency to a proto or a quasi-state entity, enjoying a significant share of power over territories and populations. Napoleoni first developed and applied the ‘Shell-state’ concept to describe the nature of groups such as the Palestine Liberation Organisation (PLO), before using it to explain the expansion of ISIL. However, her original conceptualisation emphasises on the economic dimension of the rise of the insurgency, focusing on the ‘business’ model and the insurgents’ financing management skills, which permits them to turn into an organisation. However, the idea of groups which use, coordinate and grab some territorial economic activities (at the same time, encouraging new criminal ones), can also be applied to administrative, social, infrastructural, legal and military levels of their insurgency, since they contribute to transform the insurgency to the same extent the economic dimension does. In addition, according to Napoleoni’s view, the ‘shell-state’ prism is valid to understand the ISIL/S phenomenon, because the group has carefully planned their financial steps. Napoleoni affirmed that ISIL/S carries out activities in order to promote their conversion from a group relying on external sponsors to an entity that can penetrate and condition local economies. On the contrary, ‘shell-state’ could not be applied to AQIM or BH, which are acting more like smugglers. Nevertheless, despite its failure to control territories, as ISIL has been able to do, AQIM and BH have responded strategically to their economic circumstances and have defined specific dynamics to ensure a flow of stable funds. Therefore, Napoleoni’s theory is applicable.

Keywords: shell-state, jihadist insurgency, proto or quasi-state entity economic planning, strategic financing

Procedia PDF Downloads 352
7526 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches

Authors: Shani Brathwaite, Deborah Villarroel-Lamb

Abstract:

Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.

Keywords: beach porosity, empirical models, infiltration, swash, wave run-up

Procedia PDF Downloads 357
7525 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 186
7524 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 524
7523 Understanding Cyber Kill Chains: Optimal Allocation of Monitoring Resources Using Cooperative Game Theory

Authors: Roy. H. A. Lindelauf

Abstract:

Cyberattacks are complex processes consisting of multiple interwoven tasks conducted by a set of agents. Interdictions and defenses against such attacks often rely on cyber kill chain (CKC) models. A CKC is a framework that tries to capture the actions taken by a cyber attacker. There exists a growing body of literature on CKCs. Most of this work either a) describes the CKC with respect to one or more specific cyberattacks or b) discusses the tools and technologies used by the attacker at each stage of the CKC. Defenders, facing scarce resources, have to decide where to allocate their resources given the CKC and partial knowledge on the tools and techniques attackers use. In this presentation CKCs are analyzed through the lens of covert projects, i.e., interrelated tasks that have to be conducted by agents (human and/or computer) with the aim of going undetected. Various aspects of covert project models have been studied abundantly in the operations research and game theory domain, think of resource-limited interdiction actions that maximally delay completion times of a weapons project for instance. This presentation has investigated both cooperative and non-cooperative game theoretic covert project models and elucidated their relation to CKC modelling. To view a CKC as a covert project each step in the CKC is broken down into tasks and there are players of which each one is capable of executing a subset of the tasks. Additionally, task inter-dependencies are represented by a schedule. Using multi-glove cooperative games it is shown how a defender can optimize the allocation of his scarce resources (what, where and how to monitor) against an attacker scheduling a CKC. This study presents and compares several cooperative game theoretic solution concepts as metrics for assigning resources to the monitoring of agents.

Keywords: cyber defense, cyber kill chain, game theory, information warfare techniques

Procedia PDF Downloads 140
7522 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin

Authors: Goksel Ezgi Guzey, Bihrat Onoz

Abstract:

The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.

Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower

Procedia PDF Downloads 129
7521 The Impact of Citizens’ Involvement on Their Perception of the Brand’s Image: The Case of the City of Casablanca

Authors: Abderrahmane Mousstain, Ez-Zohra Belkadi

Abstract:

Many authors support more participatory and inclusive place branding practices that empower stakeholders’ participation. According to this participatory point of view, the effectiveness of place branding strategies cannot be achieved without citizen involvement. However, the role of all residents as key participants in the city branding process has not been widely discussed. The aim of this paper was to determine how citizens’ involvement impacts their perceptions of the city's image, using a multivariate model. To test our hypotheses hypothetical-deductive reasoning by the quantitative method was chosen. Our investigation is based on data collected through a survey among 200 citizens of Casablanca. Results show that the more citizens are involved, the more they tend to evaluate the image of the brand positively. Additionally, the degree of involvement seems to impact satisfaction and a sense of belonging. As well, the more citizen develops a sense of belonging to the city, the more favorable his or her perception of the brand image is. Ultimately, the role of citizens shouldn’t be limited to reception. They are also Co-creators of the brand, who ensure the correlation of the brand with authentic place roots.

Keywords: citybranding, sense of belonging, satisfaction, impact, brand’s image

Procedia PDF Downloads 176
7520 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment

Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova

Abstract:

Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.

Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper

Procedia PDF Downloads 44
7519 Court-Annexed Mediation for International Commercial Disputes in Asia: Strengths and Weaknesses

Authors: Thu Thuy Nguyen

Abstract:

In recent years, mediation has gained a great attention from many jurisdictions thanks to its advantages. With respect to Asia, mediation has a long history of development in this region with various types to amicably settle disputes in civil and commercial issues. The modern mediation system in several Asian countries and territories comprises three main categories, namely court-annexed mediation, mediation within arbitral proceedings and institutional mediation. Court-annexed mediation (or in-court mediation) is mediation conducted by the court in the course of judicial procedures. In dealing with cross-border business disputes, in-court mediation exposes a number of advantages in comparison with two other types of mediation, especially in terms of enforcement of final result. However, the confidentiality of mediation process in subsequent judicial proceedings, qualifications of court judges and the issue of recognition and enforcement of foreign judgment are normally seen as drawbacks of court-annexed mediation as in court-annexed mediation judges will be casts as dual roles as both mediator and ultimate adjudicator in the same dispute. This paper will examine the strengths and weaknesses of in-court mediation in settling transnational business disputes in selected Asian countries, including China, Hong Kong, Japan, Singapore and Vietnam.

Keywords: court-annexed mediation, international commercial disputes, Asia, strengths and weaknesses

Procedia PDF Downloads 308
7518 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
7517 Organisational Effectiveness and Its Implications for Seaports

Authors: Shadi Alghaffari, Hong-Oanh Nguyen, Peggy Chen, Hossein Enshaei

Abstract:

The main purpose of this study was to explore the role of organisational effectiveness (OE) in seaports. OE is an important managerial concept, one that is necessary for leaders and directors in any organisation to understand the output of their work. OE has been applied in many organisations; however, it is a vital concept in the port business. This paper examines various approaches and applications of the OE concept to business management, and describes benefits that are important and applicable to seaport management. This research reviews and classifies articles published in relevant journals and books between 1950 and 2016; from the general literature on OE to the narrower field of OE in seaports. Based on the extensive literature review, this study identifies and discusses several issues relevant to both practices and theories of this concept. The review concludes by presenting a gap in the literature, as it found only a limited amount of research that endeavours to clarify OE in the seaport sector. As a result of this gap, seaports suffer from a lack of empirical study and are largely neglected in this subject area. The implementation of OE in this research has led to the maritime sector interfacing with different disciplines in order to acquire the advantage of enhancing managerial knowledge and competing successfully in the international marketplace.

Keywords: literature review, maritime, organisational effectiveness, seaport management

Procedia PDF Downloads 342
7516 Entrepreneurial Leadership in a Startup Context: A Comparative Study on Two Egyptian Startup Businesses

Authors: Nada Basset

Abstract:

Problem Statement: The study examines the important role of leading change inside start-ups and highlights the challenges faced by an entrepreneur during the startup phase of the business. Research Methods/Procedures/Approaches: A qualitative research approach is taken, using the case study analysis method. A comparative study was made between two day care nurseries in Greater Cairo. Non-probability purposive sampling was used and a triangulation of semi-structured interviews, document analysis and participant-observation were applied simultaneously. The in-depth case study analysis took place over a longitudinal study of four calendar months. Results/Findings: Findings demonstrated that leading change in an entrepreneurial setup must be initiated by the entrepreneur, who must also be the owner of the change process. Another important finding showed that the culture of change, although created by the entrepreneur, needs the support and engagement of followers, who should be sharing the same value system and vision of the entrepreneur. Conclusions and Implications: An important implication suggests that during the first year of a start-up lifecycle, special emphasis must be made to the recruitment and selection of personnel, who should play a role into setting the new start-up culture and help it grow or shrink. Another drawn conclusion is that the success of the change must be measured in both quantitative and qualitative terms. Increasing revenues and customer attrition rates -as quantitative KPIs- must be aligned with other qualitative KPIs like customer satisfaction, employee satisfaction, and organizational commitment and business reputation. Originality of Paper: The paper addresses change management in an entrepreneurial concept, with an empirical application on an Egyptian start-up model providing a service to both adults and children. This privileges the research as the constructs measured merged together the level of satisfaction of employees, decision-makers (parents of children), and the users (children).

Keywords: leadership, change management, entrepreneurship, startup business

Procedia PDF Downloads 183
7515 Large-Scale Electroencephalogram Biometrics through Contrastive Learning

Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes

Abstract:

EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.

Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification

Procedia PDF Downloads 157
7514 Simulation of Red Blood Cells in Complex Micro-Tubes

Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi

Abstract:

In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.

Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics

Procedia PDF Downloads 174
7513 Design, Implementation and Evaluation of Health and Social Justice Trainings in Nigeria

Authors: Juliet Sorensen, Anna Maitland

Abstract:

Introduction: Characterized by lack of water and sanitation, food insecurity, and low access to hospitals and clinics, informal urban settlements in Lagos, Nigeria have very poor health outcomes. With little education and a general inability to demand basic rights, these communities are often disempowered and isolated from understanding, claiming, or owning their health needs. Utilizing community-based participatory research characterized by interdisciplinary, cross-cultural partnerships, evidence-based assessments, and both primary and secondary source research, a holistic health education and advocacy program was developed in Lagos to address health barriers for targeted communities. This includes a first of its kind guide formulated to teach community-based health educators how to transmit health information to low-literacy Nigerian audiences while supporting behavior change models and social support mechanisms. This paper discusses the interdisciplinary contributions to developing a health education program while also looking at the need for greater beneficiary ownership and implementation of health justice and access. Methods: In March 2016, an interdisciplinary group of medical, legal, and business graduate students and faculty from Northwestern University conduced a Health Needs Assessment (HNA) in Lagos with a partner and a local non-governmental organization. The HNA revealed that members of informal urban communities in Lagos were lacking basic health literacy, but desired to remedy this lacuna. Further, the HNA revealed that even where the government mandates specific services, many vulnerable populations are unable to access these services. The HNA concluded that a program focused on education, advocacy, and organizing around anatomy, maternal and sexual health, infectious disease and malaria, HIV/AIDS, emergency care, and water and sanitation would respond to stated needs while also building capacity in communities to address health barriers. Results: Based on the HNA, including both primary and secondary source research on integrated health education approaches and behavior change models and responsive, adaptive material development, a holistic program was developed for the Lagos partners and first implemented in November 2016. This program trained community-nominated health educators in adult, low-literacy, knowledge exchange approaches, utilizing information identified by communities as a priority. After a second training in March 2017, these educators will teach community-based groups and will support and facilitate behavior change models and peer-support methods around basic issues like hand washing and disease transmission. They will be supported by community paralegals who will help ensure that newly trained community groups can act on education around access, such as receiving free vaccinations, maternal health care, and HIV/AIDS medicines. Materials will continue to be updated as needs and issues arise, with a focus on identifying best practices around health improvements that can be shared across these partner communities. Conclusion: These materials are the first of their kind, and address a void of health information and understanding pervasive in informal-urban Lagos communities. Initial feedback indicates high levels of commitment and interest, as well as investment by communities in these materials, largely because they are responsive, targeted, and build community capacity. This methodology is an important step in dignity-based health justice solutions, albeit in the process of refinement.

Keywords: community health educators, interdisciplinary and cross cultural partnerships, health justice and access, Nigeria

Procedia PDF Downloads 248
7512 Widely Diversified Macroeconomies in the Super-Long Run Casts a Doubt on Path-Independent Equilibrium Growth Model

Authors: Ichiro Takahashi

Abstract:

One of the major assumptions of mainstream macroeconomics is the path independence of capital stock. This paper challenges this assumption by employing an agent-based approach. The simulation results showed the existence of multiple "quasi-steady state" equilibria of the capital stock, which may cast serious doubt on the validity of the assumption. The finding would give a better understanding of many phenomena that involve hysteresis, including the causes of poverty. The "market-clearing view" has been widely shared among major schools of macroeconomics. They understand that the capital stock, the labor force, and technology, determine the "full-employment" equilibrium growth path and demand/supply shocks can move the economy away from the path only temporarily: the dichotomy between the short-run business cycles and the long-run equilibrium path. The view then implicitly assumes the long-run capital stock to be independent of how the economy has evolved. In contrast, "Old Keynesians" have recognized fluctuations in output as arising largely from fluctuations in real aggregate demand. It will then be an interesting question to ask if an agent-based macroeconomic model, which is known to have path dependence, can generate multiple full-employment equilibrium trajectories of the capital stock in the super-long run. If the answer is yes, the equilibrium level of capital stock, an important supply-side factor, would no longer be independent of the business cycle phenomenon. This paper attempts to answer the above question by using the agent-based macroeconomic model developed by Takahashi and Okada (2010). The model would serve this purpose well because it has neither population growth nor technology progress. The objective of the paper is twofold: (1) to explore the causes of long-term business cycle, and (2) to examine the super-long behaviors of the capital stock of full-employment economies. (1) The simulated behaviors of the key macroeconomic variables such as output, employment, real wages showed widely diversified macro-economies. They were often remarkably stable but exhibited both short-term and long-term fluctuations. The long-term fluctuations occur through the following two adjustments: the quantity and relative cost adjustments of capital stock. The first one is obvious and assumed by many business cycle theorists. The reduced aggregate demand lowers prices, which raises real wages, thereby decreasing the relative cost of capital stock with respect to labor. (2) The long-term business cycles/fluctuations were synthesized with the hysteresis of real wages, interest rates, and investments. In particular, a sequence of the simulation runs with a super-long simulation period generated a wide range of perfectly stable paths, many of which achieved full employment: all the macroeconomic trajectories, including capital stock, output, and employment, were perfectly horizontal over 100,000 periods. Moreover, the full-employment level of capital stock was influenced by the history of unemployment, which was itself path-dependent. Thus, an experience of severe unemployment in the past kept the real wage low, which discouraged a relatively costly investment in capital stock. Meanwhile, a history of good performance sometimes brought about a low capital stock due to a high-interest rate that was consistent with a strong investment.

Keywords: agent-based macroeconomic model, business cycle, hysteresis, stability

Procedia PDF Downloads 210
7511 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models

Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah

Abstract:

In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.

Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model

Procedia PDF Downloads 242
7510 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction

Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner

Abstract:

Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.

Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling

Procedia PDF Downloads 82
7509 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin

Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin

Abstract:

The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.

Keywords: climate change, climatic model, dry events, precipitation projections

Procedia PDF Downloads 144
7508 Small Businesses as Vehicles for Job Creation in North-West Nigeria

Authors: Mustapha Shitu Suleiman, Francis Neshamba, Nestor Valero-Silva

Abstract:

Small businesses are considered as engine of economic growth, contributing to employment generation, wealth creation, and poverty alleviation and food security in both developed and developing countries. Nigeria is facing many socio-economic problems and it is believed that by supporting small business development, as propellers of new ideas and more effective users of resources, often driven by individual creativity and innovation, Nigeria would be able to address some of its economic and social challenges, such as unemployment and economic diversification. Using secondary literature, this paper examines the role small businesses can play in the creation of jobs in North-West Nigeria to overcome issues of unemployment, which is the most devastating economic challenge facing the region. Most studies in this area have focused on Nigeria as a whole and only a few studies provide a regional focus, hence, this study will contribute to knowledge by filling this gap by concentrating on North-West Nigeria. It is hoped that with the present administration’s determination to improve the economy, small businesses would be used as vehicles for diversification of the economy away from crude oil to create jobs that would lead to a reduction in the country’s high unemployment level.

Keywords: job creation, north-west, Nigeria, small business, unemployment

Procedia PDF Downloads 307
7507 DYVELOP Method Implementation for the Research Development in Small and Middle Enterprises

Authors: Jiří F. Urbánek, David Král

Abstract:

Small and Middle Enterprises (SME) have a specific mission, characteristics, and behavior in global business competitive environments. They must respect policy, rules, requirements and standards in all their inherent and outer processes of supply - customer chains and networks. Paper aims and purposes are to introduce computational assistance, which enables us the using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It is providing for SMS´s global environment the capability and profit to achieve its commitment regarding the effectiveness of the quality management system in customer requirements meeting and also the continual improvement of the organization’s and SME´s processes overall performance and efficiency, as well as its societal security via continual planning improvement. DYVELOP model´s maps - the Blazons are able mathematically - graphically express the relationships among entities, actors, and processes, including the discovering and modeling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission – added value analysis. The crisis management of SMEs is obliged to use the cycles for successful coping of crisis situations.  Several times cycling of these cases is a necessary condition for the encompassment of the both the emergency event and the mitigation of organization´s damages. Uninterrupted and continuous cycling process is a good indicator and controlling actor of SME continuity and its sustainable development advanced possibilities.

Keywords: blazons, computational assistance, DYVELOP method, small and middle enterprises

Procedia PDF Downloads 341