Search results for: commuter line vending machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5429

Search results for: commuter line vending machine

2849 Development of an Optimization Method for Myoelectric Signal Processing by Active Matrix Sensing in Robot Rehabilitation

Authors: Noriyoshi Yamauchi, Etsuo Horikawa, Takunori Tsuji

Abstract:

Training by exoskeleton robot is drawing attention as a rehabilitation method for body paralysis seen in many cases, and there are many forms that assist with the myoelectric signal generated by exercise commands from the brain. Rehabilitation requires more frequent training, but it is one of the reasons that the technology is required for the identification of the myoelectric potential derivation site and attachment of the device is preventing the spread of paralysis. In this research, we focus on improving the efficiency of gait training by exoskeleton type robots, improvement of myoelectric acquisition and analysis method using active matrix sensing method, and improvement of walking rehabilitation and walking by optimization of robot control.

Keywords: active matrix sensing, brain machine interface (BMI), the central pattern generator (CPG), myoelectric signal processing, robot rehabilitation

Procedia PDF Downloads 384
2848 A Soft Switching PWM DC-DC Boost Converter with Increased Efficiency by Using ZVT-ZCT Techniques

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

In this paper, an improved active snubber cell is proposed on account of soft switching (SS) family of pulse width modulation (PWM) DC-DC converters. The improved snubber cell provides zero-voltage transition (ZVT) turn on and zero-current transition (ZCT) turn off for main switch. The snubber cell decreases EMI noise and operates with SS in a wide range of line and load voltages. Besides, all of the semiconductor devices in the converter operate with SS. There is no additional voltage and current stress on the main devices. Additionally, extra voltage stress does not occur on the auxiliary switch and its current stress is acceptable value. The improved converter has a low cost and simple structure. The theoretical analysis of converter is clarified and the operating states are given in detail. The experimental results of converter are obtained by prototype of 500 W and 100 kHz. It is observed that the experimental results and theoretical analysis of converter are suitable with each other perfectly.

Keywords: active snubber cells, DC-DC converters, zero-voltage transition, zero-current transition

Procedia PDF Downloads 1017
2847 Earthquake Effect in Micro Hydro Sector: Case Study of Dulakha District, Nepal

Authors: Keshav Raj Dhakal, Jit Bahadur Rokaya Chhetri

Abstract:

The Micro Hydro (MH) is one of the successful technology in Rural Nepal. Out of 75 district, 59 districts have installed 1287 MH projects with a total capacity of 24 Mega Watt (MW). Now, the challenge is how to sustain them. Dolakha is a prominent district for sustainable endues of power to sustain the MH projects. A total of 37 MH projects have been constructed with producing 886 Kilo Watt (KW) of energy in the district. This study traces out the impact of earthquake in MH sector in Dolakha district. It shows that 59 % of projects have been affected by devastating earthquake in April and May, 2015 where 29 % are completely damaged. Most of the damages are in civil structures like Penstock, forebay, power house, Canal, Intake. Transmission and distribution line have been partially damaged. This paper analysis failure of the civil structural component of MH projects and its financial consequence to the community. This study recommends that a disaster impact assessment is essential before construction of MH projects.

Keywords: micro hydro, earthquake, structural failure, financial consequence

Procedia PDF Downloads 202
2846 Model Based Development of a Processing Map for Friction Stir Welding of AA7075

Authors: Elizabeth Hoyos, Hernán Alvarez, Diana Lopez, Yesid Montoya

Abstract:

The main goal of this research relates to the modeling of FSW from a different or unusual perspective coming from mechanical engineering, particularly looking for a way to establish process windows by assessing soundness of the joints as a priority and with the added advantage of lower computational time. This paper presents the use of a previously developed model applied to specific aspects of soundness evaluation of AA7075 FSW welds. EMSO software (Environment for Modeling, Simulation, and Optimization) was used for simulation and an adapted CNC machine was used for actual welding. This model based approach showed good agreement with the experimental data, from which it is possible to set a window of operation for commercial aluminum alloy AA7075, all with low computational costs and employing simple quality indicators that can be used by non-specialized users in process modeling.

Keywords: aluminum AA7075, friction stir welding, phenomenological based semiphysical model, processing map

Procedia PDF Downloads 259
2845 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
2844 Optimizing of Machining Parameters of Plastic Material Using Taguchi Method

Authors: Jumazulhisham Abdul Shukor, Mohd. Sazali Said, Roshanizah Harun, Shuib Husin, Ahmad Razlee Ab Kadir

Abstract:

This paper applies Taguchi Optimization Method in determining the best machining parameters for pocket milling process on Polypropylene (PP) using CNC milling machine where the surface roughness is considered and the Carbide inserts cutting tool are used. Three machining parameters; speed, feed rate and depth of cut are investigated along three levels; low, medium and high of each parameter (Taguchi Orthogonal Arrays). The setting of machining parameters were determined by using Taguchi Method and the Signal-to-Noise (S/N) ratio are assessed to define the optimal levels and to predict the effect of surface roughness with assigned parameters based on L9. The final experimental outcomes are presented to prove the optimization parameters recommended by manufacturer are accurate.

Keywords: inserts, milling process, signal-to-noise (S/N) ratio, surface roughness, Taguchi Optimization Method

Procedia PDF Downloads 635
2843 Raman Line Mapping on Melt Spun Polycarbonate/MWNT Fiber-Based Nanocomposites

Authors: Poonam Yadav, Dong Bok Lee

Abstract:

Raman spectroscopy was used for characterization of multi-wall carbon nanotube (MWNT) and Polycarbonate/multi-wall carbon nanotube (PC/MWNT) based fibers with 0.55% and 0.75% of MWNT (PC/MWNT55 and PC/MWNT75). PC/MWNT55 and PC/MWNT75 fibers was prepared by melt spinning device using nanocomposites made by two different route, viz., solvent casting and melt extrusion. Fibers prepared from melt extruded nanocomposites showed smooth and uniform morphology as compared to solvent casting based nanocomposites. The Raman mapping confirmed that the melt extruded based nanocomposites had better dispersion of MWNT in Polycarbonate (PC) than solvent casting carbon nanotube.

Keywords: dispersion, melt extrusion, multi-wall carbon nanotube, mapping

Procedia PDF Downloads 346
2842 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation

Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai

Abstract:

Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.

Keywords: ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model, principal curve

Procedia PDF Downloads 199
2841 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 266
2840 Perceptions of Climate Change and Adaptation of Climate-Smart Technology by the Paddy Farmers: A Case Study of Kandy District in Sri Lanka

Authors: W. A. D. P. Wanigasundera, P. C. B. Alahakoon

Abstract:

Kandy district in Sri Lanka has small scale and rain-fed paddy farming, and highly vulnerable to climate change. In this study, the status of climate change was assessed using meteorological data and compared with the perceptions of paddy farming community. Factors affecting the adaptation to the climate smart farming were also assessed. Meteorological data for 33 years were collected and the changes over time compared with the perceptions of farmers. The temperature, rainfall and number of rainy days have increased in both locations. The onset of rains also has shifted. The perceptions of the majority of the farmers were in line with the actual changes. The knowledge and attitudes about the causes of climate change and adaptation were medium and related to level of adoption. Formulating effective communication strategies, and a collaborative approach involving state, private sector, civil society to make Sri Lankan agriculture ‘climate-smart’ is urgently needed.

Keywords: adaptation of climate-smart technology, climate change, perception, rain-fed paddy

Procedia PDF Downloads 330
2839 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 477
2838 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 118
2837 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification

Authors: Zin Mar Lwin

Abstract:

Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods.

Keywords: BCI, EEG, ICA, SVM

Procedia PDF Downloads 276
2836 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions

Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes

Abstract:

The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.

Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning

Procedia PDF Downloads 70
2835 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 78
2834 Anti-Melanogenic Effect of Fisetin through Activating Connective Tissue Growth Factor in vivo Mice Model

Authors: Ryeong-Hyeon Kim, Ah-Reum Lee, Seong-Soo Roh, Gyo-Nam Kim

Abstract:

Appropriate regulation of melanogenesis is important for the management of skin pigmentation-related disease. Although several beneficial effects of fisetin (3,7,3’,4’-tetrahydroxyflavone) have been reported, the precise role and molecular mechanisms of fisetin in skin health both remain unclear. Here, we induced melanogenesis of HRM2 mice (n=7/group) by UVB irradiation for 20 days. UVB-induced HRM2 mice showed that the significantly increased melanin accumulation, however, fisetin treatment (25mg and 50mg/kg of body weight) dose-dependently and significantly inhibits UVB-induced melanogenesis. In line with this, fisetin treatment effectively down-regulated m RNA and expression levels of tyrosinase, TRP2, and MITF. In addition, our inhibitor assay revealed the down-regulated melanogenic marker genes by fisetin treatment were mediated with connective tissue growth factor (CCN2)/TGF-β signaling pathway. Useful information is provided for development of functional foods using fisetin for skin health.

Keywords: connective tissue growth factor, fisetin, melanogenesis, skin, TGF-beta

Procedia PDF Downloads 235
2833 Networked Implementation of Milling Stability Optimization with Bayesian Learning

Authors: Christoph Ramsauer, Jaydeep Karandikar, Tony Schmitz, Friedrich Bleicher

Abstract:

Machining stability is an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the Vienna University of Technology, Vienna, Austria. The recorded data from a milling test cut is used to classify the cut as stable or unstable based on the frequency analysis. The test cut result is fed to a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculates the probability of stability as a function of axial depth of cut and spindle speed and recommends the parameters for the next test cut. The iterative process between two transatlantic locations repeats until convergence to a stable optimal process parameter set is achieved.

Keywords: machining stability, machine learning, sensor, optimization

Procedia PDF Downloads 204
2832 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 146
2831 A Flipped Classroom Approach for Non Science Majors

Authors: Nidhi Gadura

Abstract:

To ensure student success in a non majors biology course, a flipped classroom pedagogical approach is developed and implemented. All students are assigned online lectures to listen to before they come to class. A three hour lecture is split into one hour of online component, one hour of in class lecture and one hour of worksheets done by students in the classroom. This deviation from a traditional 3 hour in class lecture has resulted in increased student interest in science as well as better understanding of difficult scientific concepts. A pre and post survey was given to measure the interest rates and grades were used to measure the success rates. While the overall grade average did not change dramatically, students reported a better appreciation of biology. Also, students overwhelmingly like the use of worksheets in class to help them understand the concepts. They liked the fact that they could listen to lectures at their own pace on line and even repeat if needed. The flipped classroom approach turned out to work really well our non science majors and the author is ready to implement this in other classrooms.

Keywords: flipped classroom, non science majors, pedagogy, technological pedagogical model

Procedia PDF Downloads 416
2830 The New Universities Law in Saudi Arabia, Bath to Develop the Higher Education in the Kingdom

Authors: Gassrm Alfaleh

Abstract:

The new Law of Universities has many goals, one of them is how each university can be independent financially and educationally. Another goal is to open doors for foreign universities to open branches in the kingdom. This paper focuses on how these goals can create competition between local and foreign universities. And how this new law can bring significant changes in the Kingdom’s higher education sector. The methodology of this study is to compare the new Saudi law to another legal system, especially in Australia. And how this new law can affect the higher education environment and Saudi culture. It covers the view of other different legal jurisdictions and compares it to this new law. The major findings are that the new law of universities can give a chance to Saudi universities to achieve their goals based on empowerment, quality, and participate in developing the educational and research methods. It may allow universities to start their own resources, permit them to create endowments and companies, and may allow them to create their degrees and programs. It will help those universities to increase the efficiency of spending, developing financial resources, and human capabilities for universities in line with the Kingdom’s Vision 2030. As a result, this paper states whether this new law can improve higher education in the kingdom of Saudi Arabia.

Keywords: law, education, Saudi legal system, university

Procedia PDF Downloads 140
2829 Tele-Rehabilitation for Multiple Sclerosis: A Case Study

Authors: Sharon Harel, Rachel Kizony, Yoram Feldman, Gabi Zeilig, Mordechai Shani

Abstract:

Multiple Sclerosis (MS) is a neurological disease that may cause restriction in participation in daily activities of young adults. Main symptoms include fatigue, weakness and cognitive decline. The appearance of symptoms, their severity and deterioration rate, change between patients. The challenge of health services is to provide long-term rehabilitation services to people with MS. The objective of this presentation is to describe a course of tele-rehabilitation service of a woman with MS. Methods; R is a 48 years-old woman, diagnosed with MS when she was 22. She started to suffer from weakness of her non-dominant left upper extremity about ten years after the diagnosis. She was referred to the tele-rehabilitation service by her rehabilitation team, 16 years after diagnosis. Her goals were to improve ability to use her affected upper extremity in daily activities. On admission her score in the Mini-Mental State Exam was 30/30. Her Fugl-Meyer Assessment (FMA) score of the left upper extremity was 48/60, indicating mild weakness and she had a limitation of her shoulder abduction (90 degrees). In addition, she reported little use of her arm in daily activities as shown in her responses to the Motor Activity Log (MAL) that were equal to 1.25/5 in amount and 1.37 in quality of use. R. received two 30 minutes on-line sessions per week in the tele-rehabilitation service, with the CogniMotion system. These were complemented by self-practice with the system. The CogniMotion system provides a hybrid (synchronous-asynchronous), the home-based tele-rehabilitation program to improve the motor, cognitive and functional status of people with neurological deficits. The system consists of a computer, large monitor, and the Microsoft’s Kinect 3D sensor. This equipment is located in the client’s home and connected to a clinician’s computer setup in a remote clinic via WiFi. The client sits in front of the monitor and uses his body movements to interact with games and tasks presented on the monitor. The system provides feedback in the form of ‘knowledge of results’ (e.g., the success of a game) and ‘knowledge of performance’ (e.g., alerts for compensatory movements) to enhance motor learning. The games and tasks were adapted for R. motor abilities and level of difficulty was gradually increased according to her abilities. The results of her second assessment (after 35 on-line sessions) showed improvement in her FMA score to 52 and shoulder abduction to 140 degrees. Moreover, her responses to the MAL indicated an increased amount (2.4) and quality (2.2) of use of her left upper extremity in daily activities. She reported high level of enjoyment from the treatments (5/5), specifically the combination of cognitive challenges while moving her body. In addition, she found the system easy to use as reflected by her responses to the System Usability Scale (85/100). To-date, R. continues to receive treatments in the tele-rehabilitation service. To conclude, this case report shows the potential of using tele-rehabilitation for people with MS to provide strategies to enhance the use of the upper extremity in daily activities as well as for maintaining motor function.

Keywords: motor function, multiple-sclerosis, tele-rehabilitation, daily activities

Procedia PDF Downloads 178
2828 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument

Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki

Abstract:

According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.

Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test

Procedia PDF Downloads 300
2827 Digital Transformation in Production Planning and Control: Evaluation of the Organizational Readiness

Authors: Tobias Wissing, Peter Burggräf, Johannes Wagner

Abstract:

Cost pressure, competitiveness and the increasing turbulence of globalized saturated markets has been the driver for a variety of research activities in the field of production planning and control (PPC) during the past decades. For some time past an increasing awareness for innovative technologies in terms of Industry 4.0 can be noticed. Although there are many promising approaches a solely installation of those smart solutions will not maximize the PPC performance. To accelerate the successful digital transformation the cooperation between employee and technology also has to be adapted. The existing processes and organizational structures might be not sufficient to maximize the utilization of technological innovations. This paper presents the key results of an extensive study which was conducted by the Laboratory for Machine Tools and Production Engineering (WZL) of the RWTH Aachen University to evaluate the current situation and examine the organizational readiness for this digital transformation.

Keywords: cyber-physical production system, digital transformation, industry 4.0, production planning and control

Procedia PDF Downloads 352
2826 The Effect of Stress on Job Performance of Frontline Employees of Hotels: Reference to Star Class Hotels in North Central Province, Sri Lanka

Authors: W. M. M. Weerasooriya, K. T. N. P. Abeywickrama

Abstract:

There has been some research on stress in the hotel industry in Sri Lanka and elsewhere. Still, the amount is not proportionate to the severity of the issue. This paper examined the effect of stress on job performance of frontline employees of Sri Lankan hotel context. Duly completed 70 self-administered questionnaires filled by frontline employees of star class hotels in North Central Province in Sri Lanka were used for the purpose with a response rate of 70%. The researcher employed empirical analysis using statistical tools such as regression analysis of Pearson’s correlation of coefficient. It was found that there is a high level of workload and role ambiguity existing among the frontline employees of hotels located in North Central Province and existing role ambiguity significantly reduce the job performance of the frontline employees of star class hotels while the existing low level of physical work environment also leads to a low level of job performance.

Keywords: hotel front line employees, job stress, job performance, Sri Lanka

Procedia PDF Downloads 126
2825 Decoding the Structure of Multi-Agent System Communication: A Comparative Analysis of Protocols and Paradigms

Authors: Gulshad Azatova, Aleksandr Kapitonov, Natig Aminov

Abstract:

Multiagent systems have gained significant attention in various fields, such as robotics, autonomous vehicles, and distributed computing, where multiple agents cooperate and communicate to achieve complex tasks. Efficient communication among agents is a crucial aspect of these systems, as it directly impacts their overall performance and scalability. This scholarly work provides an exploration of essential communication elements and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of these protocols across various scenarios. The research also sheds light on emerging trends within communication protocols for multiagent systems, including the incorporation of machine learning methods and the adoption of blockchain-based solutions to ensure secure communication. These trends provide valuable insights into the evolving landscape of multiagent systems and their communication protocols.

Keywords: communication, multi-agent systems, protocols, consensus

Procedia PDF Downloads 72
2824 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer

Authors: Yilei Song, Linlin Tian, Ning Zhao

Abstract:

Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.

Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake

Procedia PDF Downloads 172
2823 A Review of Physiological Measures for Cognitive Workload Assessment of Aircrew

Authors: Naveed Tahir, Adnan Maqsood

Abstract:

Cognitive workload is a significant factor affecting user performance, and it has been broadly investigated for its application in ergonomics as well as in designing and optimizing effective human-machine interactions. It is mentally challenging to maneuver an aircraft, and pilots must control the aircraft and adequately communicate to the verbal-auditory stimuli. Several physiological measures have long been researched and used to demonstrate the cognitive workload. In our current study, we have summarized recent findings of the effectiveness, accuracy, and applicability of commonly used physiological measures in evaluating cognitive workload. We have also highlighted on the advancements in physiological measures. The strength and limitations of physiological measures have also been discussed to assess the cognitive workload of people, especially the aircrews in laboratory settings and real-time situations. We have presented the research findings of the physiological measures to base suggestions on the proper applications of the measures and settings demanding the use of single measure or their combinations.

Keywords: aircrew, cognitive workload, subjective measure, physiological measure, performance measure

Procedia PDF Downloads 160
2822 Float Glass Manufacture Facility Design: Feasibility Study in Kuwait

Authors: Farah Al-Mutairi, Hadeer Al-Jeeraan, Lima Ali, Raya Al-Dabbous, Sarah Baroun

Abstract:

Lately, within the middle east, development has taken place in the construction area which increased the demand of a crucial component, where without it; stunning views from skyscrapers cannot been experienced, and natural light would not be able to be viewed from an indoor building. Glass has changed the path of living and building. Float glass is a type of glass that is flat and it is the type used in the construction and automobile sector. Facility design on the other hand is a study that improves the efficiency utilization of people, equipment, material and space. Kuwait's governmental future developing plan bears in mind the need of increase in industries to increase the growth domestic product(GDP) of the country. This project studies the feasibility of two designs of a float glass manufacture in Kuwait. The first Alternative, consists of one production line of capacity 500 tons of glass per day. The second alternative, consists of three production lines, each of capacity 500 tons of glass daily.

Keywords: float glass manufacture, Kuwait, feasibility float glass, facility design, float glass production

Procedia PDF Downloads 407
2821 Martial Arts and Combative Program of the Philippine Military Academy Cadet Corps Armed Forces of the Philippines: An Assessment

Authors: Jayson Vicente

Abstract:

The young men and women of Philippine Military Academy Cadet Corps Armed Forces of the Philippines (PMA CCAFP) are bred to be front liners and last line of defense during war and times of peace; as such, they must be equipped with the most practical and most effective combat-ready Martial Arts and Combative skills to effectively fulfill their duty, as well as to protect and safeguard themselves to continue serving the people and their country. This study shall assess the current Martial Arts and Combative Program of the PMA CCAFP using descriptive methodology by interviews and floating questionnaires. The current Martial Arts and Combative Program of the PMA CCAFP with all of the subjects involved are more sports inclined rather than combat-equipped. Picking the best from each subject used in the program, this study seeks to recommend improvements or create a better Martial Arts and Combative Program that will satisfy the objective of producing Martial Arts combatant graduates. A good Martial Arts and Combative Program for PMA is essential to prepare them for what lies ahead, which is unforgiving and no rules to pacify threat.

Keywords: combative, martial arts, military, program

Procedia PDF Downloads 147
2820 Event Extraction, Analysis, and Event Linking

Authors: Anam Alam, Rahim Jamaluddin Kanji

Abstract:

With the rapid growth of event in everywhere, event extraction has now become an important matter to retrieve the information from the unstructured data. One of the challenging problems is to extract the event from it. An event is an observable occurrence of interaction among entities. The paper investigates the effectiveness of event extraction capabilities of three software tools that are Wandora, Nitro and SPSS. We performed standard text mining techniques of these tools on the data sets of (i) Afghan War Diaries (AWD collection), (ii) MUC4 and (iii) WebKB. Information retrieval measures such as precision and recall which are computed under extensive set of experiments for Event Extraction. The experimental study analyzes the difference between events extracted by the software and human. This approach helps to construct an algorithm that will be applied for different machine learning methods.

Keywords: event extraction, Wandora, nitro, SPSS, event analysis, extraction method, AFG, Afghan War Diaries, MUC4, 4 universities, dataset, algorithm, precision, recall, evaluation

Procedia PDF Downloads 593