Search results for: through wall radar imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2651

Search results for: through wall radar imaging

101 The Late Bronze Age Archeometallurgy of Copper in Mountainous Colchis (Lechkhumi), Georgia

Authors: Nino Sulava, Brian Gilmour, Nana Rezesidze, Tamar Beridze, Rusudan Chagelishvili

Abstract:

Studies of ancient metallurgy are a subject of worldwide current interest. Georgia with its famous early metalworking traditions is one of the central parts of in the Caucasus region. The aim of the present study is to introduce the results of archaeometallurgical investigations being undertaken in the mountain region of Colchis, Lechkhumi (the Tsageri Municipality of western Georgia) and establish their place in the existing archaeological context. Lechkhumi (one of the historic provinces of Georgia known from Georgian, Greek, Byzantine and Armenian written sources as Lechkhumi/Skvimnia/Takveri) is the part of the Colchian mountain area. It is one of the important but little known centres of prehistoric metallurgy in the Caucasian region and of Colchian Bronze Age culture. Reconnaissance archaeological expeditions (2011-2015) revealed significant prehistoric metallurgical sites in Lechkhumi. Sites located in the vicinity of Dogurashi Village (Tsageri Municipality) have become the target area for archaeological excavations. During archaeological excavations conducted in 2016-2018 two archaeometallurgical sites – Dogurashi I and Dogurashi II were investigated. As a result of an interdisciplinary (archaeological, geological and geophysical) survey, it has been established that at both prehistoric Dogurashi mountain sites, it was copper that was being smelted and the ore sources are likely to be of local origin. Radiocarbon dating results confirm they were operating between about the 13th and 9th century BC. More recently another similar site has been identified in this area (Dogurashi III), and this is about to undergo detailed investigation. Other prehistoric metallurgical sites are being located and investigated in the Lechkhumi region as well as chance archaeological finds (often in hoards) – copper ingots, metallurgical production debris, slag, fragments of crucibles, tuyeres (air delivery pipes), furnace wall fragments and other related waste debris. Other chance finds being investigated are the many copper, bronze and (some) iron artefacts that have been found over many years. These include copper ingots, copper, bronze and iron artefacts such as tools, jewelry, and decorative items. These show the important but little known or understood the role of Lechkhumi in the late Bronze Age culture of Colchis. It would seem that mining and metallurgical manufacture form part of the local agricultural yearly lifecycle. Colchian ceramics have been found and also evidence for artefact production, small stone mould fragments and encrusted material from the casting of a fylfot (swastika) form of Colchian bronze buckle found in the vicinities of the early settlements of Tskheta and Dekhviri. Excavation and investigation of previously unknown archaeometallurgical sites in Lechkhumi will contribute significantly to the knowledge and understanding of prehistoric Colchian metallurgy in western Georgia (Adjara, Guria, Samegrelo, and Svaneti) and will reveal the importance of this region in the study of ancient metallurgy in Georgia and the Caucasus. Acknowledgment: This work has been supported by the Shota Rustaveli National Science Foundation (grant FR # 217128).

Keywords: archaeometallurgy, Colchis, copper, Lechkhumi

Procedia PDF Downloads 116
100 Restless Leg Syndrome as the Presenting Symptom of Neuroendocrine Tumor

Authors: Mustafa Cam, Nedim Ongun, Ufuk Kutluana

Abstract:

Introduction: Restless LegsSyndrome (RLS) is a common, under-recognized disorder disrupts sleep and diminishes quality of life (1). The most common conditions highly associated with RLS include renalfailure, iron and folic acid deficiency, peripheral neuropathy, pregnancy, celiacdisease, Crohn’sdiseaseandrarelymalignancy (2).Despite a clear relation between low peripheral iron and increased prevalence and severity of RLS, the prevalence and clinical significance of RLS in iron-deficientanemic populations is unknown (2). We report here a case of RLS due to iron deficiency in the setting of neuroendocrinetumor. Report of Case: A 35 year-old man was referred to our clinic with general weakness, weight loss (10 kg in 2 months)and 2-month history of uncomfortable sensations in his legs with urge to move, partially relieved by movement. The symptoms were presented very day, worsening in the evening; the discomfort forced the patient to getup and walk around at night. RLS was severe, with a score of 22 at the International RLS ratingscale. The patient had no past medical history. The patient underwent a complete set of blood analyses and the following ab normal values were found (normal limitswithinbrackets): hemoglobin 9.9 g/dl (14-18), MCV 70 fL (80-94), ferritin 3,5 ng/mL (13-150). Brain and spinemagnetic resonance imaging was normal. The patient consultated with gastroenterology clinic and gastointestinal systemendoscopy was performed for theetiology of the iron deficiency anemia. After the gastricbiopsy, results allowed us to reach the diagnosis of neuroen docrine tumor and the patient referred to oncology clinic. Discussion: The first important consideration from this case report is that the patient was referred to our clinic because of his severe RLS symptoms dramatically reducing his quality of life. However, our clinical study clearly demonstrated that RLS was not the primary disease. Considering the information available for this patient, we believe that the most likely possibility is that RLS was secondary to iron deficiency, a very well-known and established cause of RLS in theliterature (3,4). Neuroendocrine tumors (NETs) are rare epithelial neoplasms with neuroendocrine differentiation that most commonly originate in the lungs and gastrointestinal tract (5). NETs vary widely in their clinical presentation; symptoms are often nonspecific and can be mistaken for those of other more common conditions (6). 50% of patients with reported disease stage have either regional or distant metastases at diagnosis (7). Accurate and earlier NET diagnosis is the first step in shortening the time to optimal care and improved outcomes for patients (8). The most important message from this case report is that RLS symptoms can sometimes be thesign of a life-threatening condition. Conclusion: Careful and complete collection of clinical and laboratory data should be carried out in RLS patients. Inparticular, if RLS onset coincides with weight loss and iron deficieny anemia, gastricendos copy should be performed. It is known about that malignancy is a rare etiology in RLS patients and to our knowledge; it is the first case with neuro endocrine tumor presenting with RLS.

Keywords: neurology, neuroendocrine tumor, restless legs syndrome, sleep

Procedia PDF Downloads 263
99 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 146
98 Tectonics of Out-of-Sequence Thrusting in NW Himachal Himalaya, India

Authors: Rajkumar Ghosh

Abstract:

Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT) are the three OOST along Jakhri-Chaura segment along the Sutlej river valley in Himachal Pradesh. CT is deciphered only by Apatite Fission Track dating. Such geochronological information is not currently accessible for the Jhakri and Sarahan thrusts. JT was additionally validated as OOST without any dating. The described rock types include ductile sheared gneisses and upper greenschist-amphibolite facies metamorphosed schists. Locally, the Munsiari (Jutogh) Thrust is referred to as the JT. Brittle shear, the JT, borders the research area's southern and ductile shear, the CT, and its northern margins. The JT has a 50° western dip and is south-westward verging. It is 15–17 km deep. A progressive rise in strain towards the JT zone based on microstructural tests was observed by previous researchers. The high-temperature ranges of the MCT root zone are cited in the current work as supportive evidence for the ductile nature of the OOST. In Himachal Pradesh, the lithological boundaries for OOST are not set. In contrast, the Sarahan thrust is NW-SE striking and 50-80 m wide. ST and CT are probably equivalent and marked by a sheared biotite-chlorite matrix with a top-to-SE kinematic indicator. It is inferred from cross-section balancing that the CT is folded with this anticlinorium. These thrust systems consist of several branches, some of which are still active. The thrust system exhibits complex internal geometry consisting of box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. Box folds are observed on the hanging wall of the Chaura thrust. The ductile signature of CT represents steepen downward of the thrust. After the STDSU stopped deformation, out-of-sequence thrust was initiated in some sections of the Higher Himalaya. A part of GHC and part of the LH is thrust southwestward along the Jutogh Thrust/Munsiari Thrust/JT as also the Jutogh Nappe. The CT is concealed beneath Jutogh Thrust sheet hence the basal part of GHC is unexposed to the surface in Sutlej River section. Fieldwork and micro-structural studies of the Greater Himalayan Crystalline (GHC) along the Sutlej section reveal (a) initial top-to-SW sense of ductile shearing (CT); (b) brittle-ductile extension (ST); and (c) uniform top-to-SW sense of brittle shearing (JT). A group of samples of schistose rock from Jutogh Group of Greater Himalayan Crystalline and Quartzite from Rampur Group of Lesser Himalayan Crystalline were analyzed. No such physiographic transition in that area is to determine a break in the landscape due to OOST. OOSTs from GHC are interpreted mainly from geochronological studies to date, but proper field evidence is missing. Apart from minimal documentation in geological mapping for OOST, there exists a lack of suitable exposure of rock to generalize the features of OOST in the field in NW Higher Himalaya. Multiple sets of thrust planes may be activated within this zone or a zone along which OOST is engaged.

Keywords: out-of-sequence thrust, main central thrust, grain boundary migration, South Tibetan detachment system, Jakhri Thrust, Sarahan Thrust, Chaura Thrust, higher Himalaya, greater Himalayan crystalline

Procedia PDF Downloads 54
97 Feasibility of an Extreme Wind Risk Assessment Software for Industrial Applications

Authors: Francesco Pandolfi, Georgios Baltzopoulos, Iunio Iervolino

Abstract:

The impact of extreme winds on industrial assets and the built environment is gaining increasing attention from stakeholders, including the corporate insurance industry. This has led to a progressively more in-depth study of building vulnerability and fragility to wind. Wind vulnerability models are used in probabilistic risk assessment to relate a loss metric to an intensity measure of the natural event, usually a gust or a mean wind speed. In fact, vulnerability models can be integrated with the wind hazard, which consists of associating a probability to each intensity level in a time interval (e.g., by means of return periods) to provide an assessment of future losses due to extreme wind. This has also given impulse to the world- and regional-scale wind hazard studies.Another approach often adopted for the probabilistic description of building vulnerability to the wind is the use of fragility functions, which provide the conditional probability that selected building components will exceed certain damage states, given wind intensity. In fact, in wind engineering literature, it is more common to find structural system- or component-level fragility functions rather than wind vulnerability models for an entire building. Loss assessment based on component fragilities requires some logical combination rules that define the building’s damage state given the damage state of each component and the availability of a consequence model that provides the losses associated with each damage state. When risk calculations are based on numerical simulation of a structure’s behavior during extreme wind scenarios, the interaction of component fragilities is intertwined with the computational procedure. However, simulation-based approaches are usually computationally demanding and case-specific. In this context, the present work introduces the ExtReMe wind risk assESsment prototype Software, ERMESS, which is being developed at the University of Naples Federico II. ERMESS is a wind risk assessment tool for insurance applications to industrial facilities, collecting a wide assortment of available wind vulnerability models and fragility functions to facilitate their incorporation into risk calculations based on in-built or user-defined wind hazard data. This software implements an alternative method for building-specific risk assessment based on existing component-level fragility functions and on a number of simplifying assumptions for their interactions. The applicability of this alternative procedure is explored by means of an illustrative proof-of-concept example, which considers four main building components, namely: the roof covering, roof structure, envelope wall and envelope openings. The application shows that, despite the simplifying assumptions, the procedure can yield risk evaluations that are comparable to those obtained via more rigorous building-level simulation-based methods, at least in the considered example. The advantage of this approach is shown to lie in the fact that a database of building component fragility curves can be put to use for the development of new wind vulnerability models to cover building typologies not yet adequately covered by existing works and whose rigorous development is usually beyond the budget of portfolio-related industrial applications.

Keywords: component wind fragility, probabilistic risk assessment, vulnerability model, wind-induced losses

Procedia PDF Downloads 165
96 Cost Based Analysis of Risk Stratification Tool for Prediction and Management of High Risk Choledocholithiasis Patients

Authors: Shreya Saxena

Abstract:

Background: Choledocholithiasis is a common complication of gallstone disease. Risk scoring systems exist to guide the need for further imaging or endoscopy in managing choledocholithiasis. We completed an audit to review the American Society for Gastrointestinal Endoscopy (ASGE) scoring system for prediction and management of choledocholithiasis against the current practice at a tertiary hospital to assess its utility in resource optimisation. We have now conducted a cost focused sub-analysis on patients categorized high-risk for choledocholithiasis according to the guidelines to determine any associated cost benefits. Method: Data collection from our prior audit was used to retrospectively identify thirteen patients considered high-risk for choledocholithiasis. Their ongoing management was mapped against the guidelines. Individual costs for the key investigations were obtained from our hospital financial data. Total cost for the different management pathways identified in clinical practice were calculated and compared against predicted costs associated with recommendations in the guidelines. We excluded the cost of laparoscopic cholecystectomy and considered a set figure for per day hospital admission related expenses. Results: Based on our previous audit data, we identified a77% positive predictive value for the ASGE risk stratification tool to determine patients at high-risk of choledocholithiasis. 47% (6/13) had an magnetic resonance cholangiopancreatography (MRCP) prior to endoscopic retrograde cholangiopancreatography (ERCP), whilst 53% (7/13) went straight for ERCP. The average length of stay in the hospital was 7 days, with an additional day and cost of £328.00 (£117 for ERCP) for patients awaiting an MRCP prior to ERCP. Per day hospital admission was valued at £838.69. When calculating total cost, we assumed all patients had admission bloods and ultrasound done as the gold standard. In doing an MRCP prior to ERCP, there was a 130% increase in cost incurred (£580.04 vs £252.04) per patient. When also considering hospital admission and the average length of stay, it was an additional £1166.69 per patient. We then calculated the exact costs incurred by the department, over a three-month period, for all patients, for key investigations or procedures done in the management of choledocholithiasis. This was compared to an estimate cost derived from the recommended pathways in the ASGE guidelines. Overall, 81% (£2048.45) saving was associated with following the guidelines compared to clinical practice. Conclusion: MRCP is the most expensive test associated with the diagnosis and management of choledocholithiasis. The ASGE guidelines recommend endoscopy without an MRCP in patients stratified as high-risk for choledocholithiasis. Our audit that focused on assessing the utility of the ASGE risk scoring system showed it to be relatively reliable for identifying high-risk patients. Our cost analysis has shown significant cost savings per patient and when considering the average length of stay associated with direct endoscopy rather than an additional MRCP. Part of this is also because of an increased average length of stay associated with waiting for an MRCP. The above data supports the ASGE guidelines for the management of high-risk for choledocholithiasis patients from a cost perspective. The only caveat is our small data set that may impact the validity of our average length of hospital stay figures and hence total cost calculations.

Keywords: cost-analysis, choledocholithiasis, risk stratification tool, general surgery

Procedia PDF Downloads 76
95 Application of Pedicled Perforator Flaps in Large Cavities of the Breast

Authors: Neerja Gupta

Abstract:

Objective-Reconstruction of large cavities of the breast without contralateral symmetrisation Background- Reconstruction of breast includes a wide spectrum of procedures from displacement to regional and distant flaps. The pedicled Perforator flaps cover a wide spectrum of reconstruction surgery for all quadrants of the breast, especially in patients with comorbidities. These axial flaps singly or adjunct are based on a near constant perforator vessel, a ratio of 2:1 at its entry in a flap is good to maintain vascularity. The perforators of lateral chest wall viz LICAP, LTAP have overlapping perfurosomes without clear demarcation. LTAP is localized in the narrow zone between the lateral breast fold and anterior axillary line,2.5-3.8cm from the fold. MICAP are localized at 1-2 cm from sternum. Being 1-2mm in diameter, a Single perforator is good to maintain the flap. LICAP has a dominant perforator in 6th-11th spaces, while LTAP has higher placed dominant perforators in 4th and 5th spaces. Methodology-Six consecutive patients who underwent reconstruction of the breast with pedicled perforator flaps were retrospectively analysed. Selections of the flap was done based on the size and locations of the tumour, anticipated volume loss, willingness to undergo contralateral symmetrisation, cosmetic expectations, and finances available.3 patients underwent vertical LTAP, the distal limit of the flap being the inframammary crease. 3 patients underwent MICAP, oriented along the axis of rib, the distal limit being the anterior axillary line. Preoperative identification was done using a unidirectional hand held doppler. The flap was raised caudal to cranial, the pivot point of rotation being the vessel entry into the skin. The donor area is determined by the skin pinch. Flap harvest time was 20-25 minutes. Intra operative vascularity was assessed with dermal bleed. The patient immediate pre, post-operative and follow up pics were compared independently by two breast surgeons. Patients were given a breast Q questionnaire (licensed) for scoring. Results-The median age of six patients was 46. Each patient had a hospital stay of 24 hours. None of the patients was willing for contralateral symmetrisation. The specimen dimensions were from 8x6.8x4 cm to 19x16x9 cm. The breast volume reconstructed range was 30 percent to 45 percent. All wide excision had free margins on frozen. The mean flap dimensions were 12x5x4.5 cm. One LTAP underwent marginal necrosis and delayed wound healing due to seroma. Three patients were phyllodes, of which one was borderline, and 2 were benign on final histopathology. All other 3 patients were invasive ductal cancer and have completed their radiation. The median follow up is 7 months the satisfaction scores at median follow of 7 months are 90 for physical wellbeing and 85 for surgical results. Surgeons scored fair to good in Harvard score. Conclusion- Pedicled perforator flaps are a valuable option for 3/8th volume of breast defects. LTAP is preferred for tumours at the Central, upper, and outer quadrants of the breast and MICAP for the inner and lower quadrant. The vascularity of the flap is dependent on the angiosomalterritories; adequate venous and cavity drainage.

Keywords: breast, oncoplasty, pedicled, perforator

Procedia PDF Downloads 165
94 The Budget Impact of the DISCERN™ Diagnostic Test for Alzheimer’s Disease in the United States

Authors: Frederick Huie, Lauren Fusfeld, William Burchenal, Scott Howell, Alyssa McVey, Thomas F. Goss

Abstract:

Alzheimer’s Disease (AD) is a degenerative brain disease characterized by memory loss and cognitive decline that presents a substantial economic burden for patients and health insurers in the US. This study evaluates the payer budget impact of the DISCERN™ test in the diagnosis and management of patients with symptoms of dementia evaluated for AD. DISCERN™ comprises three assays that assess critical factors related to AD that regulate memory, formation of synaptic connections among neurons, and levels of amyloid plaques and neurofibrillary tangles in the brain and can provide a quicker, more accurate diagnosis than tests in the current diagnostic pathway (CDP). An Excel-based model with a three-year horizon was developed to assess the budget impact of DISCERN™ compared with CDP in a Medicare Advantage plan with 1M beneficiaries. Model parameters were identified through a literature review and were verified through consultation with clinicians experienced in diagnosis and management of AD. The model assesses direct medical costs/savings for patients based on the following categories: •Diagnosis: costs of diagnosis using DISCERN™ and CDP. •False Negative (FN) diagnosis: incremental cost of care avoidable with a correct AD diagnosis and appropriately directed medication. •True Positive (TP) diagnosis: AD medication costs; cost from a later TP diagnosis with the CDP versus DISCERN™ in the year of diagnosis, and savings from the delay in AD progression due to appropriate AD medication in patients who are correctly diagnosed after a FN diagnosis.•False Positive (FP) diagnosis: cost of AD medication for patients who do not have AD. A one-way sensitivity analysis was conducted to assess the effect of varying key clinical and cost parameters ±10%. An additional scenario analysis was developed to evaluate the impact of individual inputs. In the base scenario, DISCERN™ is estimated to decrease costs by $4.75M over three years, equating to approximately $63.11 saved per test per year for a cohort followed over three years. While the diagnosis cost is higher with DISCERN™ than with CDP modalities, this cost is offset by the higher overall costs associated with CDP due to the longer time needed to receive a TP diagnosis and the larger number of patients who receive a FN diagnosis and progress more rapidly than if they had received appropriate AD medication. The sensitivity analysis shows that the three parameters with the greatest impact on savings are: reduced sensitivity of DISCERN™, improved sensitivity of the CDP, and a reduction in the percentage of disease progression that is avoided with appropriate AD medication. A scenario analysis in which DISCERN™ reduces the utilization for patients of computed tomography from 21% in the base case to 16%, magnetic resonance imaging from 37% to 27% and cerebrospinal fluid biomarker testing, positive emission tomography, electroencephalograms, and polysomnography testing from 4%, 5%, 10%, and 8%, respectively, in the base case to 0%, results in an overall three-year net savings of $14.5M. DISCERN™ improves the rate of accurate, definitive diagnosis of AD earlier in the disease and may generate savings for Medicare Advantage plans.

Keywords: Alzheimer’s disease, budget, dementia, diagnosis.

Procedia PDF Downloads 119
93 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization

Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon

Abstract:

The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.

Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization

Procedia PDF Downloads 419
92 Financial Policies in the Process of Global Crisis: Case Study Kosovo, Case Kosovo

Authors: Shpetim Rezniqi

Abstract:

Financial Policies in the process of global crisis the current crisis has swept the world with special emphasis, most developed countries, those countries which have most gross -product world and you have a high level of living.Even those who are not experts can describe the consequences of the crisis to see the reality that is seen, but how far will it go this crisis is impossible to predict. Even the biggest experts have conjecture and large divergence, but agree on one thing: - The devastating effects of this crisis will be more severe than ever before and can not be predicted.Long time, the world was dominated economic theory of free market laws. With the belief that the market is the regulator of all economic problems. The market, as river water will flow to find the best and will find the necessary solution best. Therefore much less state market barriers, less state intervention and market itself is an economic self-regulation. Free market economy became the model of global economic development and progress, it transcends national barriers and became the law of the development of the entire world economy. Globalization and global market freedom were principles of development and international cooperation. All international organizations like the World Bank, states powerful economic, development and cooperation principles laid free market economy and the elimination of state intervention. The less state intervention much more freedom of action was this market- leading international principle. We live in an era of financial tragic. Financial markets and banking in particular economies are in a state of thy good, US stock markets fell about 40%, in other words, this time, was one of the darkest moments 5 since 1920. Prior to her rank can only "collapse" of the stock of Wall Street in 1929, technological collapse of 2000, the crisis of 1973 after the Yom Kippur war, while the price of oil quadrupled and famous collapse of 1937 / '38, when Europe was beginning World war II In 2000, even though it seems like the end of the world was the corner, the world economy survived almost intact. Of course, that was small recessions in the United States, Europe, or Japan. Much more difficult the situation was at crisis 30s, or 70s, however, succeeded the world. Regarding the recent financial crisis, it has all the signs to be much sharper and with more consequences. The decline in stock prices is more a byproduct of what is really happening. Financial markets began dance of death with the credit crisis, which came as a result of the large increase in real estate prices and household debt. It is these last two phenomena can be matched very well with the gains of the '20s, a period during which people spent fists as if there was no tomorrow. All is not away from the mouth of the word recession, that fact no longer a sudden and abrupt. But as much as the financial markets melt, the greater is the risk of a problematic economy for years to come. Thus, for example, the banking crisis in Japan proved to be much more severe than initially expected, partly because the assets which were based more loans had, especially the land that falling in value. The price of land in Japan is about 15 years that continues to fall. (ADRI Nurellari-Published in the newspaper "Classifieds"). At this moment, it is still difficult to çmosh to what extent the crisis has affected the economy and what would be the consequences of the crisis. What we know is that many banks will need more time to reduce the award of credit, but banks have this primary function, this means huge loss.

Keywords: globalisation, finance, crisis, recomandation, bank, credits

Procedia PDF Downloads 360
91 External Validation of Established Pre-Operative Scoring Systems in Predicting Response to Microvascular Decompression for Trigeminal Neuralgia

Authors: Kantha Siddhanth Gujjari, Shaani Singhal, Robert Andrew Danks, Adrian Praeger

Abstract:

Background: Trigeminal neuralgia (TN) is a heterogenous pain syndrome characterised by short paroxysms of lancinating facial pain in the distribution of the trigeminal nerve, often triggered by usually innocuous stimuli. TN has a low prevalence of less than 0.1%, of which 80% to 90% is caused by compression of the trigeminal nerve from an adjacent artery or vein. The root entry zone of the trigeminal nerve is most sensitive to neurovascular conflict (NVC), causing dysmyelination. Whilst microvascular decompression (MVD) is an effective treatment for TN with NVC, all patients do not achieve long-term pain relief. Pre-operative scoring systems by Panczykowski and Hardaway have been proposed but have not been externally validated. These pre-operative scoring systems are composite scores calculated according to a subtype of TN, presence and degree of neurovascular conflict, and response to medical treatments. There is discordance in the assessment of NVC identified on pre-operative magnetic resonance imaging (MRI) between neurosurgeons and radiologists. To our best knowledge, the prognostic impact for MVD of this difference of interpretation has not previously been investigated in the form of a composite scoring system such as those suggested by Panczykowski and Hardaway. Aims: This study aims to identify prognostic factors and externally validate the proposed scoring systems by Panczykowski and Hardaway for TN. A secondary aim is to investigate the prognostic difference between a neurosurgeon's interpretation of NVC on MRI compared with a radiologist’s. Methods: This retrospective cohort study included 95 patients who underwent de novo MVD in a single neurosurgical unit in Melbourne. Data was recorded from patients’ hospital records and neurosurgeon’s correspondence from perioperative clinic reviews. Patient demographics, type of TN, distribution of TN, response to carbamazepine, neurosurgeon, and radiologist interpretation of NVC on MRI, were clearly described prospectively and preoperatively in the correspondence. Scoring systems published by Panczykowski et al. and Hardaway et al. were used to determine composite scores, which were compared with the recurrence of TN recorded during follow-up over 1-year. Categorical data analysed using Pearson chi-square testing. Independent numerical and nominal data analysed with logistical regression. Results: Logistical regression showed that a Panczykowski composite score of greater than 3 points was associated with a higher likelihood of pain-free outcome 1-year post-MVD with an OR 1.81 (95%CI 1.41-2.61, p=0.032). The composite score using neurosurgeon’s impression of NVC had an OR 2.96 (95%CI 2.28-3.31, p=0.048). A Hardaway composite score of greater than 2 points was associated with a higher likelihood of pain-free outcome 1 year post-MVD with an OR 3.41 (95%CI 2.58-4.37, p=0.028). The composite score using neurosurgeon’s impression of NVC had an OR 3.96 (95%CI 3.01-4.65, p=0.042). Conclusion: Composite scores developed by Panczykowski and Hardaway were validated for the prediction of response to MVD in TN. A composite score based on the neurosurgeon’s interpretation of NVC on MRI, when compared with the radiologist’s had a greater correlation with pain-free outcomes 1 year post-MVD.

Keywords: de novo microvascular decompression, neurovascular conflict, prognosis, trigeminal neuralgia

Procedia PDF Downloads 53
90 Left Cornual Ectopic Pregnancy with Uterine Rupture - a Case Report

Authors: Vinodhini Elangovan, Jen Heng Pek

Abstract:

Background: An ectopic pregnancy is defined as any pregnancy implanted outside of the endometrial cavity. Cornual pregnancy, a rare variety of ectopic pregnancies, is seen in about 2-4% of ectopic pregnancies. It develops in the interstitial portion of the fallopian tube and invades through the uterine wall. This case describes a third-trimester cornual pregnancy that resulted in a uterine rupture. Case: A 38-year old Chinese lady was brought to the Emergency Department (ED) as a standby case for hypotension. She was 30+6 weeks pregnant (Gravida 3, Parous 1). Her past obstetric history included a live birth delivered via lower segment Caesarean section due to non-reassuring fetal status in 2002 and a miscarriage in 2012. She developed generalized abdominal pain. There was no per vaginal bleeding or leaking liquor. There was also no fever, nausea, vomiting, constipation, diarrhea, or urinary symptoms. On arrival in the ED, she was pale, diaphoretic, and lethargic. She had generalized tenderness with guarding and rebound over her abdomen. Point of care ultrasound was performed and showed a large amount of intra-abdominal free fluid, and the fetal heart rate was 170 beats per minute. The point of care hemoglobin was 7.1 g/dL, and lactate was 6.8 mmol/L. The patient’s blood pressure dropped precipitously to 50/36 mmHg, and her heart rate went up to 141 beats per minute. The clinical impression was profound shock secondary to uterine rupture. Intra-operatively, there was extensive haemoperitoneum, and the fetus was seen in the abdominal cavity. The fetus was delivered immediately and handed to the neonatal team. On exploration of the uterus, the point of rupture was at the left cornual region where the placenta was attached to. Discussion: Cornual pregnancies are difficult to diagnose pre-operatively with low ultrasonographic sensitivity and hence are commonly confused with normal intrauterine pregnancies. They pose a higher risk of rupture and hemorrhage compared to other types of ectopic pregnancies. In very rare circumstances, interstitial pregnancies can result in a viable fetus. Uterine rupture resulting in hemorrhagic shock is a true obstetric emergency that can result in significant morbidity and mortality for the patient and the fetus, and early diagnosis in the emergency department is crucial. The patient in this case presented with known risk factors of multiparity, advanced maternal age, and previous lower segment cesarean section, which increased the suspicion of uterine rupture. Ultrasound assessment may be beneficial to any patient who presents with symptoms and a history of uterine surgery to assess the possibility of uterine dehiscence or rupture. Management of a patient suspected of uterine rupture should be systematic in the emergency department and follow an ABC approach. Conclusion: This case demonstrates the importance for an emergency physician to maintain the suspicion for ectopic pregnancy even at advanced gestational ages. It also highlights how even though all emergency physicians may not be qualified to do a detailed pelvic ultrasound, it is essential for them to be competent with a point of care ultrasound to make a prompt diagnosis of conditions such as uterine rupture.

Keywords: cornual ectopic , ectopic pregnancy, emergency medicine, obstetric emergencies

Procedia PDF Downloads 98
89 Ankle Fracture Management: A Unique Cross Departmental Quality Improvement Project

Authors: Langhit Kurar, Loren Charles

Abstract:

Introduction: In light of recent BOAST 12 (August 2016) published guidance on management of ankle fractures, the project aimed to highlight key discrepancies throughout the care trajectory from admission to point of discharge at a district general hospital. Wide breadth of data covering three key domains: accident and emergency, radiology, and orthopaedic surgery were subsequently stratified and recommendations on note documentation, and outpatient follow up were made. Methods: A retrospective twelve month audit was conducted reviewing results of ankle fracture management in 37 patients. Inclusion criterion involved all patients seen at Darent Valley Hospital (DVH) emergency department with radiographic evidence of an ankle fracture. Exclusion criterion involved all patients managed solely by nursing staff or having sustained purely ligamentous injury. Medical notes, including discharge summaries and the PACS online radiographic tool were used for data extraction. Results: Cross-examination of the A & E domain revealed limited awareness of the BOAST 12 recent publication including requirements to document skin integrity and neurovascular assessment. This had direct implications as this would have changed the surgical plan for acutely compromised patients. The majority of results obtained from the radiographic domain were satisfactory with appropriate X-rays taken in over 95% of cases. However, due to time pressures within A & E, patients were often left without a post manipulation XRAY in a backslab. Poorly reduced fractures were subsequently left for a long period resulting in swollen ankles and a time-dependent lag to surgical intervention. This had knocked on implications for prolonged inpatient stay resulting in hospital-acquired co-morbidity including pressure sores. Discussion: The audit has highlighted several areas of improvement throughout the disease trajectory from review in the emergency department to follow up as an outpatient. This has prompted the creation of an algorithm to ensure patients with significant fractures presenting to the emergency department are seen promptly and treatment expedited as per recent guidance. This includes timing for X-rays taken in A & E. Re-audit has shown significant improvement in both documentation at time of presentation and appropriate follow-up strategies. Within the orthopedic domain, we are in the process of creating an ankle fracture pathway to ensure imaging and weight bearing status are made clear to the consulting clinicians in an outpatient setting. Significance/Clinical Relevance: As a result of the ankle fracture algorithm we have adapted the BOAST 12 guidance to shape an intrinsic pathway to not only improve patient management within the emergency department but also create a standardised format for follow up.

Keywords: ankle, fracture, BOAST, radiology

Procedia PDF Downloads 157
88 Intriguing Modulations in the Excited State Intramolecular Proton Transfer Process of Chrysazine Governed by Host-Guest Interactions with Macrocyclic Molecules

Authors: Poojan Gharat, Haridas Pal, Sharmistha Dutta Choudhury

Abstract:

Tuning photophysical properties of guest dyes through host-guest interactions involving macrocyclic hosts are the attractive research areas since past few decades, as these changes can directly be implemented in chemical sensing, molecular recognition, fluorescence imaging and dye laser applications. Excited state intramolecular proton transfer (ESIPT) is an intramolecular prototautomerization process display by some specific dyes. The process is quite amenable to tunability by the presence of different macrocyclic hosts. The present study explores the interesting effect of p-sulfonatocalix[n]arene (SCXn) and cyclodextrin (CD) hosts on the excited-state prototautomeric equilibrium of Chrysazine (CZ), a model antitumour drug. CZ exists exclusively in its normal form (N) in the ground state. However, in the excited state, the excited N* form undergoes ESIPT along with its pre-existing intramolecular hydrogen bonds, giving the excited state prototautomer (T*). Accordingly, CZ shows a single absorption band due to N form, but two emission bands due to N* and T* forms. Facile prototautomerization of CZ is considerably inhibited when the dye gets bound to SCXn hosts. However, in spite of lower binding affinity, the inhibition is more profound with SCX6 host as compared to SCX4 host. For CD-CZ system, while prototautomerization process is hindered by the presence of β-CD, it remains unaffected in the presence of γCD. Reduction in the prototautomerization process of CZ by SCXn and βCD hosts is unusual, because T* form is less dipolar in nature than the N*, hence binding of CZ within relatively hydrophobic hosts cavities should have enhanced the prototautomerization process. At the same time, considering the similar chemical nature of two CD hosts, their effect on prototautomerization process of CZ would have also been similar. The atypical effects on the prototautomerization process of CZ by the studied hosts are suggested to arise due to the partial inclusion or external binding of CZ with the hosts. As a result, there is a strong possibility of intermolecular H-bonding interaction between CZ dye and the functional groups present at the portals of SCXn and βCD hosts. Formation of these intermolecular H-bonds effectively causes the pre-existing intramolecular H-bonding network within CZ molecule to become weak, and this consequently reduces the prototautomerization process for the dye. Our results suggest that rather than the binding affinity between the dye and host, it is the orientation of CZ in the case of SCXn-CZ complexes and the binding stoichiometry in the case of CD-CZ complexes that play the predominant role in influencing the prototautomeric equilibrium of the dye CZ. In the case of SCXn-CZ complexes, the results obtained through experimental findings are well supported by quantum chemical calculations. Similarly for CD-CZ systems, binding stoichiometries obtained through geometry optimization studies on the complexes between CZ and CD hosts correlate nicely with the experimental results. Formation of βCD-CZ complexes with 1:1 stoichiometry while formation of γCD-CZ complexes with 1:1, 1:2 and 2:2 stoichiometries are revealed from geometry optimization studies and these results are in good accordance with the observed effects by the βCD and γCD hosts on the ESIPT process of CZ dye.

Keywords: intermolecular proton transfer, macrocyclic hosts, quantum chemical studies, photophysical studies

Procedia PDF Downloads 88
87 Two-wavelength High-energy Cr:LiCaAlF6 MOPA Laser System for Medical Multispectral Optoacoustic Tomography

Authors: Radik D. Aglyamov, Alexander K. Naumov, Alexey A. Shavelev, Oleg A. Morozov, Arsenij D. Shishkin, Yury P.Brodnikovsky, Alexander A.Karabutov, Alexander A. Oraevsky, Vadim V. Semashko

Abstract:

The development of medical optoacoustic tomography with the using human blood as endogenic contrast agent is constrained by the lack of reliable, easy-to-use and inexpensive sources of high-power pulsed laser radiation in the spectral region of 750-900 nm [1-2]. Currently used titanium-sapphire, alexandrite lasers or optical parametric light oscillators do not provide the required and stable output characteristics, they are structurally complex, and their cost is up to half the price of diagnostic optoacoustic systems. Here we are developing the lasers based on Cr:LiCaAlF6 crystals which are free of abovementioned disadvantages and provides intensive ten’s ns-range tunable laser radiation at specific absorption bands of oxy- (~840 nm) and -deoxyhemoglobin (~757 nm) in the blood. Cr:LiCAF (с=3 at.%) crystals were grown in Kazan Federal University by the vertical directional crystallization (Bridgman technique) in graphite crucibles in a fluorinating atmosphere at argon overpressure (P=1500 hPa) [3]. The laser elements have cylinder shape with the diameter of 8 mm and 90 mm in length. The direction of the optical axis of the crystal was normal to the cylinder generatrix, which provides the π-polarized laser action correspondent to maximal stimulated emission cross-section. The flat working surfaces of the active elements were polished and parallel to each other with an error less than 10”. No any antireflection coating was applied. The Q-switched master oscillator-power amplifiers laser system (MOPA) with the dual-Xenon flashlamp pumping scheme in diffuse-reflectivity close-coupled head were realized. A specially designed laser cavity, consisting of dielectric highly reflective reflectors with a 2 m-curvature radius, a flat output mirror, a polarizer and Q-switch sell, makes it possible to operate sequentially in a circle (50 ns - laser one pulse after another) at wavelengths of 757 and 840 nm. The programmable pumping system from Tomowave Laser LLC (Russia) provided independent to each pulses (up to 250 J at 180 μs) pumping to equalize the laser radiation intensity at these wavelengths. The MOPA laser operates at 10 Hz pulse repetition rate with the output energy up to 210 mJ. Taking into account the limitations associated with physiological movements and other characteristics of patient tissues, the duration of laser pulses and their energy allows molecular and functional high-contrast imaging to depths of 5-6 cm with a spatial resolution of at least 1 mm. Highly likely the further comprehensive design of laser allows improving the output properties and realizing better spatial resolution of medical multispectral optoacoustic tomography systems.

Keywords: medical optoacoustic, endogenic contrast agent, multiwavelength tunable pulse lasers, MOPA laser system

Procedia PDF Downloads 65
86 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.

Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals

Procedia PDF Downloads 336
85 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion

Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong

Abstract:

The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor

Procedia PDF Downloads 209
84 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 106
83 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 163
82 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 105
81 Addressing the Biocide Residue Issue in Museum Collections Already in the Planning Phase: An Investigation Into the Decontamination of Biocide Polluted Museum Collections Using the Temperature and Humidity Controlled Integrated Contamination Manageme

Authors: Nikolaus Wilke, Boaz Paz

Abstract:

Museum staff, conservators, restorers, curators, registrars, art handlers but potentially also museum visitors are often exposed to the harmful effects of biocides, which have been applied to collections in the past for the protection and preservation of cultural heritage. Due to stable light, moisture, and temperature conditions, the biocidal active ingredients were preserved for much longer than originally assumed by chemists, pest controllers, and museum scientists. Given the requirements to minimize the use and handling of toxic substances and the obligations of employers regarding safe working environments for their employees, but also for visitors, the museum sector worldwide needs adequate decontamination solutions. Today there are millions of contaminated objects in museums. This paper introduces the results of a systematic investigation into the reduction rate of biocide contamination in various organic materials that were treated with the humidity and temperature controlled ICM (Integrated Contamination Management) method. In the past, collections were treated with a wide range, at times even with a combination of toxins, either preventively or to eliminate active insect or fungi infestations. It was only later that most of those toxins were recognized as CMR (cancerogenic mutagen reprotoxic) substances. Among them were numerous chemical substances that are banned today because of their toxicity. While the biocidal effect of inorganic salts such as arsenic (arsenic(III) oxide), sublimate (mercury(II) chloride), copper oxychloride (basic copper chloride) and zinc chloride was known very early on, organic tar distillates such as paradichlorobenzene, carbolineum, creosote and naphthalene were increasingly used from the 19th century onwards, especially as wood preservatives. With the rapid development of organic synthesis chemistry in the 20th century and the development of highly effective warfare agents, pesticides and fungicides, these substances were replaced by chlorogenic compounds (e.g. γ-hexachlorocyclohexane (lindane), dichlorodiphenyltrichloroethane (DDT), pentachlorophenol (PCP), hormone-like derivatives such as synthetic pyrethroids (e.g., permethrin, deltamethrin, cyfluthrin) and phosphoric acid esters (e.g., dichlorvos, chlorpyrifos). Today we know that textile artifacts (costumes, uniforms, carpets, tapestries), wooden objects, herbaria, libraries, archives and historical wall decorations made of fabric, paper and leather were also widely treated with toxic inorganic and organic substances. The migration (emission) of pollutants from the contaminated objects leads to continuous (secondary) contamination and accumulation in the indoor air and dust. It is important to note that many of mentioned toxic substances are also material-damaging; they cause discoloration and corrosion. Some, such as DDT, form crystals, which in turn can cause micro tectonic, destructive shifting, for example, in paint layers. Museums must integrate sustainable solutions to address the residual biocide problems already in the planning phase. Gas and dust phase measurements and analysis must become standard as well as methods of decontamination.

Keywords: biocides, decontamination, museum collections, toxic substances in museums

Procedia PDF Downloads 87
80 We Are the Earth That Defends Itself: An Exploration of Discursive Practices of Les Soulèvements De La Terre

Authors: Sophie Del Fa, Loup Ducol

Abstract:

This presentation will focus on the discursive practices of Les Soulèvements de la Terre (hereafter SdlT), a French environmentalist group mobilized against agribusiness. More specifically, we will use, as a case study, the violently repressed demonstration that took place in Sainte-Soline on March 25, 2023 (see after for details). The SdlT embodies the renewal of anti-capitalist and environmentalist struggles that began with Occupy Wall Street in 2009 and in France with the Nuit debout in 2016 and the yellow vests movement from 2019 to 2020. These struggles have three things in common: they are self-organized without official leaders, they rely mainly on occupations to reappropriate public places (squares, roundabouts, natural territories) and they are anti-capitalist. The SdlT was created in 2021 by activists coming from the Zone-to-Defend of Notre-Dame-des-Landes, a victorious 10 yearlong occupation movement against an airport near Nantes, France (from 2009 to 2018). The SdlT is not labeled as a formal association, nor as a constituted group, but as an anti-capitalist network of local struggles at the crossroads of ecology and social issues. Indeed, although they target agro-industry, land grabbing, soil artificialization and ecology without transition, the SdlT considers ecological and social questions as interdependent. Moreover, they have an encompassing vision of ecology that they consider as a concern for the living as a whole by erasing the division between Nature and Culture. Their radicality is structured around three main elements: federative and decentralized dimensions, the rhetoric of living alliances and militant creatives strategies. The objective of this reflexion is to understand how these three dimensions are articulated through the SdlT’s discursive practices. To explore these elements, we take as a case study one specific event: the demonstration against the ‘basins’ held in Sainte-Soline on March 25, 2023, on the construction site of new water storage infrastructure for agricultural irrigation in western France. This event represents a turning point for the SdlT. Indeed, the protest was violently repressed: 5000 grenades were fired by the police, hundreds of people were injured, and one person was still in a coma at the time of writing these lines. Moreover, following Saint-Soline’s events, the Minister of Interior Affairs, Gérald Darmin, threatened to dissolve the SdlT, thus adding fuel to the fire in an already tense social climate (with the ongoing strikes against the pensions reform). We anchor our reflexion on three types of data: 1) our own experiences (inspired by ethnography) of the Sainte-Soline demonstration; 2) the collection of more than 500 000 Tweets with the #SainteSoline hashtag and 3) a press review of texts and articles published after Sainte-Soline’s demonstration. The exploration of these data from a turning point in the history of the SdlT will allow us to analyze how the three dimensions highlighted earlier (federative and decentralized dimensions, rhetoric of living alliances and creatives militant strategies) are materialized through the discursive practices surrounding the Sainte-Soline event. This will allow us to shed light on how a new contemporary movement implements contemporary environmental struggles.

Keywords: discursive practices, Sainte-Soline, Ecology, radical ecology

Procedia PDF Downloads 48
79 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium

Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte

Abstract:

The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.

Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation

Procedia PDF Downloads 234
78 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 45
77 Overlaps and Intersections: An Alternative Look at Choreography

Authors: Ashlie Latiolais

Abstract:

Architecture, as a discipline, is on a trajectory of extension beyond the boundaries of buildings and, more increasingly, is coupled with research that connects to alternative and typically disjointed disciplines. A “both/and” approach and (expanded) definition of architecture, as depicted here, expands the margins that contain the profession. Figuratively, architecture is a series of edges, events, and occurrences that establishes a choreography or stage by which humanity exists. The way in which architecture controls and suggests the movement through these spaces, being within a landscape, city, or building, can be viewed as a datum by which the “dance” of everyday life occurs. This submission views the realm of architecture through the lens of movement and dance as a cross-fertilizer of collaboration, tectonic, and spatial geometry investigations. “Designing on digital programs puts architects at a distance from the spaces they imagine. While this has obvious advantages, it also means that they lose the lived, embodied experience of feeling what is needed in space—meaning that some design ideas that work in theory ultimately fail in practice.” By studying the body in motion through real-time performance, a more holistic understanding of architectural space surfaces and new prospects for theoretical teaching pedagogies emerge. The atypical intersection rethinks how architecture is considered, created, and tested, similar to how “dance artists often do this by thinking through the body, opening pathways and possibilities that might not otherwise be accessible” –this is the essence of this poster submission as explained through unFOLDED, a creative performance work. A new languageismaterialized through unFOLDED, a dynamic occupiable installation by which architecture is investigated through dance, movement, and body analysis. The entry unfolds a collaboration of an architect, dance choreographer, musicians, video artist, and lighting designers to re-create one of the first documented avant-garde performing arts collaborations (Matisse, Satie, Massine, Picasso) from the Ballet Russes in 1917, entitled Parade. Architecturally, this interdisciplinary project orients and suggests motion through structure, tectonic, lightness, darkness, and shadow as it questions the navigation of the dark space (stage) surrounding the installation. Artificial light via theatrical lighting and video graphics brought the blank canvas to life – where the sensitive mix of musicality coordinated with the structure’s movement sequencing was certainly a challenge. The upstage light from the video projections created both flickered contextual imagery and shadowed figures. When the dancers were either upstage or downstage of the structure, both silhouetted figures and revealed bodies are experienced as dancer-controlled installation manipulations occurred throughout the performance. The experimental performance, through structure, prompted moving (dancing) bodies in space, where the architecture served as a key component to the choreography itself. The tectonic of the delicate steel structure allowed for the dancers to interact with the installation, which created a variety of spatial conditions – the contained box of three-dimensional space, to a wall, and various abstracted geometries in between. The development of this research unveils the new role of an Architect as a Choreographer of the built environment.

Keywords: dance, architecture, choreography, installation, architect, choreographer, space

Procedia PDF Downloads 68
76 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 36
75 Exploring Bio-Inspired Catecholamine Chemistry to Design Durable Anti-Fungal Wound Dressings

Authors: Chetna Dhand, Venkatesh Mayandi, Silvia Marrero Diaz, Roger W. Beuerman, Seeram Ramakrishna, Rajamani Lakshminarayanan

Abstract:

Sturdy Insect Cuticle Sclerotization, Incredible Substrate independent Mussel’s bioadhesion, Tanning of Leather are some of catechol(amine)s mediated natural processes. Chemical contemplation spots toward a mechanism instigated with the formation of the quinone moieties from the respective catechol(amine)s, via oxidation, followed by the nucleophilic addition of the amino acids/proteins/peptides to this quinone leads to the development of highly strong, cross-linked and water-resistant proteinacious structures. Inspired with this remarkable catechol(amine)s chemistry towards amino acids/proteins/peptides, we attempted to design highly stable and water-resistant antifungal wound dressing mats with exceptional durability using collagen (protein), dopamine (catecholamine) and antifungal drugs (Amphotericin B and Caspofungin) as the key materials. Electrospinning technique has been used to fabricate desired nanofibrous mat including Collagen (COLL), COLL/Dopamine (COLL/DP) and calcium incorporated COLL/DP (COLL-DP-Ca2+). The prepared protein-based scaffolds have been studied for their microscopic investigations (SEM, TEM, and AFM), structural analysis (FT-IR), mechanical properties, water wettability characteristics and aqueous stability. Biocompatibility of these scaffolds has been analyzed for dermal fibroblast cells using MTS assay, Cell TrackerTM Green CMFDA and confocal imaging. Being the winner sample, COLL-DP-Ca2+ scaffold has been selected for incorporating two antifungal drugs namely Caspofungin (Peptide based) and Amphotericin B (Non-Peptide based). Antifungal efficiency of the designed mats has been evaluated for eight diverse fungal strains employing different microbial assays including disc diffusion, cell-viability assay, time kill kinetics etc. To confirm the durability of these mats, in term of their antifungal activity, drug leaching studies has been performed and monitored using disc diffusion assay each day. Ex-vivo fungal infection model has also been developed and utilized to validate the antifungal efficacy of the designed wound dressings. Results clearly reveal dopamine mediated crosslinking within COLL-antifungal scaffolds that leads to the generation of highly stable, mechanical tough, biocompatible wound dressings having the zone of inhabitation of ≥ 2 cm for almost all the investigated fungal strains. Leaching studies and Ex-vivo model has confirmed the durability of these wound dressing for more than 3 weeks and certified their suitability for commercialization. A model has also been proposed to enlighten the chemical mechanism involved for the development of these antifungal wound dressings with exceptional robustness.

Keywords: catecholamine chemistry, electrospinning technique, antifungals, wound dressings, collagen

Procedia PDF Downloads 347
74 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation

Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli

Abstract:

Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.

Keywords: endothelialisation, plasma treatment, stent, surface functionalisation

Procedia PDF Downloads 282
73 Functionalizing Gold Nanostars with Ninhydrin as Vehicle Molecule for Biomedical Applications

Authors: Swati Mishra

Abstract:

In recent years, there has been an explosion in Gold NanoParticle (GNP) research, with a rapid increase in publications in diverse fields, including imaging, bioengineering, and molecular biology. GNPs exhibit unique physicochemical properties, including surface plasmon resonance (SPR) and bind amine and thiol groups, allowing surface modification and use in biomedical applications. Nanoparticle functionalization is the subject of intense research at present, with rapid progress being made towards developing biocompatible, multi-functional particles. In the present study, the photochemical method has been done to functionalize various-shaped GNPs like nanostars by the molecules like ninhydrin. Ninhydrin is bactericidal, virucidal, fungicidal, antigen-antibody reactive, and used in fingerprint technology in forensics. The GNPs functionalized with ninhydrin efficiently will bind to the amino acids on the target protein, which is of eminent importance during the pandemic, especially where long-term treatments of COVID- 19 bring many side effects of the drugs. The photochemical method is adopted as it provides low thermal load, selective reactivity, selective activation, and controlled radiation in time, space, and energy. The GNPs exhibit their characteristic spectrum, but a distinctly blue or redshift in the peak will be observed after UV irradiation, ensuring efficient ninhydrin binding. Now, the bound ninhydrin in the GNP carrier, upon chemically reacting with any amino acid, will lead to the formation of Rhumann purple. A common method of GNP production includes citrate reduction of Au [III] derivatives such as aurochloric acid (HAuCl4) in water to Au [0] through a one-step synthesis of size-tunable GNPs. The following reagents are prepared to validate the approach. Reagent A solution 1 is0.0175 grams ninhydrin in 5 ml Millipore water Reagent B 30 µl of HAuCl₄.3H₂O in 3 ml of solution 1 Reagent C 1 µl of gold nanostars in 3 ml of solution 1 Reagent D 6 µl of cetrimonium bromide (CTAB) in 3 ml of solution1 ReagentE 1 µl of gold nanostars in 3 ml of ethanol ReagentF 30 µl of HAuCl₄.₃H₂O in 3 ml of ethanol ReagentG 30 µl of HAuCl₄.₃H₂O in 3 ml of solution 2 ReagentH solution 2 is0.0087 grams ninhydrin in 5 ml Millipore water ReagentI 30 µl of HAuCl₄.₃H₂O in 3 ml of water The reagents were irradiated at 254 nm for 15 minutes, followed by their UV Visible spectroscopy. The wavelength was selected based on the one reported for excitation of a similar molecule Pthalimide. It was observed that the solution B and G deviate around 600 nm, while C peaks distinctively at 567.25 nm and 983.9 nm. Though it is tough to say about the chemical reaction happening, butATR-FTIR of reagents will ensure that ninhydrin is not forming Rhumann purple in the absence of amino acids. Therefore, these experiments, we achieved the functionalization of gold nanostars with ninhydrin corroborated by the deviation in the spectrum obtained in a mixture of GNPs and ninhydrin irradiated with UV light. It prepares them as a carrier molecule totake up amino acids for targeted delivery or germicidal action.

Keywords: gold nanostars, ninhydrin, photochemical method, UV visible specgtroscopy

Procedia PDF Downloads 118
72 Influence of Cryo-Grinding on Antioxidant Activity and Amount of Free Phenolic Acids, Rutin and Tyrosol in Whole Grain Buckwheat and Pumpkin Seed Cake

Authors: B. Voucko, M. Benkovic, N. Cukelj, S. Drakula, D. Novotni, S. Balbino, D. Curic

Abstract:

Oxidative stress is considered as one of the causes leading to metabolic disorders in humans. Therefore, the ability of antioxidants to inhibit free radical production is their primary role in the human organism. Antioxidants originating from cereals, especially flavonoids and polyphenols, are mostly bound and indigestible. Micronization damages the cell wall which consecutively results in bioactive material to be more accessible in vivo. In order to ensure complete fragmentation, micronization is often combined with high temperatures (e.g., for bran 200°C) which can lead to degradation of bioactive compounds. The innovative non-thermal technology of cryo-milling is an ultra-fine micronization method that uses liquid nitrogen (LN2) at a temperature of 195°C to freeze and cool the sample during milling. Freezing at such low temperatures causes the material to become brittle which ensures the generation of fine particles while preserving the bioactive content of the material. The aim of this research was to determine if production of ultra-fine material with cryo-milling will result in the augmentation of available bioactive compounds of buckwheat and pumpkin seed cake. For that reason, buckwheat and pumpkin seed cake were ground in a ball mill (CryoMill, Retch, Germany) with and without the use of LN2 for 8 minutes, in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm) at an oscillation frequency of 30 Hz. The cryo-milled samples were cooled with LN2 for 2 minutes prior to milling, followed by the first cycle of milling (4 minutes), intermediary cooling (2 minutes), and finally the second cycle of milling (further 4 minutes). A continuous process of milling was applied to the samples ground without freezing with LN2. Particle size distribution was determined using the Scirocco 2000 dry dispersion unit (Malvern Instruments, UK). Antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test and ferric reducing antioxidant power (FRAP) assay, while the total phenol content was determined using the Folin Ciocalteu method, using the ultraviolet-visible spectrophotometer (Specord 50 Plus, Germany). The content of the free phenolic acids, rutin in buckwheat, tyrosol in pumpkin seed cake, was determined with an HPLC-PDA method (Agilent 1200 series, Germany). Cryo-milling resulted in 11 times smaller size of buckwheat particles, and 3 times smaller size of pumpkin seed particles than milling without the use of LN2, but also, a lower uniformity of the particle size distribution. Lack of freezing during milling of pumpkin seed cake caused a formation of agglomerates due to its high-fat content (21 %). Cryo-milling caused augmentation of buckwheat flour antioxidant activity measured by DPPH test (23,9%) and an increase in available rutin content (14,5%). Also, it resulted in an augmentation of the total phenol content (36,9%) and available tyrosol content (12,5%) of pumpkin seed cake. Antioxidant activity measured with the FRAP test, as well as the content of phenolic acids remained unchanged independent of the milling process. The results of this study showed the potential of cryo-milling for complete raw material utilization in the food industry, as well as a tool for extraction of aimed bioactive components.

Keywords: bioactive, ball-mill, buckwheat, cryo-milling, pumpkin seed cake

Procedia PDF Downloads 113