Search results for: real world challenges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16482

Search results for: real world challenges

13932 Earthquakes and Buildings: Lesson Learnt from Past Earthquakes in Turkey

Authors: Yavuz Yardım

Abstract:

The most important criteria for structural engineering is the structure’s ability to carry intended loads safely. The key element of this ability is mathematical modeling of really loadings situation into a simple loads input to use in structure analysis and design. Amongst many different types of loads, the most challenging load is earthquake load. It is possible magnitude is unclear and timing is unknown. Therefore the concept of intended loads and safety have been built on experience of previous earthquake impact on the structures. Understanding and developing these concepts is achieved by investigating performance of the structures after real earthquakes. Damage after an earthquake provide results of thousands of full-scale structure test under a real seismic load. Thus, Earthquakes reveille all the weakness, mistakes and deficiencies of analysis, design rules and practice. This study deals with lesson learnt from earthquake recoded last two decades in Turkey. Results of investigation after several earthquakes exposes many deficiencies in structural detailing, inappropriate design, wrong architecture layout, and mainly mistake in construction practice.

Keywords: earthquake, seismic assessment, RC buildings, building performance

Procedia PDF Downloads 264
13931 Research on Evaluation Method of Urban Road Section Traffic Safety Status Based on Video Information

Authors: Qiang Zhang, Xiaojian Hu

Abstract:

Aiming at the problem of the existing real-time evaluation methods for traffic safety status, a video information-based urban road section traffic safety status evaluation method was established, and the rapid detection method of traffic flow parameters based on video information is analyzed. The concept of the speed dispersion of the road section that affects the traffic safety state of the urban road section is proposed, and the method of evaluating the traffic safety state of the urban road section based on the speed dispersion of the road section is established. Experiments show that the proposed method can reasonably evaluate the safety status of urban roads in real-time, and the evaluation results can provide a corresponding basis for the traffic management department to formulate an effective urban road section traffic safety improvement plan.

Keywords: intelligent transportation system, road traffic safety, video information, vehicle speed dispersion

Procedia PDF Downloads 164
13930 Experiences and Challenges of Community Participation in Urban Renewal Projects: A Case Study of Bhendi Bazzar, Mumbai, India

Authors: Madhura Yadav

Abstract:

Urban redevelopment planning initiatives in developing countries have been largely criticised due to top-down planning approach and lack of involvement of the targeted beneficiaries which have led to a challenging situation which is contrary to the perceived needs of beneficiaries. Urban renewal projects improve the lives of people and meaningful participation of community plays a pivotal role. Public perceptions on satisfaction and participation have been given less priority in the investigation, which hinders effective planning and implementation of urban renewal projects. Moreover, challenges of community participation in urban renewal projects are less documented, particularly in relation to public participation and satisfaction. There is a need for new paradigm shift focusing on community participatory approach in urban renewal projects. The over 125-year-old Bhendi Bazar in Mumbai, India is the country’s first ever cluster redevelopment project, popularly known as Bhendi Bazaar redevelopment and it will be one of the largest projects for urban rejuvenation of one of Mumbai’s oldest and dying inner city areas. The project is led by the community trust, inputs were taken from various stakeholders, including residents, commercial tenants and expert consultants to shape the master plan and design of the project. The project started in 2016 but there is a significant delay in implementing the project. The study aimed at studying and assessing public perceptions on satisfaction and the relationship between community participation and community satisfaction in Bhendi Bazaar of Mumbai, India. Furthermore, the study will outline the challenges and problems of community participation in urban renewal projects and it suggests recommendations for the future. The qualitative and quantitative methods such as reconnaissance survey, key informant interviews, focus group discussions, walking interviews, a narrative inquiry is used for analysis of data. Preliminary findings revealed that all tenants are satisfied for the redevelopment of an area but the willingness of residential tenants to move in transit accommodation has made the projects successful and reductant of some residential and commercial tenants, regulatory provisions rising to face challenges in implementation. Experiences from the case study can help to understand dynamics behind public participation and government. At the same time, they serve as an inspiration and learning opportunity for future projects to ensure that they are sustainable not only from an economic standpoint but also, a social perspective.

Keywords: urban renewal, Bhendi Bazaar, community participation, satisfaction, social perspective

Procedia PDF Downloads 178
13929 The Locus of Action - Tinted Windows

Authors: Devleminck Steven, Debackere Boris

Abstract:

This research is about the ways artists and scientists deal with (and endure) new meaning and comprehend and construct the world. The project reflects on the intense connection between comprehension and construction and their place of creation – the ‘locus of action’. It seeks to define a liquid form of understanding and analysis capable of approaching our complex liquid world as discussed by Zygmunt Bauman. The aim is to establish a multi-viewpoint theoretical approach based on the dynamic concept of the Flâneur as introduced by Baudelaire, replacing single viewpoint categorization. This is coupled with the concept of thickening as proposed by Clifford Geertz with its implication of interaction between multi-layers of meaning. Here walking and looking is introduced as a method or strategy, a model or map, providing a framework of understanding in conditions of hybridity and change.

Keywords: action, art, liquid, locus, negotiation, place, science

Procedia PDF Downloads 281
13928 Object-Centric Process Mining Using Process Cubes

Authors: Anahita Farhang Ghahfarokhi, Alessandro Berti, Wil M.P. van der Aalst

Abstract:

Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches.

Keywords: multidimensional process mining, mMulti-perspective business processes, OLAP, process cubes, process discovery, process mining

Procedia PDF Downloads 255
13927 Synchronized Vehicle Routing for Equitable Resource Allocation in Food Banks

Authors: Rabiatu Bonku, Faisal Alkaabneh

Abstract:

Inspired by a food banks distribution operation for non-profit organization, we study a variant synchronized vehicle routing problem for equitable resource allocation. This research paper introduces a Mixed Integer Programming (MIP) model aimed at addressing the complex challenge of efficiently distributing vital resources, particularly for food banks serving vulnerable populations in urban areas. Our optimization approach places a strong emphasis on social equity, ensuring a fair allocation of food to partner agencies while minimizing wastage. The primary objective is to enhance operational efficiency while guaranteeing fair distribution and timely deliveries to prevent food spoilage. Furthermore, we assess four distinct models that consider various aspects of sustainability, including social and economic factors. We conduct a comprehensive numerical analysis using real-world data to gain insights into the trade-offs that arise, while also demonstrating the models’ performance in terms of fairness, effectiveness, and the percentage of food waste. This provides valuable managerial insights for food bank managers. We show that our proposed approach makes a significant contribution to the field of logistics optimization and social responsibility, offering valuable insights for improving the operations of food banks.

Keywords: food banks, humanitarian logistics, equitable resource allocation, synchronized vehicle routing

Procedia PDF Downloads 62
13926 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance

Authors: Loai AbdAllah, Mahmoud Kaiyal

Abstract:

Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.

Keywords: missing values, incomplete data, distance, incomplete diabetes data

Procedia PDF Downloads 225
13925 General Purpose Graphic Processing Units Based Real Time Video Tracking System

Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai

Abstract:

Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.

Keywords: connected components, embrace threads, local weighted kernel, structuring elements

Procedia PDF Downloads 440
13924 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 70
13923 A Comparative Analysis of Liberation and Contemplation in Sankara and Aquinas

Authors: Zeite Shumneiyang Koireng

Abstract:

Liberation is the act of liberating or the state of being liberated. Indian philosophy, in general, understands liberation as moksa, which etymological is derived from the Sanskrit root muc+ktin meaning to loose, set free, to let go, discharge, release, liberate, deliver, etc. According to Indian schools of thought, moksa is the highest value on realizing which nothing remains to be realized. It is the cessation of birth and death, all kinds of pain and at the same time, it is the realization of one’s own self. Sankara’s Advaita philosophy is based on the following propositions: Brahman is the only Reality; the world has apparent reality, and the soul is not different from Brahman. According to Sankara, Brahman is the basis on which the world form appears; it is the sustaining ground of all various modification. It is the highest self and the self of all reveals himself by dividing himself [ as it was in the form of various objects] in multiple ways. The whole world is the manifestation of the Supreme Being. Brahman modifying itself into the Atman or internal self of all things is the world. Since Brahman is the Upadhana karana of the world, the sruti speaks of the world as the modification of Brahman into the Atman of the effect. Contemplation as the fulfillment of man finds a radical foundation in Aquinas teaching concerning the natural end or as he also referred to it, natural desire. The third book of the Summa Contra Gentiles begins the study of happiness with a consideration of natural desire. According to him, all creatures, even those devoid of understanding are ordered to God as an ultimate end. Intrinsically, a part of every nature is a tendency or inclination, originating in the natural form and tendency toward the end for which the possessor of nature exists. It is the study of the nature and finality of inclination that Aquinas establishes through an argument of induction man’s Contemplation of God as the fulfillment of his nature. The present paper is attempted to critically approach two important, seminal and originated thought, representing Indian and Western traditions which mark on the thinking of their respective times. Both these thoughts- Advaitic concept of Liberation in the Indian tradition and the concept of Contemplation in Thomas Aquinas’ Summa Contra Gentiles’- confront directly the question of the ultimate meaning of human existence. According to Sankara, it is knowledge and knowledge alone which is the means of moksa and the highest knowledge is moksa itself. Liberation in Sankara Vedanta is attained as a process of purification of self, which gradually and increasingly turns into purer and purer intentional construction. Man’s inner natural tendency for Aquinas is towards knowledge. The human subject is driven to know more and more about reality and in particular about the highest reality. Contemplation of this highest reality is fulfillment in the philosophy of Aquinas. Rather, Contemplation is the perfect activity in man’s present state of existence.

Keywords: liberation, Brahman, contemplation, fulfillment

Procedia PDF Downloads 193
13922 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 217
13921 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 125
13920 Effectiveness of Blended Learning in Public School During Covid-19: A Way Forward

Authors: Sumaira Taj

Abstract:

Blended learning is emerged as a prerequisite approach for teaching in all schools after the outbreak of the COVID-19 pandemic. However, how much public elementary and secondary schools in Pakistan are ready for adapting this approach and what should be done to prepare schools and students for blended learning are the questions that this paper attempts to answer. Mixed-method research methodology was used to collect data from 40 teachers, 500 students, and 10 mothers. Descriptive statistics was used to analyze quantitative data. As for as readiness is concerned, schools lack resources for blended/ virtual/ online classes from infra-structure to skills, parents’ literacy level hindered students’ learning process and teachers’ skills presented challenges in a smooth and swift shift of the schools from face-to-face learning to blended learning. It is recommended to establish a conducive environment in schools by providing all required resources and skills. Special trainings should be organized for low literacy level parents. Multiple ways should be adopted to benefit all students.

Keywords: blended learning, challenges in online classes, education in covid-19, public schools in pakistan

Procedia PDF Downloads 166
13919 A Combined Error Control with Forward Euler Method for Dynamical Systems

Authors: R. Vigneswaran, S. Thilakanathan

Abstract:

Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.

Keywords: adaptivity, fixed point, long time simulations, stability, linear system

Procedia PDF Downloads 312
13918 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409
13917 The Ethics of Organ Donation and Transplantation: Philosophical Perspectives

Authors: Elijah Ojochonu Okpanachi

Abstract:

This paper explores the ethical dimensions of organ donation and transplantation through various philosophical lenses, including utilitarianism, deontology, and virtue ethics. As advancements in medical technology increase the possibilities for life-saving transplants, ethical dilemmas surrounding consent, allocation, and the commodification of human organs have become increasingly pertinent. Utilitarian perspectives emphasize maximizing overall well-being, raising questions about how to equitably allocate limited resources. Deontological approaches focus on the moral obligations of individuals and institutions, particularly regarding informed consent and the sanctity of the human body. Virtue ethics encourages a consideration of the character and intentions of donors and medical professionals, fostering a holistic understanding of the ethical landscape. By analyzing real-world case studies and ethical frameworks, this study highlights the complexities in decision-making processes related to organ donation. It addresses issues such as presumed consent, living donations, and the societal implications of organ markets. Ultimately, this paper aims to contribute to the ongoing discourse on organ donation ethics, advocating for policies that respect individual rights while promoting altruism and social responsibility. Through a philosophical lens, we seek to propose a balanced approach that honors both the dignity of individuals and the urgent need for organ transplants in modern medicine.

Keywords: organ donation, medical technology, virtue ethics, Altruism

Procedia PDF Downloads 29
13916 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery

Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh

Abstract:

In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.

Keywords: spectral index, shadow detection, remote sensing images, World-View 2

Procedia PDF Downloads 538
13915 Examining Professional Challenges for School Social Work in Swedish Elementary Schools: A Focus Group Study

Authors: Maria Kjellgren, Sara Lilliehorn, Urban Markström

Abstract:

Critical components that influence the role and performance of school social workers in Swedish elementary schools will be described and analysed, such as formal regulations, professional self-understanding, and the SSWs’ role in the interplay between professional domains involved in elementary school. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. The result reveals three main challenges for the School Social Worker (SSW): (1) To navigate in a pedagogic and medical arena within a multidisciplinary team, (2) To manage ambiguity without any formal regulations and unclear settings and leadership and finally, (3) To negotiate tasks at different levels, with a health promotional and preventive focus, where the SSW ends up, mainly in remedial work with individual children. The results also disclosed that SSWs hold a vague professional self-understanding position with a little formal mandate to perform their work.

Keywords: school social worker, multidisciplinary team, counselling, professional self-understanding, formal regulations

Procedia PDF Downloads 68
13914 D6tions: A Serious Game to Learn Software Engineering Process and Design

Authors: Hector G. Perez-Gonzalez, Miriam Vazquez-Escalante, Sandra E. Nava-Muñoz, 
 Francisco E. Martinez-Perez, Alberto S. Nunez-Varela

Abstract:

The software engineering teaching process has been the subject of many studies. To improve this process, researchers have proposed merely illustrative techniques in the classroom, such as topic presentations and dynamics between students on one side or attempts to involve students in real projects with companies and institutions to bring them to a real software development problem on the other hand. Simulators and serious games have been used as auxiliary tools to introduce students to topics that are too abstract when these are presented in the traditional way. Most of these tools cover a limited area of the huge software engineering scope. To address this problem, we have developed D6tions, an educational serious game that simulates the software engineering process and is designed to experiment the different stages a software engineer (playing roles as project leader or as a developer or designer) goes through, while participating in a software project. We describe previous approaches to this problem, how D6tions was designed, its rules, directions, and the results we obtained of the use of this game involving undergraduate students playing the game.

Keywords: serious games, software engineering, software engineering education, software engineering teaching process

Procedia PDF Downloads 493
13913 Modal Density Influence on Modal Complexity Quantification in Dynamic Systems

Authors: Fabrizio Iezzi, Claudio Valente

Abstract:

The viscous damping in dynamic systems can be proportional or non-proportional. In the first case, the mode shapes are real whereas in the second case they are complex. From an engineering point of view, the complexity of the mode shapes is important in order to quantify the non-proportional damping. Different indices exist to provide estimates of the modal complexity. These indices are or not zero, depending whether the mode shapes are not or are complex. The modal density problem arises in the experimental identification when the dynamic systems have close modal frequencies. Depending on the entity of this closeness, the mode shapes can hold fictitious imaginary quantities that affect the values of the modal complexity indices. The results are the failing in the identification of the real or complex mode shapes and then of the proportional or non-proportional damping. The paper aims to show the influence of the modal density on the values of these indices in case of both proportional and non-proportional damping. Theoretical and pseudo-experimental solutions are compared to analyze the problem according to an appropriate mechanical system.

Keywords: complex mode shapes, dynamic systems identification, modal density, non-proportional damping

Procedia PDF Downloads 387
13912 Resilient Regions for Purpose of Crisis Management

Authors: Jana Gebhartova, Tomas Duda, Ivan Benes

Abstract:

World is characterized by constantly emerging new links, increasing complexity and speed of processes in the society. The globalized world needs (except political and financial mechanisms and institutions) functional supply chains. Transport and supply chains can be interrupted in case of natural disasters, conflicts and civil disorders, sudden demand shocks, export/import restrictions, terrorism. Long-term interruption of crucial services for human existence can results in breakdown of the whole society. If global supply chains can be interrupted, the ability to survive a crisis situation depends on local self-sufficiency, it means ensuring water, food and energy. In the world of 21st century, new way of thinking (based on the concept of resilience) is needed. Planning for self-sufficiency and resilience must be part of the agenda of local governments. The paper presents first results of research project VF20112015518 “Security of population – crisis management” that deals with issue of critical infrastructure, ensuring regional self-sufficiency in crisis situations and issues related to population protection and water, energy and food security. The project is being solved within Security Research of Ministry of the Interior of the Czech Republic in 2011-2015.

Keywords: crisis management, resilience, indicators of self-sufficiency, continuity of supplies

Procedia PDF Downloads 378
13911 Nations in Labour: Incorporating National Narratives in Sociological Models of Cultural Labour

Authors: Anna Lytvynova

Abstract:

This essay presents labour as a performatively national phenomenon from a cultural perspective. Considering Engels’ proposition of labour as the epicentre of development of social structures and communities, it theorizes the formation and sustainment of group identities through labour identities. Taking labour in the cultural sector as the starting point case study, the essay further enunciates such labour and labour identity as a form of engaged citizenship. In doing so, this piece hopes to arrive at a potential contemporary understanding of labour as having a central and dynamic role in cultural organization and citizenship. A parallel goal is to de-link sociological models of cultural labor from narratives of art and culture as something that stands separate from the 'real world' and the economy and exists in precarity. Combining discourse from cultural sociology, performance studies, and economics and grounding it in historical archive, the essay makes a primarily discursive theoretical contribution. Taking North American theatre organizations as the exemplifying starting point, this project positions cultural workers not solely as workers in a professional industry but as active citizen-subjects who are deeply involved in their society’s democratic processes. The resulting discourse can be used to shape more effective labour policies, as well as help art and cultural organizations find more effective organizational structures to engage the arts in the economic, political, and social spheres.

Keywords: arts labour, cultural sociology, national identity, performativity

Procedia PDF Downloads 126
13910 Exploring the Motivations That Drive Paper Use in Clinical Practice Post-Electronic Health Record Adoption: A Nursing Perspective

Authors: Sinead Impey, Gaye Stephens, Lucy Hederman, Declan O'Sullivan

Abstract:

Continued paper use in the clinical area post-Electronic Health Record (EHR) adoption is regularly linked to hardware and software usability challenges. Although paper is used as a workaround to circumvent challenges, including limited availability of a computer, this perspective does not consider the important role paper, such as the nurses’ handover sheet, play in practice. The purpose of this study is to confirm the hypothesis that paper use post-EHR adoption continues as paper provides both a cognitive tool (that assists with workflow) and a compensation tool (to circumvent usability challenges). Distinguishing the different motivations for continued paper-use could assist future evaluations of electronic record systems. Methods: Qualitative data were collected from three clinical care environments (ICU, general ward and specialist day-care) who used an electronic record for at least 12 months. Data were collected through semi-structured interviews with 22 nurses. Data were transcribed, themes extracted using an inductive bottom-up coding approach and a thematic index constructed. Findings: All nurses interviewed continued to use paper post-EHR adoption. While two distinct motivations for paper use post-EHR adoption were confirmed by the data - paper as a cognitive tool and paper as a compensation tool - further finding was that there was an overlap between the two uses. That is, paper used as a compensation tool could also be adapted to function as a cognitive aid due to its nature (easy to access and annotate) or vice versa. Rather than present paper persistence as having two distinctive motivations, it is more useful to describe it as presenting on a continuum with compensation tool and cognitive tool at either pole. Paper as a cognitive tool referred to pages such as nurses’ handover sheet. These did not form part of the patient’s record, although information could be transcribed from one to the other. Findings suggest that although the patient record was digitised, handover sheets did not fall within this remit. These personal pages continued to be useful post-EHR adoption for capturing personal notes or patient information and so continued to be incorporated into the nurses’ work. Comparatively, the paper used as a compensation tool, such as pre-printed care plans which were stored in the patient's record, appears to have been instigated in reaction to usability challenges. In these instances, it is expected that paper use could reduce or cease when the underlying problem is addressed. There is a danger that as paper affords nurses a temporary information platform that is mobile, easy to access and annotate, its use could become embedded in clinical practice. Conclusion: Paper presents a utility to nursing, either as a cognitive or compensation tool or combination of both. By fully understanding its utility and nuances, organisations can avoid evaluating all incidences of paper use (post-EHR adoption) as arising from usability challenges. Instead, suitable remedies for paper-persistence can be targeted at the root cause.

Keywords: cognitive tool, compensation tool, electronic record, handover sheet, nurse, paper persistence

Procedia PDF Downloads 442
13909 Ensuring Quality in DevOps Culture

Authors: Sagar Jitendra Mahendrakar

Abstract:

Integrating quality assurance (QA) practices into DevOps culture has become increasingly important in modern software development environments. Collaboration, automation and continuous feedback characterize the seamless integration of DevOps development and operations teams to achieve rapid and reliable software delivery. In this context, quality assurance plays a key role in ensuring that software products meet the highest quality, performance and reliability standards throughout the development life cycle. This brief explores key principles, challenges, and best practices related to quality assurance in a DevOps culture. This emphasizes the importance of quality transfer in the development process, as quality control processes are integrated in every step of the DevOps process. Automation is the cornerstone of DevOps quality assurance, enabling continuous testing, integration and deployment and providing rapid feedback for early problem identification and resolution. In addition, the summary addresses the cultural and organizational challenges of implementing quality assurance in DevOps, emphasizing the need to foster collaboration, break down silos, and promote a culture of continuous improvement. It also discusses the importance of toolchain integration and capability development to support effective QA practices in DevOps environments. Moreover, the abstract discusses the cultural and organizational challenges in implementing QA within DevOps, emphasizing the need for fostering collaboration, breaking down silos, and nurturing a culture of continuous improvement. It also addresses the importance of toolchain integration and skills development to support effective QA practices within DevOps environments. Overall, this collection works at the intersection of QA and DevOps culture, providing insights into how organizations can use DevOps principles to improve software quality, accelerate delivery, and meet the changing demands of today's dynamic software. landscape.

Keywords: quality engineer, devops, automation, tool

Procedia PDF Downloads 58
13908 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology

Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva

Abstract:

Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.

Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties

Procedia PDF Downloads 51
13907 Ecology, Value-Form and Metabolic Rift: Conceptualizing the Environmental History of the Amazon in the Capitalist World-System (19th-20th centuries)

Authors: Santiago Silva de Andrade

Abstract:

In recent decades, Marx's ecological theory of the value-form and the theory of metabolic rift have represented fundamental methodological innovations for social scientists interested in environmental transformations and their relationships with the development of the capital system. However, among Latin American environmental historians, such theoretical and methodological instruments have been used infrequently and very cautiously. This investigation aims to demonstrate how the concepts of metabolic rift and ecological value-form are important for understanding the environmental, economic and social transformations in the Amazon region between the second half of the 19th century and the end of the 20th century. Such transformations manifested themselves mainly in two dimensions: the first concerns the link between the manufacture of tropical substances for export and scientific developments in the fields of botany, chemistry and agriculture. This link was constituted as a set of social, intellectual and economic relations that condition each other, configuring an asymmetrical field of exchanges and connections between the demands of the industrialized world - personified in scientists, naturalists, businesspeople and bureaucrats - and the agencies of local social actors, such as indigenous people, riverside dwellers and quilombolas; the second dimension concerns the imperative link between the historical development of the capitalist world-system and the restructuring of the natural world, its landscapes, biomes and social relations, notably in peripheral colonial areas. The environmental effects of capitalist globalization were not only seen in the degradation of exploited environments, although this has been, until today, its most immediate and noticeable aspect. There was also, in territories subject to the logic of market accumulation, the reformulation of patterns of authority and institutional architectures, such as property systems, political jurisdictions, rights and social contracts, as a result of the expansion of commodity frontiers between the 16th and 21st centuries. . This entire set of transformations produced impacts on the ecological landscape of the Amazon. This demonstrates the need to investigate the histories of local configurations of power, spatial and ecological - with their institutions and social actors - and their role in structuring the capitalist world-system , under the lens of the ecological theory of value-form and metabolic rift.

Keywords: amazon, ecology, form-value, metabolic rift

Procedia PDF Downloads 64
13906 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations

Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward

Abstract:

A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.

Keywords: critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team

Procedia PDF Downloads 143
13905 The Mechanical Characteristics of Rammed Earth with Plastic Fibers

Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos

Abstract:

In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings. Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.

Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material

Procedia PDF Downloads 73
13904 A Study of the Challenges in Adoption of Renewable Energy in Nigeria

Authors: Farouq Sule Garo, Yahaya Yusuf

Abstract:

The purpose of this study is to investigate why there is a general lack of successful adoption of sustainable energy in Nigeria. This is particularly important given the current global campaign for net-zero emissions. The 26th United Nations Conference of the Parties (COP26), held in 2021, was hosted by the UK, in Glasgow, where, amongst other things, countries including Nigeria agreed to a zero emissions pact. There is, therefore, an obligation on the part of Nigeria for transition from fossil fuel-based economy to a sustainable net-zero emissions economy. The adoption of renewable energy is fundamental to achieving this ambitious target if decarbonisation of economic activities were to become a reality. Nigeria has an abundance of sources of renewable energy and yet there has been poor uptake and where attempts have been made to develop and harness renewable energy resources, there has been limited success. It is not entirely clear why this is the case. When analysts allude to corruption as the reason for failure for successful adoption of renewable energy or project implementation, it is arguable that corruption alone cannot explain the situation. Therefore, there is the need for a thorough investigation into the underlying issues surrounding poor uptake of renewable energy in Nigeria. This pilot study, drawing upon stakeholders’ theory, adopts a multi-stakeholder’ perspectives to investigate the influence and impacts of economic, political, technological, social factors in adoption of renewable energy in Nigeria. The research will also investigate how these factors shape (or fail to shape) strategies for achieving successful adoption of renewable energy in the country. A qualitative research methodology has been adopted given the nature of the research requiring in-depth studies in specific settings rather than a general population survey. There will be a number of interviews and each interview will allow thorough probing of sources. This, in addition to the six interviews that have already been conducted, primarily focused on economic dimensions of the challenges in adoption of renewable energy. The six participants in these initial interviews were all connected to the Katsina Wind Farm Project that was conceived and built with the view to diversifying Nigeria's energy mix and capitalise on the vast wind energy resources in the northern region. The findings from the six interviews provide insights into how the economic factors impacts on the wind farm project. Some key drivers have been identified, including strong governmental support and the recognition of the need for energy diversification. These drivers have played crucial roles in initiating and advancing the Katsina Wind Farm Project. In addition, the initial analysis has highlighted various challenges encountered during the project's implementation, including financial, regulatory, and environmental aspects. These challenges provide valuable lessons that can inform strategies to mitigate risks and improve future wind energy projects.

Keywords: challenges in adoption of renewable energy, economic factors, net-zero emission, political factors

Procedia PDF Downloads 40
13903 Design, Control and Autonomous Trajectory Tracking of an Octorotor Rotorcraft

Authors: Seyed Jamal Haddadi, M. Reza Mehranpour, Roya Sadat Mortazavi, Zahra Sadat Mortazavi

Abstract:

Principal aim of this research is trajectory tracking, attitude and position control scheme in real flight mode by an Octorotor helicopter. For more stability, in this Unmanned Aerial Vehicle (UAV), number of motors is increased to eight motors which end of each arm installed two coaxial counter rotating motors. Dynamic model of this Octorotor includes of motion equation for translation and rotation. Utilized controller is proportional-integral-derivative (PID) control loop. The proposed controller is designed such that to be able to attenuate an effect of external wind disturbance and guarantee stability in this condition. The trajectory is determined by a Global Positioning System (GPS). Also an ARM CortexM4 is used as microprocessor. Electronic board of this UAV designed as able to records all of the sensors data, similar to an aircraft black box in external memory. Finally after auto landing of Octorotor, flight data is shown in MATLAB software and Experimental results of the proposed controller show the effectiveness of our approach on the Autonomous Quadrotor in real conditions.

Keywords: octorotor, design, PID controller, autonomous, trajectory tracking

Procedia PDF Downloads 304