Search results for: data security
24283 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System
Authors: A. S. Walkey, N. P. Patidar
Abstract:
It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices
Procedia PDF Downloads 50624282 Using Probe Person Data for Travel Mode Detection
Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma
Abstract:
Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine
Procedia PDF Downloads 35924281 Building Energy Modeling for Networks of Data Centers
Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody
Abstract:
The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.Keywords: data-centers, energy, life cycle, network simulation
Procedia PDF Downloads 14724280 Predicting National Football League (NFL) Match with Score-Based System
Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor
Abstract:
This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.Keywords: game prediction, NFL, football, artificial neural network
Procedia PDF Downloads 8424279 The Basics of Cognitive Behavioral Family Therapy and the Treatment of Various Physical and Mental Diseases
Authors: Mahta Mohamadkashi
Abstract:
The family is the most important source of security and health for the people of the society, and at the same time, it is the main field of creating all kinds of social and psychological problems. On the one hand, a family is a natural group with many goals and roles that are important and necessary for all family members. On the other hand, the family is a strong and organized group that recruits the therapist because of the goals that are concealed in its policy and procedures. The relationship between the environment and the family background with mental illnesses has been the focus of various researchers for a long time, and the research and experiments that have been conducted to show that the functioning of the family is related to the mental health of the members of the family. Currently, several theoretical perspectives with different approaches seek to explain and resolve psychological problems and family conflicts that can be mentioned. This research aims to investigate "cognitive-behavioral family therapy" by using the "family therapy" research method which is included the descriptive-analytical method and the method of collecting library information, with special reliance on Persian and Latin books and articles. for considering one of the important approaches of family therapy that we are going which have been known as data and its conditions that also includes requirements and limitations. For this purpose, in the beginning, brief background and introduction about family and family therapy are going to describe, and then the basics of cognitive-behavioral family therapy and the implementation process and various techniques of this approach can go through a big discussion. After that, we will apply this approach in the treatment of various physical and mental diseases in the form of related research, and we will examine the ups and downs of the implementation procedures, limitations, and future directions in this field. In general, This study emphasizes the role of the family system in the occurrence of psychological diseases and disorders and also validates the role of the family system in the treatment of those diseases and disorders. Also, cognitive-behavioral family therapy has been approved as an effective treatment approach for a variety of mental disorders.Keywords: cognitive-behavioral, family, family therapy, cognitive-behavioral family therapy
Procedia PDF Downloads 10124278 Restriction on the Freedom of Economic Activity in the Polish Energy Law
Authors: Zofia Romanowska
Abstract:
Recently there have been significant changes in the Polish energy market. Due to the government's decision to strengthen energy security as well as to strengthen the implementation of the European Union common energy policy, the Polish energy market has been undergoing significant changes. In the face of these, it is necessary to answer the question about the direction the Polish energy rationing sector is going, how wide apart the powers of the state are and also whether the real regulator of energy projects in Poland is not in fact the European Union itself. In order to determine the role of the state as a regulator of the energy market, the study analyses the basic instruments of regulation, i.e. the licenses, permits and permissions to conduct various activities related to the energy market, such as the production and sale of liquid fuels or concessions for trade in natural gas. Bearing in mind that Polish law is part of the widely interpreted European Union energy policy, the legal solutions in neighbouring countries are also being researched, including those made in Germany, a country which plays a key role in the shaping of EU policies. The correct interpretation of the new legislation modifying the current wording of the Energy Law Act, such as obliging the entities engaged in the production and trade of liquid fuels (including abroad) to meet a number of additional requirements for the licensing and providing information to the state about conducted business, plays a key role in the study. Going beyond the legal framework for energy rationing, the study also includes a legal and economic analysis of public and private goods within the energy sector and delves into the subject of effective remedies. The research caused the relationships between progressive rationing introduced by the legislator and the rearrangement rules prevailing on the Polish energy market to be taken note of, which led to the introduction of greater transparency in the sector. The studies refer to the initial conclusion that currently, despite the proclaimed idea of liberalization of the oil and gas market and the opening of market to a bigger number of entities as a result of the newly implanted changes, the process of issuing and controlling the conduction of the concessions will be tightened, guaranteeing to entities greater security of energy supply. In the long term, the effect of the introduced legislative solutions will be the reduction of the amount of entities on the energy market. The companies that meet the requirements imposed on them by the new regulation to cope with the profitability of the business will in turn increase prices for their services, which will be have an impact on consumers' budgets.Keywords: license, energy law, energy market, public goods, regulator
Procedia PDF Downloads 24624277 A Comparative Study of Virus Detection Techniques
Authors: Sulaiman Al amro, Ali Alkhalifah
Abstract:
The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses.Keywords: computer viruses, virus detection, signature-based, behaviour-based, heuristic-based
Procedia PDF Downloads 48424276 Assimilating Multi-Mission Satellites Data into a Hydrological Model
Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn
Abstract:
Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF
Procedia PDF Downloads 28924275 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications
Authors: Jacob Wahl, Jane Zhang
Abstract:
This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming
Procedia PDF Downloads 13824274 Hidden Hot Spots: Identifying and Understanding the Spatial Distribution of Crime
Authors: Lauren C. Porter, Andrew Curtis, Eric Jefferis, Susanne Mitchell
Abstract:
A wealth of research has been generated examining the variation in crime across neighborhoods. However, there is also a striking degree of crime concentration within neighborhoods. A number of studies show that a small percentage of street segments, intersections, or addresses account for a large portion of crime. Not surprisingly, a focus on these crime hot spots can be an effective strategy for reducing community level crime and related ills, such as health problems. However, research is also limited in an important respect. Studies tend to use official data to identify hot spots, such as 911 calls or calls for service. While the use of call data may be more representative of the actual level and distribution of crime than some other official measures (e.g. arrest data), call data still suffer from the 'dark figure of crime.' That is, there is most certainly a degree of error between crimes that occur versus crimes that are reported to the police. In this study, we present an alternative method of identifying crime hot spots, that does not rely on official data. In doing so, we highlight the potential utility of neighborhood-insiders to identify and understand crime dynamics within geographic spaces. Specifically, we use spatial video and geo-narratives to record the crime insights of 36 police, ex-offenders, and residents of a high crime neighborhood in northeast Ohio. Spatial mentions of crime are mapped to identify participant-identified hot spots, and these are juxtaposed with calls for service (CFS) data. While there are bound to be differences between these two sources of data, we find that one location, in particular, a corner store, emerges as a hot spot for all three groups of participants. Yet it does not emerge when we examine CFS data. A closer examination of the space around this corner store and a qualitative analysis of narrative data reveal important clues as to why this store may indeed be a hot spot, but not generate disproportionate calls to the police. In short, our results suggest that researchers who rely solely on official data to study crime hot spots may risk missing some of the most dangerous places.Keywords: crime, narrative, video, neighborhood
Procedia PDF Downloads 23824273 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions
Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla
Abstract:
With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect
Procedia PDF Downloads 3724272 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong
Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong
Abstract:
Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island
Procedia PDF Downloads 7324271 Thriving Private-Community Partnerships in Ecotourism: Perspectives from Fiji’s Upper Navua Conservation Area
Authors: Jeremy Schultz, Kelly Bricker
Abstract:
Ecotourism has proven itself to be a forerunner in the advancement of environmental conservation all the while supporting cultural tradition, uniqueness, and pride among indigenous communities. Successful private-community partnerships associated with ecotourism operations are vital to the overall prosperity of both the businesses and the local communities. Such accomplishments can be seen through numerous livelihood goals including income, food security, health, reduced vulnerability, governance, and empowerment. Private-community partnerships also support global initiatives such as the sustainable development goals and sustainable development frameworks including those proposed by the United Nations World Tourism Organization (WTO). Understanding such partnerships assists not only large organizations such as the WTO, but it also benefits smaller ecotourism operators and entrepreneurs who are trying to achieve their sustainable tourism development goals. This study examined the partnership between an ecotourism company (Rivers Fiji) and two rural villages located in Fiji’s Upper Navua Conservation Area. Focus groups were conducted in each village. Observation journals were also used to record conversations outside of the focus groups. Data were thematically organized and analyzed to offer researcher interpretations and understandings. This research supported the notion that respectful and emboldening partnerships between communities and private enterprise are vital to the composition of successful ecotourism operations that support sustainable development protocol. Understanding these partnerships can assist in shaping future ecotourism development and re-molding existing businesses. This study has offered an example of a thriving partnership through community input and critical researcher analysis. Research has identified six contributing factors to successful ecotourism partnerships, and this study provides additional support to that framework.Keywords: community partnerships, conservation areas, ecotourism, Fiji, sustainability
Procedia PDF Downloads 13524270 Microarray Data Visualization and Preprocessing Using R and Bioconductor
Authors: Ruchi Yadav, Shivani Pandey, Prachi Srivastava
Abstract:
Microarrays provide a rich source of data on the molecular working of cells. Each microarray reports on the abundance of tens of thousands of mRNAs. Virtually every human disease is being studied using microarrays with the hope of finding the molecular mechanisms of disease. Bioinformatics analysis plays an important part of processing the information embedded in large-scale expression profiling studies and for laying the foundation for biological interpretation. A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. One of the most popular platforms for microarray analysis is Bioconductor, an open source and open development software project based on the R programming language. This paper describes specific procedures for conducting quality assessment, visualization and preprocessing of Affymetrix Gene Chip and also details the different bioconductor packages used to analyze affymetrix microarray data and describe the analysis and outcome of each plots.Keywords: microarray analysis, R language, affymetrix visualization, bioconductor
Procedia PDF Downloads 48024269 Colorful Ethnoreligious Map of Iraq and the Current Situation of Minorities in the Country
Authors: Meszár Tárik
Abstract:
The aim of the study is to introduce the minority groups living in Iraq and to shed light on their current situation. The Middle East is a rather heterogeneous region in ethnic terms. It includes many ethnic, national, religious, linguistic, or ethnoreligious groups. The relationship between the majority and minority is the main cause of various conflicts in the region. It seems that most of the post-Ottoman states have not yet developed a unified national identity capable of integrating their multi-ethnic societies. The issue of minorities living in the Middle East is highly politicized and controversial, as the various Arab states consider the treatment of minorities as their internal affair, do not recognize discrimination or even deny the existence of any kind of minorities on their territory. This attitude of the Middle Eastern states may also be due to the fact that the minority issue can be abused and can serve as a reference point for the intervention policies of Western countries at any time. Methodologically, the challenges of these groups are perceived through the manifestos of prominent individuals and organizations belonging to minorities. The basic aim is to present the minorities’ own history in dealing with the issue. It also introduces the different ethnic and religious minorities in Iraq and analyzes their situation during the operation of the terrorist organization „Islamic State” and in the aftermath. It is clear that the situation of these communities deteriorated significantly with the advance of ISIS, but it is also clear that even after the expulsion of the militant group, we cannot necessarily report an improvement in this area, especially in terms of the ability of minorities to assert their interests and physical security. The emergence of armed militias involved in the expulsion of ISIS sometimes has extremely negative effects on them. Until the interests of non-Muslims are adequately represented at the local level and in the legislature, most experts and advocates believe that little will change in their situation. When conflicts flare, many Iraqi citizens usually leave Iraq, but because of the poor public security situation (threats from terrorist organizations, interventions by other countries), emigration causes serious problems not only outside the country’s borders but also within the country. Another ominous implication for minorities is that their communities are very slow if ever, to return to their homes after fleeing their own settlements. An important finding of the study is that this phenomenon is changing the face of traditional Iraqi settlements and threatens to plunge groups that have lived there for thousands of years into the abyss of history. Therefore, we not only present the current situation of minorities living in Iraq but also discuss their future possibilities.Keywords: Middle East, Iraq, Islamic State, minorities
Procedia PDF Downloads 8724268 Bayesian Analysis of Topp-Leone Generalized Exponential Distribution
Authors: Najrullah Khan, Athar Ali Khan
Abstract:
The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation.Keywords: Bayesian Inference, JAGS, Laplace Approximation, LaplacesDemon, posterior, R Software, simulation
Procedia PDF Downloads 53524267 Machine Learning Application in Shovel Maintenance
Authors: Amir Taghizadeh Vahed, Adithya Thaduri
Abstract:
Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.Keywords: maintenance, machine learning, shovel, conditional based monitoring
Procedia PDF Downloads 21824266 Standard Languages for Creating a Database to Display Financial Statements on a Web Application
Authors: Vladimir Simovic, Matija Varga, Predrag Oreski
Abstract:
XHTML and XBRL are the standard languages for creating a database for the purpose of displaying financial statements on web applications. Today, XBRL is one of the most popular languages for business reporting. A large number of countries in the world recognize the role of XBRL language for financial reporting and the benefits that the reporting format provides in the collection, analysis, preparation, publication and the exchange of data (information) which is the positive side of this language. Here we present all advantages and opportunities that a company may have by using the XBRL format for business reporting. Also, this paper presents XBRL and other languages that are used for creating the database, such XML, XHTML, etc. The role of the AJAX complex model and technology will be explained in detail, and during the exchange of financial data between the web client and web server. Here will be mentioned basic layers of the network for data exchange via the web.Keywords: XHTML, XBRL, XML, JavaScript, AJAX technology, data exchange
Procedia PDF Downloads 39424265 Cuckoo Search Optimization for Black Scholes Option Pricing
Authors: Manas Shah
Abstract:
Black Scholes option pricing model is one of the most important concepts in modern world of computational finance. However, its practical use can be challenging as one of the input parameters must be estimated; implied volatility of the underlying security. The more precisely these values are estimated, the more accurate their corresponding estimates of theoretical option prices would be. Here, we present a novel model based on Cuckoo Search Optimization (CS) which finds more precise estimates of implied volatility than Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).Keywords: black scholes model, cuckoo search optimization, particle swarm optimization, genetic algorithm
Procedia PDF Downloads 45324264 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems
Authors: Nadjah Chergui, Narhimene Boustia
Abstract:
Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.Keywords: context, default, exception, vulnerability
Procedia PDF Downloads 25924263 Analyze and Visualize Eye-Tracking Data
Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael
Abstract:
Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades
Procedia PDF Downloads 13524262 Valorisation of Mango Seed: Response Surface Methodology Based Optimization of Starch Extraction from Mango Seeds
Authors: Tamrat Tesfaye, Bruce Sithole
Abstract:
Box-Behnken Response surface methodology was used to determine the optimum processing conditions that give maximum extraction yield and whiteness index from mango seed. The steeping time ranges from 2 to 12 hours and slurring of the steeped seed in sodium metabisulphite solution (0.1 to 0.5 w/v) was carried out. Experiments were designed according to Box-Behnken Design with these three factors and a total of 15 runs experimental variables of were analyzed. At linear level, the concentration of sodium metabisulphite had significant positive influence on percentage yield and whiteness index at p<0.05. At quadratic level, sodium metabisulphite concentration and sodium metabisulphite concentration2 had a significant negative influence on starch yield; sodium metabisulphite concentration and steeping time*temperature had significant (p<0.05) positive influence on whiteness index. The adjusted R2 above 0.8 for starch yield (0.906465) and whiteness index (0.909268) showed a good fit of the model with the experimental data. The optimum sodium metabisulphite concentration, steeping hours, and temperature for starch isolation with maximum starch yield (66.428%) and whiteness index (85%) as set goals for optimization with the desirability of 0.91939 was 0.255w/v concentration, 2hrs and 50 °C respectively. The determined experimental value of each response based on optimal condition was statistically in accordance with predicted levels at p<0.05. The Mango seeds are the by-products obtained during mango processing and possess disposal problem if not handled properly. The substitution of food based sizing agents with mango seed starch can contribute as pertinent resource deployment for value-added product manufacturing and waste utilization which might play significance role of food security in Ethiopia.Keywords: mango, synthetic sizing agent, starch, extraction, textile, sizing
Procedia PDF Downloads 23124261 An E-Retailing System Architecture Based on Cloud Computing
Authors: Chanchai Supaartagorn
Abstract:
E-retailing is the sale of goods online that takes place over the Internet. The Internet has shrunk the entire World. The world e-retailing is growing at an exponential rate in the Americas, Europe, and Asia. However, e-retailing costs require expensive investment, such as hardware, software, and security systems. Cloud computing technology is internet-based computing for the management and delivery of applications and services. Cloud-based e-retailing application models allow enterprises to lower their costs with their effective implementation of e-retailing activities. In this paper, we describe the concept of cloud computing and present the architecture of cloud computing, combining the features of e-retailing. In addition, we propose a strategy for implementing cloud computing with e-retailing. Finally, we explain the benefits from the architecture.Keywords: architecture, cloud computing, e-retailing, internet-based
Procedia PDF Downloads 39624260 Satellite Connectivity for Sustainable Mobility
Authors: Roberta Mugellesi Dow
Abstract:
As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.Keywords: sustainability, connectivity, mobility, satellites
Procedia PDF Downloads 13324259 Privacy Rights of Children in the Social Media Sphere: The Benefits and Challenges Under the EU and US Legislative Framework
Authors: Anna Citterbergova
Abstract:
This study explores the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, namely the GDPR (2018) and COPPA (2000). Considering that children are online for the majority of their free time, one cannot overlook the negative side effects that may be associated with online participation, which may put children’s wellbeing and their fundamental rights at risk. The question of whether the current relevant legislative framework in relation to the responsibilities of the internet service providers (ISPs) are adequate safeguards and guarantees to children’s personal data protection has been an evolving debate both in the US and in the EU. From a children’s rights perspective, processors of personal data have certain obligations that must meet the international human rights principles (e. g. the CRC, ECHR), which require taking into account the best interest of the child. Accordingly, the need to protect children’s privacy online remains strong and relevant with the expansion of the number and importance of social media platforms to human life. At the same time, the landscape of the internet is rapidly evolving, and commercial interests are taking a more targeted approach in seeking children’s data. Therefore, it is essential to constantly evaluate the ongoing and evolving newly adopted market policies of ISPs that may misuse the gap in the current letter of the law. Previous studies in the field have already pointed out that both GDPR and COPPA may theoretically not be sufficient in protecting children’s personal data. With the focus on social media platforms, this study uses the doctrinal-descriptive method to identifiy the mechanisms enshrined in the GDPR and COPPA designed to protect children’s personal data. In its second part, the study includes a data gathering phase by the national data protection authorities responsible for monitoring and supervision of the GDPR in relation to children’s personal data protection who monitor the enforcement of the data protection rules throughout the European Union an contribute to their consistent application. These gathered primary source of data will later be used to outline the series of benefits and challenges to children’s persona lata protection faced by these institutes and the analysis that aims to suggest if and/or how to hold ISPs accountable while striking a fair balance between the commercial rights and the right to protection of the personal data of children. The preliminary results can be divided into two categories. First, conclusions in the doctrinal-descriptive part of the study. Second, specific cases and situations from the practice of national data protection authorities. While for the first part, concrete conclusions can already be presented, the second part is currently still in the data gathering phase. The result of this research is a comprehensive analysis on the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, based on doctrinal-descriptive approach and original empirical data.Keywords: personal data of children, personal data protection, GDPR, COPPA, ISPs, social media
Procedia PDF Downloads 9624258 Modelling the Education Supply Chain with Network Data Envelopment Analysis
Authors: Sourour Ramzi, Claudia Sarrico
Abstract:
Little has been done on network DEA in education, and nobody has attempted to model the whole education supply chain using network DEA. As such the contribution of the present paper is to propose a model for measuring the efficiency of education supply chains using network DEA. First, we use a general survey of data envelopment analysis (DEA) to establish the emergent themes for research in DEA, and focus on the theme of Network DEA. Second, we use a survey on two-stage DEA models, and Network DEA to write a state of the art on Network DEA, particularly applied to supply chain management. Third, we use a survey on DEA applications to establish the most influential papers on DEA education applications, in order to establish the state of the art on applications of DEA in education, in general, and applications of DEA to education using network DEA, in particular. Finally, we propose a model for measuring the performance of education supply chains of different education systems (countries or states within a country, for instance). We then use this model on some empirical data.Keywords: supply chain, education, data envelopment analysis, network DEA
Procedia PDF Downloads 36824257 Pythagorean-Platonic Lattice Method for Finding all Co-Prime Right Angle Triangles
Authors: Anthony Overmars, Sitalakshmi Venkatraman
Abstract:
This paper presents a method for determining all of the co-prime right angle triangles in the Euclidean field by looking at the intersection of the Pythagorean and Platonic right angle triangles and the corresponding lattice that this produces. The co-prime properties of each lattice point representing a unique right angle triangle are then considered. This paper proposes a conjunction between these two ancient disparaging theorists. This work has wide applications in information security where cryptography involves improved ways of finding tuples of prime numbers for secure communication systems. In particular, this paper has direct impact in enhancing the encryption and decryption algorithms in cryptography.Keywords: Pythagorean triples, platonic triples, right angle triangles, co-prime numbers, cryptography
Procedia PDF Downloads 23924256 Secure Transmission Scheme in Device-to-Device Multicast Communications
Authors: Bangwon Seo
Abstract:
In this paper, we consider multicast device-to-device (D2D) direct communication systems in cellular networks. In multicast D2D communications, nearby mobile devices exchanges, their data directly without going through a base station and a D2D transmitter send its data to multiple D2D receivers that compose of D2D multicast group. We consider wiretap channel where there is an eavesdropper that attempts to overhear the transmitted data of the D2D transmitter. In this paper, we propose a secure transmission scheme in D2D multicast communications in cellular networks. In order to prevent the eavesdropper from overhearing the transmitted data of the D2D transmitter, a precoding vector is employed at the D2D transmitter in the proposed scheme. We perform computer simulations to evaluate the performance of the proposed scheme. Through the simulation, we show that the secrecy rate performance can be improved by selecting an appropriate precoding vector.Keywords: device-to-device communications, wiretap channel, secure transmission, precoding
Procedia PDF Downloads 29124255 Online Shopping vs Privacy – Results of an Experimental Study
Authors: Andrzej Poszewiecki
Abstract:
The presented paper contributes to the experimental current of research on privacy. The question of privacy is being discussed at length at present, primarily among lawyers and politicians. However, the matter of privacy has been of interest for economists for some time as well. The valuation of privacy by people is of great importance now. This article is about how people valuate their privacy. An experimental method has been utilised in the conducted research – the survey was carried out among customers of an online store, and the studied issue was whether their readiness to sell their data (WTA) was different from the willingness to buy data back (WTP). The basic aim of this article is to analyse whether people shopping on the Internet differentiate their privacy depending on whether they protect or sell it. The achieved results indicate the presence of major differences in this respect, which do not always come up with the original expectations. The obtained results have supported the hypothesis that people are more willing to sell their data than to repurchase them. However, the hypothesis that the value of proposed remuneration affects the willingness to sell/buy back personal data (one’s privacy) has not been supported.Keywords: privacy, experimental economics, behavioural economics, internet
Procedia PDF Downloads 29324254 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being
Procedia PDF Downloads 70