Search results for: WEKA data mining tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28617

Search results for: WEKA data mining tool

26067 A Comparison of Image Data Representations for Local Stereo Matching

Authors: André Smith, Amr Abdel-Dayem

Abstract:

The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.

Keywords: colour data, local stereo matching, stereo correspondence, disparity map

Procedia PDF Downloads 370
26066 Development of Performance Measures for the Implementation of Total Quality Management in Indian Industry

Authors: Perminderjit Singh, Sukhvir Singh

Abstract:

Total Quality Management (TQM) refers to management methods used to enhance quality and productivity in business organizations. Total Quality Management (TQM) has become a frequently used term in discussions concerning quality. Total Quality management has brought rise in demands on the organizations policy and the customers have gained more importance in the organizations focus. TQM is considered as an important management tool, which helps the organizations to satisfy their customers. In present research critical success factors includes management commitment, customer satisfaction, continuous improvement, work culture and environment, supplier quality management, training and development, employee satisfaction and product/process design are studied. A questionnaire is developed to implement these critical success factors in implementation of total quality management in Indian industry. Questionnaires filled by consulting different industrial organizations. Data collected from questionnaires is analyzed by descriptive and importance indexes.

Keywords: total quality management, critical success factor, employee satisfaction, supplier quality management, customer focus, quality information, quality measurement

Procedia PDF Downloads 477
26065 Assessment of Maternal Satisfaction Regarding Quality of Care during Labor

Authors: Farida Habib, Haya Alfozan, Eman Miligi, Najla Alotaibi

Abstract:

Background: Women’s satisfaction with maternity services, especially care during labor and birth, has become highly significant to healthcare providers, administrators, and policymakers. Purpose: The aims of this study were to assess maternal satisfaction regarding the quality of care during labor and to compare the level of maternal satisfaction between women who delivered by physicians and those delivered by midwives. Methodology: A descriptive, cross-sectional, correlational design was used. A convenient sample of 180 low-risk cases of immediate postpartum women who delivered at King Abdul-Aziz medical city was recruited. Women whose babies were diagnosed with serious health problems were excluded from the study. Data were collected using a self-administered questionnaire. The validity and reliability of the questionnaire were ensured. The questionnaire included three parts, namely: demographics data, medical history, and obstetrical history, and the last part is the satisfaction assessment tool. Ethical confederations were ensured. Maternal satisfaction during labor was classified in terms of health care, health workers' communication, and the environment. Results: Regarding health care, women were highly satisfied with care received from nurse (M = 4.21 + 0.88), medical care received (M = 4.17 + 0.79), and comfort techniques (M = 4.04 + 0.91). Regarding health workers' communication, women were highly satisfied with the provider to treat with dignity and respect (M = 4.03 + 0.91) and orientation to the toilet, bathroom, washing area (M = 4.00 + 0.93). Regarding the environment, women were highly satisfied with the experience of their baby's birth (M = 4.18 + 0.98) and supplies with drugs and supplies (M = 4.09 + 0.97). There was no statistically significant difference in maternal satisfaction between women who delivered by physicians and those delivered by midwives. Conclusion: Women were generally satisfied with their labor and delivery experience. There was no difference in maternal satisfaction on the labor process between women who delivered by physicians and those delivered by midwives.

Keywords: maternity, satisfaction, labor, delivery

Procedia PDF Downloads 190
26064 Introduction of Electronic Health Records to Improve Data Quality in Emergency Department Operations

Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe

Abstract:

In its simplest form, data quality can be defined as 'fitness for use' and it is a concept with multi-dimensions. Emergency Departments(ED) require information to treat patients and on the other hand it is the primary source of information regarding accidents, injuries, emergencies etc. Also, it is the starting point of various patient registries, databases and surveillance systems. This interventional study was carried out to improve data quality at the ED of the National Hospital of Sri Lanka (NHSL) by introducing an e health solution to improve data quality. The NHSL is the premier trauma care centre in Sri Lanka. The study consisted of three components. A research study was conducted to assess the quality of data in relation to selected five dimensions of data quality namely accuracy, completeness, timeliness, legibility and reliability. The intervention was to develop and deploy an electronic emergency department information system (eEDIS). Post assessment of the intervention confirmed that all five dimensions of data quality had improved. The most significant improvements are noticed in accuracy and timeliness dimensions.

Keywords: electronic health records, electronic emergency department information system, emergency department, data quality

Procedia PDF Downloads 274
26063 Assessment Client Satisfaction with Family Physician in Health Care Centers of Jiroft County and Its Relationship with Physician’ Demographic Variables

Authors: Babak Nemat Shahrbabaki, Arezo Fallahi, Masoomeh Hashemian

Abstract:

Introduction: Health and safety are basic components of civil right. Health care systems in different countries were influenced by political, economic and cultural circumstances. In order to health services to people, these systems are organized with different forms, methods such as: prevention, treatment and rehabilitation and in this among, public satisfaction with the services provided is important. This study aimed to determine client satisfaction with family physician and relationship with physician’ demographic variables in health care centers of Jiroft county, Iran. Methods: This is a descriptive-analytical study. The collective data tool was a self-made questionnaire with two parts. The first part comprised demographic characteristics, and the second part contained 11 items for the assessment of satisfaction with family physician from different aspects. In addition, questionnaire, reliability and validity were confirmed. Random simple sampling method was used to determine samples. 234 people referred to the health centers filled questionnaire. The data were analyzed using SPSS software, and inferential statistical analysis was performed. Findings: The majority of the study population were women, married, and aged between 18 and 62 years (mean= 30.09±10.71). Total average satisfaction score was 42.63±3.68. Overall satisfaction averages were 9.47% very high, 30.04% high, 33.09% moderate, 15.12% low, and 12.28% very low. Except lodge on of family physician none of physician’ demographic variables did not effect on satisfaction index. Discussion & Conclusion: The Results showed that mean of satisfaction indexes of family physicians was high and lodge on of family physician effected on this index. Informing people about the main goals of family-doctor program will help to promote the quality of program and increase people satisfaction.

Keywords: family physician program, satisfaction, health-care centers, client

Procedia PDF Downloads 444
26062 A Pilot Study on the Development and Validation of an Instrument to Evaluate Inpatient Beliefs, Expectations and Attitudes toward Reflexology (IBEAR)-16

Authors: Samuel Attias, Elad Schiff, Zahi Arnon, Eran Ben-Arye, Yael Keshet, Ibrahim Matter, Boker Lital Keinan

Abstract:

Background: Despite the extensive use of manual therapies, reflexology in particular, no validated tools have been developed to evaluate patients' beliefs, attitudes and expectations regarding reflexology. Such tools however are essential to improve the results of the reflexology treatment, by better adjusting it to the patients' attitudes and expectations. The tool also enables assessing correlations with clinical results of interventional studies using reflexology. Methods: The IBEAR (Inpatient Beliefs, Expectations and Attitudes toward Reflexology) tool contains 25 questions (8 demographic and 17 specifically addressing reflexology), and was constructed in several stages: brainstorming by a multidisciplinary team of experts; evaluation of each of the proposed questions by the experts' team; and assessment of the experts' degree of agreement per each question, based on a Likert 1-7 scale (1 – don't agree at all; 7 – agree completely). Cronbach's Alpha was computed to evaluate the questionnaire's reliability while the Factor analysis test was used for further validation (228 patients). The questionnaire was tested and re-tested (48h) on a group of 199 patients to assure clarity and reliability, using the Pearson coefficient and the Kappa test. It was modified based on these results into its final form. Results: After its construction, the IBEAR questionnaire passed the expert group's preliminary consensus, evaluation of the questions' clarity (from 5.1 to 7.0), inner validation (from 5.5 to 7) and structural validation (from 5.5 to 6.75). Factor analysis pointed to two content worlds in a division into 4 questions discussing attitudes and expectations versus 5 questions on belief and attitudes. Of the 221 questionnaires collected, a Cronbach's Alpha coefficient was calculated on nine questions relating to beliefs, expectations, and attitudes regarding reflexology. This measure stood at 0.716 (satisfactory reliability). At the Test-Retest stage, 199 research participants filled in the questionnaire a second time. The Pearson coefficient for all questions ranged between 0.73 and 0.94 (good to excellent reliability). As for dichotomic answers, Kappa scores ranged between 0.66 and 1.0 (mediocre to high). One of the questions was removed from the IBEAR following questionnaire validation. Conclusions: The present study provides evidence that the proposed IBEAR-16 questionnaire is a valid and reliable tool for the characterization of potential reflexology patients and may be effectively used in settings which include the evaluation of inpatients' beliefs, expectations, and attitudes toward reflexology.

Keywords: reflexology, attitude, expectation, belief, CAM, inpatient

Procedia PDF Downloads 228
26061 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset

Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba

Abstract:

We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).

Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process

Procedia PDF Downloads 261
26060 Making a Difference in a Crisis: How the 24-Hour Surgical Ambulatory Assessment Unit Transformed Emergency Care during COVID-19

Authors: Bindhiya Thomas, Rehana Hafeez

Abstract:

Background: The Surgical Ambulatory Unit (SAU) also known as the Same Day Emergency Care (SDEC) is an established part of many hospitals providing same day emergency care service to surgical patients who would have otherwise required admission through the A&E. Prior to Covid, the SAU was functioning as a 12-hour service, but during the Covid crisis this service was transformed to a 24 hour functioning Surgical Ambulatory Assessment unit (SAAU). We studied the effects that this change brought about in-patient care in our hospital. Objective: The objective of the study was to assess the impact of a 24-hour Surgical Ambulatory Assessment unit on patient care during the time of Covid, in particular its role in freeing A&E capacity and delivering effective patient care. Methods: We collected two sets of data retrospectively. The first set was collected over a 6-week period when the SAU was functioning at the Princess Royal University Hospital. On March 23rd, 2020, the SAU was transformed into a 24-hour SAAU. Following this transformation, a second set of patient data was collected over a period of 6 weeks. A comparison was made between data collected from when the hospital had a 12-hour Surgical Ambulatory unit and later when it was transformed into a 24-hour facility. Its effects on the change in the number of patients breaching the four hour waiting period and the number of emergency surgical admissions. Results: The 24-hour Surgical Ambulatory Assessment unit brought significant reductions in the number of patients breaching the waiting period of 4 hours in A&E from 44% during the period of the 12-hour Surgical Ambulatory care facility to 0% from when the 24-hour Surgical Ambulatory Assessment Unit was established. A 28% reduction was also seen in the number of surgical patients' admissions from A&E. Conclusions: The 24-hour SAAU was found to have a profound positive impact on emergency care of surgical patients. Especially during the Covid crisis, it played a crucial role in providing not only effective and accessible patient care but also in reducing the A&E workload and admissions. It thus proved to be a strategic tool that helped to deal with the immense workload in emergency care during the Covid crisis and helped free much needed headspace at a time of uncertainty for the A&E to better configure their services. If sustained, the 24-hour SAAU could be relied on to augment the NHS emergency services in the future, especially in the event of another crisis.

Keywords: Princess Royal University Hospital, surgical ambulatory assessment unit, surgical ambulatory unit, same day emergency care

Procedia PDF Downloads 164
26059 Easymodel: Web-based Bioinformatics Software for Protein Modeling Based on Modeller

Authors: Alireza Dantism

Abstract:

Presently, describing the function of a protein sequence is one of the most common problems in biology. Usually, this problem can be facilitated by studying the three-dimensional structure of proteins. In the absence of a protein structure, comparative modeling often provides a useful three-dimensional model of the protein that is dependent on at least one known protein structure. Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) mainly based on its alignment with one or more proteins of known structure (templates). Comparative modeling consists of four main steps 1. Similarity between the target sequence and at least one known template structure 2. Alignment of target sequence and template(s) 3. Build a model based on alignment with the selected template(s). 4. Prediction of model errors 5. Optimization of the built model There are many computer programs and web servers that automate the comparative modeling process. One of the most important advantages of these servers is that it makes comparative modeling available to both experts and non-experts, and they can easily do their own modeling without the need for programming knowledge, but some other experts prefer using programming knowledge and do their modeling manually because by doing this they can maximize the accuracy of their modeling. In this study, a web-based tool has been designed to predict the tertiary structure of proteins using PHP and Python programming languages. This tool is called EasyModel. EasyModel can receive, according to the user's inputs, the desired unknown sequence (which we know as the target) in this study, the protein sequence file (template), etc., which also has a percentage of similarity with the primary sequence, and its third structure Predict the unknown sequence and present the results in the form of graphs and constructed protein files.

Keywords: structural bioinformatics, protein tertiary structure prediction, modeling, comparative modeling, modeller

Procedia PDF Downloads 97
26058 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator

Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain

Abstract:

Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.

Keywords: percent depth dose, flatness, symmetry, golden beam data

Procedia PDF Downloads 489
26057 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 116
26056 Use of Front-Face Fluorescence Spectroscopy and Multiway Analysis for the Prediction of Olive Oil Quality Features

Authors: Omar Dib, Rita Yaacoub, Luc Eveleigh, Nathalie Locquet, Hussein Dib, Ali Bassal, Christophe B. Y. Cordella

Abstract:

The potential of front-face fluorescence coupled with chemometric techniques, namely parallel factor analysis (PARAFAC) and multiple linear regression (MLR) as a rapid analysis tool to characterize Lebanese virgin olive oils was investigated. Fluorescence fingerprints were acquired directly on 102 Lebanese virgin olive oil samples in the range of 280-540 nm in excitation and 280-700 nm in emission. A PARAFAC model with seven components was considered optimal with a residual of 99.64% and core consistency value of 78.65. The model revealed seven main fluorescence profiles in olive oil and was mainly associated with tocopherols, polyphenols, chlorophyllic compounds and oxidation/hydrolysis products. 23 MLR regression models based on PARAFAC scores were generated, the majority of which showed a good correlation coefficient (R > 0.7 for 12 predicted variables), thus satisfactory prediction performances. Acid values, peroxide values, and Delta K had the models with the highest predictions, with R values of 0.89, 0.84 and 0.81 respectively. Among fatty acids, linoleic and oleic acids were also highly predicted with R values of 0.8 and 0.76, respectively. Factors contributing to the model's construction were related to common fluorophores found in olive oil, mainly chlorophyll, polyphenols, and oxidation products. This study demonstrates the interest of front-face fluorescence as a promising tool for quality control of Lebanese virgin olive oils.

Keywords: front-face fluorescence, Lebanese virgin olive oils, multiple Linear regressions, PARAFAC analysis

Procedia PDF Downloads 453
26055 Food Insecurity Determinants Amidst the Covid-19 Pandemic: An Insight from Huntsville, Texas

Authors: Peter Temitope Agboola

Abstract:

Food insecurity continues to affect a large number of U.S households during this coronavirus COVID-19 pandemic. The pandemic has threatened the livelihoods of people, making them vulnerable to severe hardship and has had an unanticipated impact on the U.S economy. This study attempts to identify the food insecurity status of households and the determinant factors driving household food insecurity. Additionally, it attempts to discover the mitigation measures adopted by households during the pandemic in the city of Huntsville, Texas. A structured online sample survey was used to collect data, with a household expenditures survey used in evaluating the food security status of the household. Most survey respondents disclosed that the COVID-19 pandemic had affected their life and source of income. Furthermore, the main analytical tool used for the study is descriptive statistics and logistic regression modeling. A logistic regression model was used to determine the factors responsible for food insecurity in the study area. The result revealed that most households in the study area are food secure, with the remainder being food insecure.

Keywords: food insecurity, household expenditure survey, COVID-19, coping strategies, food pantry

Procedia PDF Downloads 209
26054 Variable-Fidelity Surrogate Modelling with Kriging

Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract:

Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.

Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients

Procedia PDF Downloads 558
26053 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 169
26052 Context-Aware Point-Of-Interests Recommender Systems Using Integrated Sentiment and Network Analysis

Authors: Ho Yeon Park, Kyoung-Jae Kim

Abstract:

Recently, user’s interests for location-based social network service increases according to the advances of social web and location-based technologies. It may be easy to recommend preferred items if we can use user’s preference, context and social network information simultaneously. In this study, we propose context-aware POI (point-of-interests) recommender systems using location-based network analysis and sentiment analysis which consider context, social network information and implicit user’s preference score. We propose a context-aware POI recommendation system consisting of three sub-modules and an integrated recommendation system of them. First, we will develop a recommendation module based on network analysis. This module combines social network analysis and cluster-indexing collaboration filtering. Next, this study develops a recommendation module using social singular value decomposition (SVD) and implicit SVD. In this research, we will develop a recommendation module that can recommend preference scores based on the frequency of POI visits of user in POI recommendation process by using social and implicit SVD which can reflect implicit feedback in collaborative filtering. We also develop a recommendation module using them that can estimate preference scores based on the recommendation. Finally, this study will propose a recommendation module using opinion mining and emotional analysis using data such as reviews of POIs extracted from location-based social networks. Finally, we will develop an integration algorithm that combines the results of the three recommendation modules proposed in this research. Experimental results show the usefulness of the proposed model in relation to the recommended performance.

Keywords: sentiment analysis, network analysis, recommender systems, point-of-interests, business analytics

Procedia PDF Downloads 250
26051 Analysis of Delivery of Quad Play Services

Authors: Rahul Malhotra, Anurag Sharma

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: FTTH, quad play, play service, access networks, data rate

Procedia PDF Downloads 415
26050 Cleaning of Polycyclic Aromatic Hydrocarbons (PAH) Obtained from Ferroalloys Plant

Authors: Stefan Andersson, Balram Panjwani, Bernd Wittgens, Jan Erik Olsen

Abstract:

Polycyclic Aromatic hydrocarbons are organic compounds consisting of only hydrogen and carbon aromatic rings. PAH are neutral, non-polar molecules that are produced due to incomplete combustion of organic matter. These compounds are carcinogenic and interact with biological nucleophiles to inhibit the normal metabolic functions of the cells. Norways, the most important sources of PAH pollution is considered to be aluminum plants, the metallurgical industry, offshore oil activity, transport, and wood burning. Stricter governmental regulations regarding emissions to the outer and internal environment combined with increased awareness of the potential health effects have motivated Norwegian metal industries to increase their efforts to reduce emissions considerably. One of the objective of the ongoing industry and Norwegian research council supported "SCORE" project is to reduce potential PAH emissions from an off gas stream of a ferroalloy furnace through controlled combustion. In a dedicated combustion chamber. The sizing and configuration of the combustion chamber depends on the combined properties of the bulk gas stream and the properties of the PAH itself. In order to achieve efficient and complete combustion the residence time and minimum temperature need to be optimized. For this design approach reliable kinetic data of the individual PAH-species and/or groups thereof are necessary. However, kinetic data on the combustion of PAH are difficult to obtain and there is only a limited number of studies. The paper presents an evaluation of the kinetic data for some of the PAH obtained from literature. In the present study, the oxidation is modelled for pure PAH and also for PAH mixed with process gas. Using a perfectly stirred reactor modelling approach the oxidation is modelled including advanced reaction kinetics to study influence of residence time and temperature on the conversion of PAH to CO2 and water. A Chemical Reactor Network (CRN) approach is developed to understand the oxidation of PAH inside the combustion chamber. Chemical reactor network modeling has been found to be a valuable tool in the evaluation of oxidation behavior of PAH under various conditions.

Keywords: PAH, PSR, energy recovery, ferro alloy furnace

Procedia PDF Downloads 273
26049 The Image of Suan Sunandha Rajabhat University in Accordance with Graduates' Perceptions on the Graduation Ceremony Day

Authors: Waraphorn Sribuakaew, Chutikarn Sriviboon, Rosjana Chandhasa

Abstract:

The purpose of this research is to study the satisfaction level of graduates and factors that affect the image of Suan Sunandha Rajabhat University based on the perceptions of graduates on the graduation ceremony day. By studying the satisfaction of graduates, the image of Suan Sunandha Rajabhat University according to the graduates' perceptions and the loyalty to the university (in the aspects of intention to continue studying at a higher level, intention to recommend the university to a friend), the sample group used in this study was 1,000 graduates of Suan Sunandha Rajabhat University who participated on the 2019 graduation ceremony day. A questionnaire was utilized as a tool for data collection. By the use of computing software, the statistics used for data analysis were frequencies, percentage, mean, and standard deviation, One-Way ANOVA, and multiple regression analysis. Most of the respondents were graduates with a bachelor's degree, followed by graduates with a master's degree and PhD graduates, respectively. Major participants graduated from the Faculty of Management Sciences, followed by the Faculty of Humanities and Social Sciences and Faculty of Education, respectively. The graduates were satisfied on the ceremony day as a whole and rated each aspect at a satisfactory level. Formality, steps, and procedures were the aspects that graduates were most satisfied with, followed by graduation ceremony personnel and staff, venue, and facilities. On the perception of the graduates, the image of Suan Sunandha Rajabhat University was at a good level, while loyalty to the university was at a very high level. The intention of recommendation to others was at the highest level, followed by the intention to pursue further education at a very high level. The graduates graduating from different faculties have different levels of satisfaction on the graduation day with statistical significance at the level of 0.05. The image of Suan Sunandha Rajabhat University affected the satisfaction of graduates with statistical significance at the level of 0.01. The satisfactory level of graduates on the graduation ceremony day influenced the level of loyalty to the university with statistical significance at the level of 0.05.

Keywords: university image, loyalty to the university, intention to study higher education, intention to recommend the university to others, graduates' satisfaction

Procedia PDF Downloads 133
26048 Denoising Transient Electromagnetic Data

Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen

Abstract:

Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.

Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform

Procedia PDF Downloads 85
26047 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 322
26046 Fish Scales as a Nonlethal Screening Tools for Assessing the Effects of Surface Water Contaminants in Cyprinus Carpio

Authors: Shahid Mahboob, Hafiz Muhammad Ashraf, Salma Sultana, Tayyaba Sultana, Khalid Al-Ghanim, Fahid Al-Misned, Zubair Ahmedd

Abstract:

There is an increasing need for an effective tool to estimate the risks derived from the large number of pollutants released to the environment by human activities. Typical screening procedures are highly invasive or lethal to the fish. Recent studies show that fish scales biochemically respond to a range of contaminants, including toxic metals, organic compounds, and endocrine disruptors. The present study evaluated the effects of the surface water contaminants on Cyprinus carpio in the Ravi River by comparing DNA extracted non-lethally from their scales to DNA extracted from the scales of fish collected from a controlled fish farm. A single, random sampling was conducted. Fish were broadly categorised into three weight categories (W1, W2 and W3). The experimental samples in the W1, W2 and W3 categories had an average DNA concentration (µg/µl) that was lower than the control samples. All control samples had a single DNA band; whereas the experimental samples in W1 fish had 1 to 2 bands, the experimental samples in W2 fish had two bands and the experimental samples in W3 fish had fragmentation in the form of three bands. These bands exhibit the effects of pollution on fish in the Ravi River. On the basis findings of this study, we propose that fish scales can be successfully employed as a new non-lethal tool for the evaluation of the effect of surface water contaminants.

Keywords: fish scales, Cyprinus carpio, heavy metals, non-invasive, DNA fragmentation

Procedia PDF Downloads 414
26045 Brand Position Communication Channel for Rajabhat University

Authors: Narong Anurak

Abstract:

The objective of this research was to study Brand Position Communication Channel in Brand Building in Rajabhat University Affecting Decision Making of Higher Education from of qualitative research and in-depth interview with executive members Rajabhat University and also quantitative by questionnaires which are personal data of students, study of the acceptance and the finding of the information of Rajabhat University, study of pattern or Brand Position Communication Channel affecting the decision making of studying in Rajabhat University and the result of the communication in Brand Position Communication Channel. It is found that online channel and word of mount are highly important and necessary for education business since media channel is a tool and the management of marketing communication to create brand awareness, brand credibility and to achieve the high acclaim in terms of bringing out qualified graduates. Also, off-line channel can enable the institution to survive from the high competition especially in education business regarding management of the Rajabhat University. Therefore, Rajabhat University has to communicate by the various communication channel strategies for brand building for attractive student to make decision making of higher education.

Keywords: brand position, communication channel, Rajabhat University, higher education

Procedia PDF Downloads 294
26044 Progress Toward More Resilient Infrastructures

Authors: Amir Golalipour

Abstract:

In recent years, resilience emerged as an important topic in transportation infrastructure practice, planning, and design to address the myriad stressors of future climate facing the Nation. Climate change has increased the frequency of extreme weather events and also causes climate and weather patterns to diverge from historic trends, culminating in circumstances where transportation infrastructure and assets are operating outside the scope of their design. To design and maintain transportation infrastructure that can continue meeting objectives over the infrastructure’s design life, these systems must be made adaptable to the changing climate by incorporating resilience wherever practically and financially feasible. This study is focused on the adaptation strategies and incorporation of resilience in infrastructure construction, maintenance, rehabilitation, and preservation processes. This study will include highlights from some of the recent FHWA activities on resilience. This study describes existing resilience planning and decision-making practices related to transportation infrastructure; mechanisms to identify, analyze, and prioritize adaptation options; and the strain that future climate and extreme weather event pressures place on existing transportation assets and the stressors these systems face for both single and combined stressor scenarios. Results of two case studies from Transportation Engineering Approaches to Climate Resiliency (TEACR) projects with focus on temperature and precipitation impacts on transportation infrastructures will be presented. These case studies looked at the impact of infrastructure performance using future temperature and precipitation compared to traditional climate design parameters. The research team used the adaptation decision making assessment and Coupled Model Intercomparison Project (CMIP) processing tool to determine which solution is best to pursue. The CMIP tool provided project climate data for temperature and precipitation which then could be incorporated into the design procedure to estimate the performance. As a result, using the future climate scenarios would impact the design. These changes were noted to have only a slight increase in costs, however it is acknowledged that network wide these costs could be significant. This study will also focus on what we have learned from recent storms, floods, and climate related events that will help us be better prepared to ensure our communities have a resilient transportation network. It should be highlighted that standardized mechanisms to incorporate resilience practices are required to encourage widespread implementation, mitigate the effects of climate stressors, and ensure the continuance of transportation systems and assets in an evolving climate.

Keywords: adaptation strategies, extreme events, resilience, transportation infrastructure

Procedia PDF Downloads 4
26043 The Position of Cooperatives and Social Economy in Solving the Problems of Today's Society

Authors: Mohammad Abbasi

Abstract:

Cooperatives around the world, relying on the policy of mutual self-help, are a natural tool for Social and economic development, and securing the interests of local communities and social systems has changed. The social economy consists of institutions, cooperatives, bilateral organizations, and unions and associations and their activities have social and economic aspects. Due to the nature of cooperative companies, it can be claimed that all cooperatives have social and economic goals; Because every company A cooperative is formed with the aim of meeting the common needs of society members. These needs sometimes It is aimed at housing or health services, and sometimes cooperative members want to go through it Products and services, employment, and continuous income (for example, in most rural areas of Iran, needs are of this type) to have access. This article also examines the broad methods of participation of Iran's cooperatives in the economy It deals with social issues and provides innovative solutions to solve social issues and problems, and the potential for innovation and growth in using the cooperative model in order to meet economic needs and It proves the sociality of Canadians. In this article, cooperatives whose activities are mostly "social" are mentioned And the activity of many of them in cooperation with government programs in the fields of health, housing, etc. It is a kindergarten and they have proven that they have a cost-effective model in providing services. The conclusion of this discussion shows that the cooperative model for economic activity, with A hundred years of history in Iran has been able to show its value as a tool of innovation in the fields to to prove social, technological, and economic. Cooperatives with about 10 million members in Iran have shown that they are well-known and trusted by the people.

Keywords: types of cooperatives, social economy, Iran, non-governmental organizations, justice, consumption pattern

Procedia PDF Downloads 24
26042 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization

Authors: Hironori Karachi, Haruka Yamashita

Abstract:

Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.

Keywords: data science, non-negative matrix factorization, missing data, quality of services

Procedia PDF Downloads 131
26041 Moving Oman’s Economy to Knowledge-Based Economy: A Study on the Role of SMEs from the Perspective of Experts

Authors: Hanin Suleiman Alqam

Abstract:

The knowledge-based economy, as its name implies relies on knowledge, information and high levels of skills made available for all economic agents. Delving a bit more deeply, the concept of a knowledge-based economy is showcasing four main pillars, which are: Education and Training, Information and Communication Technology, Economic incentives and Institutional regimes, and Research and Development (R&D) and Innovation system. A good number of researches are showing its positive contribution to economic diversification underpinning sustainable development and growth. The present paper aimed at assessing the role of SMEs in moving Oman’s economy from a traditional economy to a knowledge-based economy. To lay down a groundwork that should lead to future studies, the methodology selected is based on exploratory research. Hence, the interview was conducted as a data collection tool. Based on a purposive sampling technique, seven handpicked experts have partaken in the study as they are working in different key organizations considered to be directly or indirectly the backbone of the Omani national economy. A thematic approach is employed for the purpose of data analysis. Results of the study showed that SMEs are not really contributing in the knowledge-based economy due to a lack of awareness about its importance to the country and to the enterprise within SMEs in Oman. However, it was shown that SMEs owners are interested in innovation and are trying to support innovative individuals by attracting them to their enterprises. On the other hand, the results revealed that SMEs' performance in e-solution is still not up to the level as 32% of SMEs only are using e-solutions in their internal processes and procedures like accounting systems. It is recommended to SMEs owners to use new and modern technologies in marketing and customer relation, encourage creativity, research and development, and allow the youth to have opportunities and facilitate the procedure in terms of innovation so that their role in contributing to the knowledge-based economy could be improved.

Keywords: knowledge-based economy, SMEs, ICT pillars, research and innovation

Procedia PDF Downloads 156
26040 Comparison of Petrophysical Relationship for Soil Water Content Estimation at Peat Soil Area Using GPR Common-Offset Measurements

Authors: Nurul Izzati Abd Karim, Samira Albati Kamaruddin, Rozaimi Che Hasan

Abstract:

The appropriate petrophysical relationship is needed for Soil Water Content (SWC) estimation especially when using Ground Penetrating Radar (GPR). Ground penetrating radar is a geophysical tool that provides indirectly the parameter of SWC. This paper examines the performance of few published petrophysical relationships to obtain SWC estimates from in-situ GPR common- offset survey measurements with gravimetric measurements at peat soil area. Gravimetric measurements were conducted to support of GPR measurements for the accuracy assessment. Further, GPR with dual frequencies (250MHhz and 700MHz) were used in the survey measurements to obtain the dielectric permittivity. Three empirical equations (i.e., Roth’s equation, Schaap’s equation and Idi’s equation) were selected for the study, used to compute the soil water content from dielectric permittivity of the GPR profile. The results indicate that Schaap’s equation provides strong correlation with SWC as measured by GPR data sets and gravimetric measurements.

Keywords: common-offset measurements, ground penetrating radar, petrophysical relationship, soil water content

Procedia PDF Downloads 252
26039 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies

Authors: Margaret S. Wright

Abstract:

Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.

Keywords: data management, decision making, disaster planning documentation, public health nursing

Procedia PDF Downloads 221
26038 An Embarrassingly Simple Semi-supervised Approach to Increase Recall in Online Shopping Domain to Match Structured Data with Unstructured Data

Authors: Sachin Nagargoje

Abstract:

Complete labeled data is often difficult to obtain in a practical scenario. Even if one manages to obtain the data, the quality of the data is always in question. In shopping vertical, offers are the input data, which is given by advertiser with or without a good quality of information. In this paper, an author investigated the possibility of using a very simple Semi-supervised learning approach to increase the recall of unhealthy offers (has badly written Offer Title or partial product details) in shopping vertical domain. The author found that the semisupervised learning method had improved the recall in the Smart Phone category by 30% on A=B testing on 10% traffic and increased the YoY (Year over Year) number of impressions per month by 33% at production. This also made a significant increase in Revenue, but that cannot be publicly disclosed.

Keywords: semi-supervised learning, clustering, recall, coverage

Procedia PDF Downloads 122