Search results for: Strain sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2980

Search results for: Strain sensor

430 A Damage-Plasticity Concrete Model for Damage Modeling of Reinforced Concrete Structures

Authors: Thanh N. Do

Abstract:

This paper addresses the modeling of two critical behaviors of concrete material in reinforced concrete components: (1) the increase in strength and ductility due to confining stresses from surrounding transverse steel reinforcements, and (2) the progressive deterioration in strength and stiffness due to high strain and/or cyclic loading. To improve the state-of-the-art, the author presents a new 3D constitutive model of concrete material based on plasticity and continuum damage mechanics theory to simulate both the confinement effect and the strength deterioration in reinforced concrete components. The model defines a yield function of the stress invariants and a compressive damage threshold based on the level of confining stresses to automatically capture the increase in strength and ductility when subjected to high compressive stresses. The model introduces two damage variables to describe the strength and stiffness deterioration under tensile and compressive stress states. The damage formulation characterizes well the degrading behavior of concrete material, including the nonsymmetric strength softening in tension and compression, as well as the progressive strength and stiffness degradation under primary and follower load cycles. The proposed damage model is implemented in a general purpose finite element analysis program allowing an extensive set of numerical simulations to assess its ability to capture the confinement effect and the degradation of the load-carrying capacity and stiffness of structural elements. It is validated against a collection of experimental data of the hysteretic behavior of reinforced concrete columns and shear walls under different load histories. These correlation studies demonstrate the ability of the model to describe vastly different hysteretic behaviors with a relatively consistent set of parameters. The model shows excellent consistency in response determination with very good accuracy. Its numerical robustness and computational efficiency are also very good and will be further assessed with large-scale simulations of structural systems.

Keywords: concrete, damage-plasticity, shear wall, confinement

Procedia PDF Downloads 169
429 Design of a Simple Smart Greenhouse for Optimized Pak choi Cultivation in Rural Tropical Areas

Authors: Dedie Tooy, Rio Kolibu, Rio Putra, Herry Frits Pinatik, Daniel P. M. Ludong

Abstract:

This study presents the design and development of a smart greenhouse prototype tailored to optimize Pak choi (Brassica chinensis L.) cultivation in tropical rural climates. Pak choi, a high-demand leafy vegetable in Indonesia, often experiences suboptimal growth due to elevated temperatures and humidity. The objective of this research is to design and develop an intelligent greenhouse to optimize pak choi cultivation in tropical rural climates. The design of a smart greenhouse provides a controlled environment to stabilize these conditions, but managing fluctuating temperature, humidity, and light in tropical regions remains challenging. This system regulates critical environmental factors, including temperature, humidity, irrigation system, and light, creating optimal conditions for Pak Choi. The prototype's effectiveness was evaluated by monitoring growth indicators such as leaf weight, freshness, and moisture content, alongside the consistency of the internal climate compared to external conditions. Results indicate that the smart greenhouse supports superior crop growth, enhances yield quality, and reduces environmental resource consumption. The irrigation control system test was carried out for 40 days. Researchers observed the results of the automatic system working according to the sensor value readings. The results of the temperature control system test work: when the air temperature in the greenhouse is more than 33 degrees, the condensation pump will turn on, and when the temperature is below 32 degrees, the pump will automatically turn itself off. The cycle repeats continuously. The results achieved pak coy can live up to 40 days. As part of our ongoing research, we are actively considering integrating double-layered roofs to improve insulation and reduce external temperature fluctuations, which could further enhance the effectiveness of the smart greenhouse.

Keywords: smart greenhouse, horticulture, rural tropical climate, sustainable agriculture

Procedia PDF Downloads 3
428 In vitro and in vivo Potential Effect of the N-Acylsulfonamide Bis-oxazolidin-2-ones on Toxoplasma gondii

Authors: Benlaifa Meriem, Berredjem Hajira, Bouasla Radia, Berredjem Malika, Djebar Med Reda

Abstract:

Toxoplasmosis is a cosmopolitan infection due to Toxoplasma gondii (T.gondii). It is a significant cause of congenital disease and an important opportunistic pathogen which has become a worldwide increasing problem due to the AIDS epidemic. Current available drugs do not give satisfactory results and often have only a static and several adverse side effects as it is the case of pyrimethamine. So, the need to develop and evaluate new drugs is critical. The purpose of this study is to investigate the in vitro and in vivo effects of the new chiral N-acylsulfonamide bis-oxazolidin-2-ones on T.gondii. In this study, anti-T.gondii RH strain activities, of two new chiral N-acylsulfonamide bis-oxazolidin-2-ones were evaluated in vitro, using a MRC-5 fibroblast tissue cultures to determine the concentration that inhibit parasite multiplication by 50% (IC50) of each drug and in vivo, by PCR detection of the tachyzoites in mice ascites after new molecules treatment, using the 35-fold repetitive B1 gene of T.gondii. The in vitro results demonstrated that the treatment with the tested molecules decreased the amount of tachyzoites in cell culture in a dose-dependent manner. The inhibition was complete for concentrations over 4 mg/ml. The IC50 of Mol 1 and Mol 2 were 1.5 and 3 mg/ml, respectively, and were quite similar to the control one (2 mg/ml). The Mol 1 was highly active against T.gondii in cell cultures than Mol 2; these results were similar to those of sulfadiazine-treated group (p < 0.05). Toxoplasma-specific DNA was demonstrated in all ascites samples from infected mice of the different tested groups. Mol 1 showed better effect than Mol 2, but it did not completely inhibit the parasite proliferation. The intensity of amplification products increased when the treatment started late after infection. These findings suggest continuous parasite replication despite the treatment. In conclusion, our results showed a promising treatment effect of the tested molecules and suggest that in vitro, the Mol 1, and Mol 2 have a dose-dependent effect and a high cytotoxicity on the studied cells. The present study revealed that concentration and duration of tested molecules treatment are major factors that influence the course of Toxoplasma infection in infected mice.

Keywords: cytotoxicity, PCR, sulfonamide, Toxoplasma gondii

Procedia PDF Downloads 504
427 Studying the Simultaneous Effect of Petroleum and DDT Pollution on the Geotechnical Characteristics of Sands

Authors: Sara Seyfi

Abstract:

DDT and petroleum contamination in coastal sand alters the physical and mechanical properties of contaminated soils. This article aims to understand the effects of DDT pollution on the geotechnical characteristics of sand groups, including sand, silty sand, and clay sand. First, the studies conducted on the topic of the article will be reviewed. In the initial stage of the tests, this article deals with the identification of the used sands (sand, silty sand, clay sand) by FTIR, µ-XRF and SEM methods. Then, the geotechnical characteristics of these sand groups, including density, permeability, shear strength, compaction, and plasticity, are investigated using a sand cone, head permeability test, Vane shear test, strain gauge penetrometer, and plastic limit test. Sand groups are artificially contaminated with petroleum substances with 1, 2, 4, 8, 10, 12% by weight. In a separate experiment, amounts of 2, 4, 8, 12, 16, 20 mg/liter of DDT were added to the sand groups. Geotechnical characteristics and identification analysis are performed on the contaminated samples. In the final tests, the mentioned amounts of oil pollution and DDT are simultaneously added to the sand groups, and identification and measurement processes are carried out. The results of the tests showed that petroleum contamination had reduced the optimal moisture content, permeability, and plasticity of all samples. Except silty sand’s plasticity, which petroleum increased it by 1-4% and decreased it by 8-12%. The dry density of sand and clay sand increased, but that of silty sand decreased. Also, the shear strength of sand and silty sand increased, but that of clay sand decreased. DDT contamination increased the maximum dry density and decreased the permeability of all samples. It also reduced the optimum moisture content of the sand. The shear resistance of silty sand and clayey sand decreased, and plasticity of clayey sand increased, and silty sand decreased. The simultaneous effect of petroleum and DDT pollution on the maximum dry density of sand and clayey sand has been synergistic, on the plasticity of clayey sand and silty sand, there has been antagonism. This process has caused antagonism of optimal sand content, shear strength of silty sand and clay sand. In other cases, the effect of synergy or antagonism is not observed.

Keywords: DDT contamination, geotechnical characteristics, petroleum contamination, sand

Procedia PDF Downloads 48
426 PhenoScreen: Development of a Systems Biology Tool for Decision Making in Recurrent Urinary Tract Infections

Authors: Jonathan Josephs-Spaulding, Hannah Rettig, Simon Graspeunter, Jan Rupp, Christoph Kaleta

Abstract:

Background: Recurrent urinary tract infections (rUTIs) are a global cause of emergency room visits and represent a significant burden for public health systems. Therefore, metatranscriptomic approaches to investigate metabolic exchange and crosstalk between uropathogenic Escherichia coli (UPEC), which is responsible for 90% of UTIs, and collaborating pathogens of the urogenital microbiome is necessary to better understand the pathogenetic processes underlying rUTIs. Objectives: This study aims to determine the level in which uropathogens optimize the host urinary metabolic environment to succeed during invasion. By developing patient-specific metabolic models of infection, these observations can be taken advantage of for the precision treatment of human disease. Methods: To date, we have set up an rUTI patient cohort and observed various urine-associated pathogens. From this cohort, we developed patient-specific metabolic models to predict bladder microbiome metabolism during rUTIs. This was done by creating an in silico metabolomic urine environment, which is representative of human urine. Metabolic models of uptake and cross-feeding of rUTI pathogens were created from genomes in relation to the artificial urine environment. Finally, microbial interactions were constrained by metatranscriptomics to indicate patient-specific metabolic requirements of pathogenic communities. Results: Metabolite uptake and cross-feeding are essential for strain growth; therefore, we plan to design patient-specific treatments by adjusting urinary metabolites through nutritional regimens to counteract uropathogens by depleting essential growth metabolites. These methods will provide mechanistic insights into the metabolic components of rUTI pathogenesis to provide an evidence-based tool for infection treatment.

Keywords: recurrent urinary tract infections, human microbiome, uropathogenic Escherichia coli, UPEC, microbial ecology

Procedia PDF Downloads 134
425 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities

Authors: Kung-Jen Tu, Danny Vernatha

Abstract:

To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.

Keywords: database, electricity sub-meters, energy anomaly detection, sensor

Procedia PDF Downloads 307
424 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing

Authors: Neha Devi, P. K. Joshi

Abstract:

Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.

Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis

Procedia PDF Downloads 164
423 Characterisation of Extracellular Polymeric Substances from Bacteria Isolated from Acid Mine Decant in Gauteng, South Africa

Authors: Nonhlanhla Nkosi, Kulsum Kondiah

Abstract:

The toxicological manifestation of heavy metals motivates interest towards the development of a reliable, eco-friendly biosorption process. With that being said, the aim of the current study was to characterise the EPS from heavy-metal resistant bacteria isolated from acid mine decant on the West Rand, Gauteng, South Africa. To achieve this, six exopolysaccharide (EPS) producing, metal resistant strains (Pb101, Pb102, Pb103, Pb204, Co101, and Ni101) were identified as Bacillus safensis strain NBRC 100820, Bacillus proteolyticus, Micrococcus luteus, Enterobacter sp. Pb204, Bacillus wiedmannii and Bacillus zhangzhouensis, respectively with 16S rRNA sequencing. Thereafter, EPS was extracted using chemical (formaldehyde/NaOH) and physical (ultrasonification) methods followed by physicochemical characterisation of carbohydrate, DNA, and protein contents using chemical assays and spectroscopy (FTIR- Fourier transformed infrared and 3DEEM- three-dimensional excitation-emission matrix fluorescence spectroscopy). EPS treated with formaldehyde/NaOH showed better recovery of macromolecules than ultrasonification. The results of the present study showed that carbohydrates were more abundant than proteins, with carbohydrate and protein concentrations of 8.00 mg/ml and 0.22 mg/ml using chemical method in contrast to 5.00 mg/ml and 0.77 mg/ml using physical method, respectively. The FTIR spectroscopy results revealed that the extracted EPS contained hydroxyl, amide, acyl, and carboxyl groups that corresponded to the aforementioned chemical analysis results, thus asserting the presence of carbohydrates, DNA, polysaccharides, and proteins in the EPS. These findings suggest that identified functional groups of EPS form surface charges, which serve as the binding sites for suspended particles, thus possibly mediating adsorption of divalent cations and heavy metals. Using the extracted EPS in the development of a cost-effective biosorption solution for industrial wastewater treatment is attainable.

Keywords: biosorbent, exopolysaccharides, heavy metals, wastewater treatment

Procedia PDF Downloads 148
422 Thickness-Tunable Optical, Magnetic, and Dielectric Response of Lithium Ferrite Thin Film Synthesized by Pulsed Laser Deposition

Authors: Prajna Paramita Mohapatra, Pamu Dobbidi

Abstract:

Lithium ferrite (LiFe5O8) has potential applications as a component of microwave magnetic devices such as circulators and monolithic integrated circuits. For efficient device applications, spinel ferrites in the form of thin films are highly required. It is necessary to improve their magnetic and dielectric behavior by optimizing the processing parameters during deposition. The lithium ferrite thin films are deposited on Pt/Si substrate using the pulsed laser deposition technique (PLD). As controlling the film thickness is the easiest parameter to tailor the strain, we deposited the thin films having different film thicknesses (160 nm, 200 nm, 240 nm) at oxygen partial pressure of 0.001 mbar. The formation of single phase with spinel structure (space group - P4132) is confirmed by the XRD pattern and the Rietveld analysis. The optical bandgap is decreased with the increase in thickness. FESEM confirmed the formation of uniform grains having well separated grain boundaries. Further, the film growth and the roughness are analyzed by AFM. The root-mean-square (RMS) surface roughness is decreased from 13.52 nm (160 nm) to 9.34 nm (240 nm). The room temperature magnetization is measured with a maximum field of 10 kOe. The saturation magnetization is enhanced monotonically with an increase in thickness. The magnetic resonance linewidth is obtained in the range of 450 – 780 Oe. The dielectric response is measured in the frequency range of 104 – 106 Hz and in the temperature range of 303 – 473 K. With an increase in frequency, the dielectric constant and the loss tangent of all the samples decreased continuously, which is a typical behavior of conventional dielectric material. The real part of the dielectric constant and the dielectric loss is increased with an increase in thickness. The contribution of grain and grain boundaries is also analyzed by employing the equivalent circuit model. The highest dielectric constant is obtained for the film having a thickness of 240 nm at 104 Hz. The obtained results demonstrate that desired response can be obtained by tailoring the film thickness for the microwave magnetic devices.

Keywords: PLD, optical response, thin films, magnetic response, dielectric response

Procedia PDF Downloads 98
421 Effect of Retained Posterior Horn of Medial Meniscus on Functional Outcome of ACL Reconstructed Knees

Authors: Kevin Syam, Devendra K. Chauhan, Mandeep Singh Dhillon

Abstract:

Background: The posterior horn of medial meniscus (PHMM) is a secondary stabilizer against anterior translation of tibia. Cadaveric studies have revealed increased strain on the ACL graft and greater instrumented laxity in Posterior horn deficient knees. Clinical studies have shown higher prevalence of radiological OA after ACL reconstruction combined with menisectomy. However, functional outcomes in ACL reconstructed knee in the absence of Posterior horn is less discussed, and specific role of posterior horn is ill-documented. This study evaluated functional and radiological outcomes in posterior horn preserved and posterior horn sacrificed ACL reconstructed knees. Materials: Of the 457 patients who had ACL reconstruction done over a 6 year period, 77 cases with minimum follow up of 18 months were included in the study after strict exclusion criteria (associated lateral meniscus injury, other ligamentous injuries, significant cartilage degeneration, repeat injury and contralateral knee injuries were excluded). 41 patients with intact menisci were compared with 36 patients with absent posterior horn of medial meniscus. Radiological and clinical tests for instability were conducted, and knees were evaluated using subjective International Knee Documentation Committee (IKDC) score and the Orthopadische Arbeitsgruppe Knie score (OAK). Results: We found a trend towards significantly better overall outcome (OAK) in cases with intact PHMM at average follow-up of 43.03 months (p value 0.082). Cases with intact PHMM had significantly better objective stability (p value 0.004). No significant differences were noted in the subjective IKDC score (p value 0.526) and the functional OAK outcome (category D) (p value 0.363). More cases with absent posterior horn had evidence of radiological OA (p value 0.022) even at mid-term follow-up. Conclusion: Even though the overall OAK and subjective IKDC scores did not show significant difference between the two subsets, the poorer outcomes in terms of objective stability and radiological OA noted in the absence of PHMM, indicates the importance of preserving this important part of the meniscus.

Keywords: ACL, functional outcome, knee, posterior of medial meniscus

Procedia PDF Downloads 359
420 Extracellular Enzymes from Halophilic Bacteria with Potential in Agricultural Secondary Flow Recovery Products

Authors: Madalin Enache, Simona Neagu, Roxana Cojoc, Ioana Gomoiu, Delia Ionela Dobre, Ancuta Roxana Trifoi

Abstract:

Various types of halophilic and halotolerant microorganisms able to be cultivated in laboratory on culture media with a wide range of sodium chloride content are isolated from several salted environments. The extracellular enzymes of these microorganisms showed the enzymatic activity in these spectrums of salinity thus being attractive for several biotechnological processes developed at high ionic strength. In present work, a number of amylase, protease, esterase, lipase, cellulase, pectinase, xilanases and innulinase were identified for more than 50th bacterial strains isolated from water samples and sapropelic mud from four saline and hypersaline lakes located in Romanian plain. On the other hand, the cellulase and pectinase activity were also detected in some halotolerant microorganisms isolated from secondary agricultural flow of grapes processing. The preliminary data revealed that from totally tested strains seven harbor proteases activity, eight amylase activity, four for esterase and another four for lipase, three for pectinase and for one strain were identified either cellulase or pectinase activity. There were no identified enzymes able to hydrolase innulin added to culture media. Several strains isolated from sapropelic mud showed multiple extracellular enzymatic activities, namely three strains harbor three activities and another seven harbor two activities. The data revealed that amylase and protease activities were frequently detected if compare with other tested enzymes. In the case of pectinase were investigated, their ability to be used for increasing resveratrol recovery from material resulted after grapes processing. In this way, the resulted material from grapes processing was treated with microbial supernatant for several times (two, four and 24 hours) and the content of resveratrol was detected by High Performance Liquid Chromatography method (HPLC). The preliminary data revealed some positive results of this treatment.

Keywords: halophilic microorganisms, enzymes, pectinase, salinity

Procedia PDF Downloads 194
419 Influence Zone of Strip Footing on Untreated and Cement Treated Sand Mat Underlain by Soft Clay (2nd reviewed)

Authors: Sharifullah Ahmed

Abstract:

Shallow foundation on soft soils without ground improvement can represent a high level of settlement. In such a case, an alternative to pile foundations may be shallow strip footings placed on a soil system in which the upper layer is untreated or cement-treated compacted sand to limit the settlement within a permissible level. This research work deals with a rigid plane-strain strip footing of 2.5m width placed on a soil consisting of untreated or cement treated sand layer underlain by homogeneous soft clay. Both the thin and thick compared the footing width was considered. The soft inorganic cohesive NC clay layer is considered undrained for plastic loading stages and drained in consolidation stages, and the sand layer is drained in all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0 with a model consisting of clay deposits of 15m thickness and 18m width. The soft clay layer was modeled using the Hardening Soil Model, Soft Soil Model, Soft Soil Creep model, and the upper improvement layer was modeled using only the Hardening Soil Model. The system is considered fully saturated. The value of natural void ratio 1.2 is used. Total displacement fields of strip footing and subsoil layers in the case of Untreated and Cement treated Sand as Upper layer are presented. For Hi/B =0.6 or above, the distribution of major deformation within an upper layer and the influence zone of footing is limited in an upper layer which indicates the complete effectiveness of the upper layer in bearing the foundation effectively in case of the untreated upper layer. For Hi/B =0.3 or above, the distribution of major deformation occurred within an upper layer, and the function of footing is limited in the upper layer. This indicates the complete effectiveness of the cement-treated upper layer. Brittle behavior of cemented sand and fracture or cracks is not considered in this analysis.

Keywords: displacement, ground improvement, influence depth, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay

Procedia PDF Downloads 93
418 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 105
417 Evaluation of Immune Responses of Gamma-Irradiated, Electron Beam Irradiated FMD Virus Type O/IRN/2007 Vaccines and DNA Vaccine- Based on the VP1 Gene by a Prime-Boost Strategy in a Mouse Model

Authors: Farahnaz Motamedi Sedeh, Homayoon Mahravani, Parvin Shawrang, Mehdi Behgar

Abstract:

Most countries use inactivated binary ethylenimine (BEI) vaccines to control and prevent Foot-and-Mouth Disease (FMD). However, this vaccine induces a short-term humoral immune response in animals. This study investigated the cellular and humoral immune responses in homologous and prime-boost (PB) groups in the BALB/c mouse model. FMDV strain O/IRN/1/2007 was propagated in the BHK-21 cell line and inactivated by three methods, including a chemical with BEI to produce a conventional vaccine (CV), a gamma irradiation vaccine (GIV), and an electron irradiated vaccine (EIV). Three vaccines were formulated with the adjuvant aluminum hydroxide gel. In addition, a DNA vaccine was prepared by amplifying the virus VP1 gene pcDNA3.1 plasmid. In addition, the plasmid encoding the granulocyte-macrophage colony-stimulating factor gene (GM-CSF) was used as a molecular adjuvant. Eleven groups of five mice each were selected, and the vaccines were administered as homologous and heterologous strategy prime-boost (PB) in three doses two weeks apart. After the evaluation of neutralizing antibodies, interleukin (IL)-2, IL-4, IL-10, interferon-gamma (INF-γ), and MTT assays were compared in the different groups. The pcDNA3.1+VP1 cassette was prepared and confirmed as a DNA vaccine. The virus was inactivated by gamma rays and electron beams at 50 and 55 kGy as GIV and EIV, respectively. Splenic lymphocyte proliferation in the inactivated vaccinated homologous groups was significantly lower (P≤0.05) compared with the heterologous prime-boosts (PB1, PB2, PB3) and DNA + GM-CSF groups (P≤0.05). The highest SNT titer was observed in the inactivated vaccine groups. IFN-γ and IL-2 were higher in the vaccinated groups. It was found that although there was a protective humoral immune response in the groups with inactivated vaccine, there was adequate cellular immunity in the group with the DNA vaccine. However, the strongest cellular and humoral immunity was observed in the PB groups. The primary injection was accompanied by DNA vaccine + GM-CSF and boosted injection with GIV or CV.

Keywords: foot and mouth disease, irradiated vaccine, immune responses, DNA vaccine, prime boost strategy

Procedia PDF Downloads 16
416 Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters

Authors: Sergejs Kolesovs, Pavels Semjonovs

Abstract:

Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process.

Keywords: microalgae, whey, dairy wastewaters, sustainability, plant biostimulants

Procedia PDF Downloads 93
415 Adaptive Beamforming with Steering Error and Mutual Coupling between Antenna Sensors

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

Owing to close antenna spacing between antenna sensors within a compact space, a part of data in one antenna sensor would outflow to other antenna sensors when the antenna sensors in an antenna array operate simultaneously. This phenomenon is called mutual coupling effect (MCE). It has been shown that the performance of antenna array systems can be degraded when the antenna sensors are in close proximity. Especially, in a systems equipped with massive antenna sensors, the degradation of beamforming performance due to the MCE is significantly inevitable. Moreover, it has been shown that even a small angle error between the true direction angle of the desired signal and the steering angle deteriorates the effectiveness of an array beamforming system. However, the true direction vector of the desired signal may not be exactly known in some applications, e.g., the application in land mobile-cellular wireless systems. Therefore, it is worth developing robust techniques to deal with the problem due to the MCE and steering angle error for array beamforming systems. In this paper, we present an efficient technique for performing adaptive beamforming with robust capabilities against the MCE and the steering angle error. Only the data vector received by an antenna array is required by the proposed technique. By using the received array data vector, a correlation matrix is constructed to replace the original correlation matrix associated with the received array data vector. Then, the mutual coupling matrix due to the MCE on the antenna array is estimated through a recursive algorithm. An appropriate estimate of the direction angle of the desired signal can also be obtained during the recursive process. Based on the estimated mutual coupling matrix, the estimated direction angle, and the reconstructed correlation matrix, the proposed technique can effectively cure the performance degradation due to steering angle error and MCE. The novelty of the proposed technique is that the implementation procedure is very simple and the resulting adaptive beamforming performance is satisfactory. Simulation results show that the proposed technique provides much better beamforming performance without requiring complicated complexity as compared with the existing robust techniques.

Keywords: adaptive beamforming, mutual coupling effect, recursive algorithm, steering angle error

Procedia PDF Downloads 321
414 Biodegradation of Endoxifen in Wastewater: Isolation and Identification of Bacteria Degraders, Kinetics, and By-Products

Authors: Marina Arino Martin, John McEvoy, Eakalak Khan

Abstract:

Endoxifen is an active metabolite responsible for the effectiveness of tamoxifen, a chemotherapeutic drug widely used for endocrine responsive breast cancer and chemo-preventive long-term treatment. Tamoxifen and endoxifen are not completely metabolized in human body and are actively excreted. As a result, they are released to the water environment via wastewater treatment plants (WWTPs). The presence of tamoxifen in the environment produces negative effects on aquatic lives due to its antiestrogenic activity. Because endoxifen is 30-100 times more potent than tamoxifen itself and also presents antiestrogenic activity, its presence in the water environment could result in even more toxic effects on aquatic lives compared to tamoxifen. Data on actual concentrations of endoxifen in the environment is limited due to recent discovery of endoxifen pharmaceutical activity. However, endoxifen has been detected in hospital and municipal wastewater effluents. The detection of endoxifen in wastewater effluents questions the treatment efficiency of WWTPs. Studies reporting information about endoxifen removal in WWTPs are also scarce. There was a study that used chlorination to eliminate endoxifen in wastewater. However, an inefficient degradation of endoxifen by chlorination and the production of hazardous disinfection by-products were observed. Therefore, there is a need to remove endoxifen from wastewater prior to chlorination in order to reduce the potential release of endoxifen into the environment and its possible effects. The aim of this research is to isolate and identify bacteria strain(s) capable of degrading endoxifen into less hazardous compound(s). For this purpose, bacteria strains from WWTPs were exposed to endoxifen as a sole carbon and nitrogen source for 40 days. Bacteria presenting positive growth were isolated and tested for endoxifen biodegradation. Endoxifen concentration and by-product formation were monitored. The Monod kinetic model was used to determine endoxifen biodegradation rate. Preliminary results of the study suggest that isolated bacteria from WWTPs are able to growth in presence of endoxifen as a sole carbon and nitrogen source. Ongoing work includes identification of these bacteria strains and by-product(s) of endoxifen biodegradation.

Keywords: biodegradation, bacterial degraders, endoxifen, wastewater

Procedia PDF Downloads 215
413 Real-Time Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Human Papillomavirus 16 in Oral Squamous Cell Carcinoma

Authors: Suharni Mohamad Suharni Mohamad, Nurul Izzati Hamzan Nurul Izzati Hamzan, Norhayu Abdul Rahman Norhayu Abdul Rahman, Siti Suraiya Md Noor Siti Suraiya Md Noor

Abstract:

Human papillomavirus (HPV) is an important risk factor for development of oral cancer. HPV16 is the most common type found in HPV-positive squamous cell carcinoma. In the present study, we established a real-time loop-mediated isothermal amplification (real-time LAMP) for detection of HPV16. A set of six primers was specially designed to recognize eight distinct sequences of HPV16-E6. Detection and quantification was achieved by real-time monitoring using a real-time turbidimeter based on threshold time required for turbidity in the LAMP reaction. LAMP reagents (MgSO4, dNTPs, Bst polymerase concentrations) and various incubation times and temperatures were optimized. The sensitivity was determined using 10-fold serial dilutions of HPV16 standard strain. The specificity of was evaluated using other HPV genotypes. The optimized method was established with specifically designed primers by real-time detection in approximately 30 min at 65°C. The limit of detection of HPV16 using the LAMP assay was 10 pg/ml that could be detected in 30 min. The LAMP assay was 10 times more sensitive than the conventional PCR in detecting HPV16. No cross-reactivity with other HPV genotypes was observed. This quantitative real-time LAMP assay may improve diagnostic potential for the detection and quantification of HPV16 in clinical samples and epidemiological studies due to its rapidity, simplicity, high sensitivity and specificity. This assay will be further evaluated with HPV DNAs of saliva from patients with oral squamous cell carcinoma. Acknowledgement: This study was financially supported by the ScienceFund Grant, Ministry of Science, Technology and Innovation (305/PPSG/6113219).

Keywords: Oral Squamous Cell Carcinoma (OSCC), Human Papillomavirus 16 (HPV16), Loop-Mediated Isothermal Amplification (LAMP), rapid detection

Procedia PDF Downloads 406
412 Understanding the Effects of Lamina Stacking Sequence on Structural Response of Composite Laminates

Authors: Awlad Hossain

Abstract:

Structural weight reduction with improved functionality is one of the targeted desires of engineers, which drives materials and structures to be lighter. One way to achieve this objective is through the replacement of metallic structures with composites. The main advantages of composite materials are to be lightweight and to offer high specific strength and stiffness. Composite materials can be classified in various ways based on the fiber types and fiber orientations. Fiber reinforced composite laminates are prepared by stacking single sheet of continuous fibers impregnated with resin in different orientation to get the desired strength and stiffness. This research aims to understand the effects of Lamina Stacking Sequence (LSS) on the structural response of a symmetric composite laminate, defined by [0/60/-60]s. The Lamina Stacking Sequence (LSS) represents how the layers are stacked together in a composite laminate. The [0/60/-60]s laminate represents a composite plate consists of 6 layers of fibers, which are stacked at 0, 60, -60, -60, 60 and 0 degree orientations. This laminate is also called symmetric (defined by subscript s) as it consists of same material and having identical fiber orientations above and below the mid-plane. Therefore, the [0/60/-60]s, [0/-60/60]s, [60/-60/0]s, [-60/60/0]s, [60/0/-60]s, and [-60/0/60]s represent the same laminate but with different LSS. In this research, the effects of LSS on laminate in-plane and bending moduli was investigated first. The laminate moduli dictate the in-plane and bending deformations upon loading. This research also provided all the setup and techniques for measuring the in-plane and bending moduli, as well as how the stress distribution was assessed. Then, the laminate was subjected to in-plane force load and bending moment. The strain and stress distribution at each ply for different LSS was investigated using the concepts of Macro-Mechanics. Finally, several numerical simulations were conducted using the Finite Element Analysis (FEA) software ANSYS to investigate the effects of LSS on deformations and stress distribution. The FEA results were also compared to the Macro-Mechanics solutions obtained by MATLAB. The outcome of this research helps composite users to determine the optimum LSS requires to minimize the overall deformation and stresses. It would be beneficial to predict the structural response of composite laminates analytically and/or numerically before in-house fabrication.

Keywords: composite, lamina, laminate, lamina stacking sequence, laminate moduli, laminate strength

Procedia PDF Downloads 10
411 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

Authors: Bijit Kalita, R. Jayaganthan

Abstract:

Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.

Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing

Procedia PDF Downloads 117
410 Comparison of the Isolation Rates and Characteristics of Salmonella Isolated from Antibiotic-Free and Conventional Chicken Meat Samples

Authors: Jin-Hyeong Park, Hong-Seok Kim, Jin-Hyeok Yim, Young-Ji Kim, Dong-Hyeon Kim, Jung-Whan Chon, Kun-Ho Seo

Abstract:

Salmonella contamination in chicken samples can cause major health problems in humans. However, not only the effects of antibiotic treatment during growth but also the impacts of poultry slaughter line on the prevalence of Salmonella in final chicken meat sold to consumers are unknown. In this study, we compared the isolation rates and antimicrobial resistance of Salmonella between antibiotic-free, conventional, conventional Korean native retail chicken meat samples and clonal divergence of Salmonella isolates by multilocus sequence typing. In addition, the distribution of extended-spectrum β-lactamase (ESBL) genes in ESBL-producing Salmonella isolates was analyzed. A total of 72 retail chicken meat samples (n = 24 antibiotic-free broiler [AFB] chickens, n = 24 conventional broiler [CB] chickens, and n = 24 conventional Korean native [CK] chickens) were collected from local retail markets in Seoul, South Korea. The isolation rates of Salmonella were 66.6% in AFB chickens, 45.8% in CB chickens, and 25% in CK chickens. By analyzing the minimum inhibitory concentrations of β -lactam antibiotics with the disc-diffusion test, we found that 81.2% of Salmonella isolates from AFB chickens, 63.6% of isolates from CB chickens, and 50% of isolates from CK chickens were ESBL producers; all ESBL-positive isolates had the CTX-M-15 genotype. Interestingly, all ESBL-producing Salmonella were revealed as ST16 by multilocus sequence typing. In addition, all CTX-M-15-positive isolates had the genetic platform of blaCTX-M gene (IS26-ISEcp1-blaCTX-M-15-IS903), to the best of our knowledge, this is the first report in Salmonella around the world. The Salmonella ST33 strain (S. Hadar) isolated in this study has never been reported in South Korea. In conclusion, our findings showed that antibiotic-free retail chicken meat products were also largely contaminated with ESBL-producing Salmonella and that their ESBL genes and genetic platforms were the same as those isolated from conventional retail chicken meat products.

Keywords: antibiotic-free poultry, conventional poultry, multilocus sequence typing, extended-spectrum β-lactamase, antimicrobial resistance

Procedia PDF Downloads 277
409 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors

Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson

Abstract:

The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.

Keywords: cooking, indoor air quality, low-cost sensor, ventilation

Procedia PDF Downloads 113
408 Genotyping and Phylogeny of Phaeomoniella Genus Associated with Grapevine Trunk Diseases in Algeria

Authors: A. Berraf-Tebbal, Z. Bouznad, , A.J.L. Phillips

Abstract:

Phaeomoniella is a fungus genus in the mitosporic ascomycota which includes Phaeomoniella chlamydospora specie associated with two declining diseases on grapevine (Vitis vinifera) namely Petri disease and esca. Recent studies have shown that several Phaeomoniella species also cause disease on many other woody crops, such as forest trees and woody ornamentals. Two new species, Phaeomoniella zymoides and Phaeomoniella pinifoliorum H.B. Lee, J.Y. Park, R.C. Summerbell et H.S. Jung, were isolated from the needle surface of Pinus densiflora Sieb. et Zucc. in Korea. The identification of species in Phaeomoniella genus can be a difficult task if based solely on morphological and cultural characters. In this respect, the application of molecular methods, particularly PCR-based techniques, may provide an important contribution. MSP-PCR (microsatellite primed-PCR) fingerprinting has proven useful in the molecular typing of fungal strains. The high discriminatory potential of this method is particularly useful when dealing with closely related or cryptic species. In the present study, the application of PCR fingerprinting was performed using the micro satellite primer M13 for the purpose of species identification and strain typing of 84 Phaeomoniella -like isolates collected from grapevines with typical symptoms of dieback. The bands produced by MSP-PCR profiles divided the strains into 3 clusters and 5 singletons with a reproducibility level of 80%. Representative isolates from each group and, when possible, isolates from Eutypa dieback and esca symptoms were selected for sequencing of the ITS region. The ITS sequences for the 16 isolates selected from the MSP-PCR profiles were combined and aligned with sequences of 18 isolates retrieved from GenBank, representing a selection of all known Phaeomoniella species. DNA sequences were compared with those available in GenBank using Neighbor-joining (NJ) and Maximum-parsimony (MP) analyses. The phylogenetic trees of the ITS region revealed that the Phaeomoniella isolates clustered with Phaeomoniella chlamydospora reference sequences with a bootstrap support of 100 %. The complexity of the pathosystems vine-trunk diseases shows clearly the need to identify unambiguously the fungal component in order to allow a better understanding of the etiology of these diseases and justify the establishment of control strategies against these fungal agents.

Keywords: Genotyping, MSP-PCR, ITS, phylogeny, trunk diseases

Procedia PDF Downloads 480
407 Effect of Synthetic L-Lysine and DL-Methionine Amino Acids on Performance of Broiler Chickens

Authors: S. M. Ali, S. I. Mohamed

Abstract:

Reduction of feed cost for broiler production is at most importance in decreasing the cost of production. The objectives of this study were to evaluate the use of synthetic amino acids (L-lysine – DL-methionine) instead of super concentrate and groundnut cake versus meat powder as protein sources. A total of 180 male broiler chicks (Cobb – strain) at 15 day of age (DOA) were selected according to their average body weight (380 g) from a broiler chicks flock at Elbashair Farm. The chicks were randomly divided into six groups of 30 chicks. Each group was further sub divided into three replicates with 10 birds. Six experimental diets were formulated. The first diet contained groundnut cake and super concentrate as the control (GNC + C); in the second diet, meat powder and super concentrate (MP + C) were used. The third diet contained groundnut cake and amino acids (GNC + AA); the forth diet contained meat powder and amino acids (MP + AA). The fifth diet contained groundnut cake, meat powder and super concentrate (GNC + MP + C) and the sixth diet contained groundnut cake, meat powder and amino acids (GNC + MP + AA). The formulated rations were randomly assigned for the different sub groups in a completely randomized design of six treatments and three replicates. Weekly feed intake, body weight and mortality were recorded and body weight gain and feed conversion ratio were calculated. At the end of the experiment (49 DOA), nine birds from each treatment were slaughtered. Live body weight, carcass weight, head, shank, and some internal organs (gizzard, heart, liver, small intestine, and abdominal fat pad) weights were taken. For the overall experimental period the (GNC + C +MP) consumed significantly (P≤0.01) the highest cumulative feed while the (MP + AA) group consumed the lowest amount of feed. The (GNC + C) and the (GNC + AA) groups had the heaviest live body weight while (MP + AA) had the lowest live body weight. The overall FCR was significantly (P≤0.01) the best for (GNC + AA) group while the (MP + AA) reported the worst FCR. However, the (GNC + AA) had significantly (P≤0.01) the lowest AFP. The (GNC + MP + Con) group had the highest dressing % while the (MP + AA) group had the lowest dressing %. It is concluded that amino acids can be used instead of super concentrate in broiler feeding with perfect performance and less cost and that meat powder is not advisable to be used with amino acids.

Keywords: broiler chickens, DL-lysine, methionine, performance

Procedia PDF Downloads 267
406 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 348
405 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant

Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter

Abstract:

Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.

Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis

Procedia PDF Downloads 499
404 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis

Authors: Eric Lacoste

Abstract:

Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.

Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging

Procedia PDF Downloads 132
403 Kirigami Designs for Enhancing the Electromechanical Performance of E-Textiles

Authors: Braden M. Li, Inhwan Kim, Jesse S. Jur

Abstract:

One of the fundamental challenges in the electronic textile (e-textile) industry is the mismatch in compliance between the rigid electronic components integrated onto soft textile platforms. To address these problems, various printing technologies using conductive inks have been explored in an effort to improve the electromechanical performance without sacrificing the innate properties of the printed textile. However, current printing methods deposit densely layered coatings onto textile surfaces with low through-plane wetting resulting in poor electromechanical properties. This work presents an inkjet printing technique in conjunction with unique Kirigami cut designs to address these issues for printed smart textiles. By utilizing particle free reactive silver inks, our inkjet process produces conformal and micron thick silver coatings that surround individual fibers of the printed smart textile. This results in a highly conductive (0.63 Ω sq-1) printed e-textile while also maintaining the innate properties of the textile material including stretchability, flexibility, breathability and fabric hand. Kirigami is the Japanese art of paper cutting. By utilizing periodic cut designs, Kirigami imparts enhanced flexibility and delocalization of stress concentrations. Kirigami cut design parameters (i.e., cut spacing and length) were correlated to both the mechanical and electromechanical properties of the printed textiles. We demonstrate that designs using a higher cut-out ratio exponentially softens the textile substrate. Thus, our designs achieve a 30x improvement in the overall stretchability, 1000x decrease in elastic modulus, and minimal resistance change over strain regimes of 100-200% when compared to uncut designs. We also show minimal resistance change of our Kirigami inspired printed devices after being stretched to 100% for 1000 cycles. Lastly, we demonstrate a Kirigami-inspired electrocardiogram (ECG) monitoring system that improves stretchability without sacrificing signal acquisition performance. Overall this study suggests fundamental parameters affecting the performance of e-textiles and their scalability in the wearable technology industry

Keywords: kirigami, inkjet printing, flexible electronics, reactive silver ink

Procedia PDF Downloads 143
402 Activation of NLRP3 Inflammasomes by Helicobacter pylori Infection in Innate Cellular Model and Its Correlation to IL-1β Production

Authors: Islam Nowisser, Noha Farag, Mohamed El Azizi

Abstract:

Helicobacter pylori is a highly important human pathogen which inhabits about 50% of the population worldwide. Infection with this bacteria is very hard to treat, with high probability of recurrence. H. pylori causes severe gastric diseases, including peptic ulcer, gastritis, and gastric cancer, which has been linked to chronic inflammation. The infection has been reported to be associated with high levels of pro-inflammatory cytokines, especially IL-1β and TNF-α. The aim of the current study is to investigate the molecular mechanisms by which H. pylori activates NLRP3 inflammasome and its contribution to Il-1 β production in an innate cellular model. H. pylori PMSS1 and G27 standard strains, as well as the PMSS1 isogenic mutant strain PMSS1ΔVacA and G27ΔVacA, G27ΔCagA in addition to clinical isolates obtained from biopsy samples from the antrum and corpus mucosa of chronic gastritis patients, were used to establish infection in RAW-264.7 macrophages. The production levels of TNF-α and IL-1β was assessed using ELISA. Since expression of these cytokines is often regulated by the transcription factor complex, nuclear factor-kB (NF-kB), the activation of NF-κB in H. pylori infected cells was also evaluated by luciferase assay. Genomic DNA was extracted from bacterial cultures of H. pylori clinical isolates as well as the standard strains and their corresponding mutants, where they were evaluated for the cagA pathogenicity island and vacA expression. The correlation between these findings and expression of the cagA Pathogenicity Island and vacA in the bacteria was also investigated. The results showed IL-1β, and TNF-α production significantly increased in raw macrophages following H. pylori infection. The cagA+ and vacA+ H. pylori strains induced significant production of IL-1β compared to cagA- and vacA- strains. The activation pattern of NF-κB was correlated in the isolates to their cagA and vacA expression profiles. A similar finding could not be confirmed for TNF-α production. Our study shows the ability of H. pylori to activate NF-kB and induce significant IL-1β production as a possible mechanism for the augmented inflammatory response seen in subjects infected with cagA+ and vacA+ H. pylori strains that would lead to the progression to more severe form of the disease.

Keywords: Helicobacter pylori, IL-1β, inflammatory cytokines, nuclear factor KB, TNF-α

Procedia PDF Downloads 128
401 Designing and Implementing a Tourist-Guide Web Service Based on Volunteer Geographic Information Using Open-Source Technologies

Authors: Javad Sadidi, Ehsan Babaei, Hani Rezayan

Abstract:

The advent of web 2.0 gives a possibility to scale down the costs of data collection and mapping, specifically if the process is done by volunteers. Every volunteer can be thought of as a free and ubiquitous sensor to collect spatial, descriptive as well as multimedia data for tourist services. The lack of large-scale information, such as real-time climate and weather conditions, population density, and other related data, can be considered one of the important challenges in developing countries for tourists to make the best decision in terms of time and place of travel. The current research aims to design and implement a spatiotemporal web map service using volunteer-submitted data. The service acts as a tourist-guide service in which tourists can search interested places based on their requested time for travel. To design the service, three tiers of architecture, including data, logical processing, and presentation tiers, have been utilized. For implementing the service, open-source software programs, client and server-side programming languages (such as OpenLayers2, AJAX, and PHP), Geoserver as a map server, and Web Feature Service (WFS) standards have been used. The result is two distinct browser-based services, one for sending spatial, descriptive, and multimedia volunteer data and another one for tourists and local officials. Local official confirms the veracity of the volunteer-submitted information. In the tourist interface, a spatiotemporal search engine has been designed to enable tourists to find a tourist place based on province, city, and location at a specific time of interest. Implementing the tourist-guide service by this methodology causes the following: the current tourists participate in a free data collection and sharing process for future tourists, a real-time data sharing and accessing for all, avoiding a blind selection of travel destination and significantly, decreases the cost of providing such services.

Keywords: VGI, tourism, spatiotemporal, browser-based, web mapping

Procedia PDF Downloads 98