Search results for: minimum root mean square (RMS) error matching algorithm
6812 Solving a Micromouse Maze Using an Ant-Inspired Algorithm
Authors: Rolando Barradas, Salviano Soares, António Valente, José Alberto Lencastre, Paulo Oliveira
Abstract:
This article reviews the Ant Colony Optimization, a nature-inspired algorithm, and its implementation in the Scratch/m-Block programming environment. The Ant Colony Optimization is a part of Swarm Intelligence-based algorithms and is a subset of biological-inspired algorithms. Starting with a problem in which one has a maze and needs to find its path to the center and return to the starting position. This is similar to an ant looking for a path to a food source and returning to its nest. Starting with the implementation of a simple wall follower simulator, the proposed solution uses a dynamic graphical interface that allows young students to observe the ants’ movement while the algorithm optimizes the routes to the maze’s center. Things like interface usability, Data structures, and the conversion of algorithmic language to Scratch syntax were some of the details addressed during this implementation. This gives young students an easier way to understand the computational concepts of sequences, loops, parallelism, data, events, and conditionals, as they are used through all the implemented algorithms. Future work includes the simulation results with real contest mazes and two different pheromone update methods and the comparison with the optimized results of the winners of each one of the editions of the contest. It will also include the creation of a Digital Twin relating the virtual simulator with a real micromouse in a full-size maze. The first test results show that the algorithm found the same optimized solutions that were found by the winners of each one of the editions of the Micromouse contest making this a good solution for maze pathfinding.Keywords: nature inspired algorithms, scratch, micromouse, problem-solving, computational thinking
Procedia PDF Downloads 1266811 Fuzzy and Fuzzy-PI Controller for Rotor Speed of Gas Turbine
Authors: Mandar Ghodekar, Sharad Jadhav, Sangram Jadhav
Abstract:
Speed control of rotor during startup and under varying load conditions is one of the most difficult tasks of gas turbine operation. In this paper, power plant gas turbine (GE9001E) is considered for this purpose and fuzzy and fuzzy-PI rotor speed controllers are designed. The goal of the presented controllers is to keep the turbine rotor speed within predefined limits during startup condition as well as during operating condition. The fuzzy controller and fuzzy-PI controller are designed using Takagi-Sugeno method and Mamdani method, respectively. In applying the fuzzy-PI control to a gas-turbine plant, the tuning parameters (Kp and Ki) are modified online by fuzzy logic approach. Error and rate of change of error are inputs and change in fuel flow is output for both the controllers. Hence, rotor speed of gas turbine is controlled by modifying the fuel flow. The identified linear ARX model of gas turbine is considered while designing the controllers. For simulations, demand power is taken as disturbance input. It is assumed that inlet guide vane (IGV) position is fixed. In addition, the constraint on the fuel flow is taken into account. The performance of the presented controllers is compared with each other as well as with H∞ robust and MPC controllers for the same operating conditions in simulations.Keywords: gas turbine, fuzzy controller, fuzzy PI controller, power plant
Procedia PDF Downloads 3356810 Antimicrobial Effects and Phytochemical Analysis of Chrysophyllum Albidum Plant Parts (Leaves, Roots and Seeds) Extracts on Bacterial Isolates from Urinary Catheters
Authors: Ebere Christian Ugochukwu, Okafor Josephine, Oyawoye Tomisin
Abstract:
The occurrence of multidrug resistance patterns that have been developed by bacteria has made it difficult to properly treat infections using standard clinical medications. Hence, the use of herbs as an alternative source of therapy is considered cheap and easily accessible to locals. This research explored the antimicrobial effects of aqueous and ethanolic extracts obtained from Chrysophyllum albidum (commonly called ‘Agbalumo’ in southwest Nigeria and ‘Udara’ in the eastern and southern parts of Nigeria) plant parts (leaves, roots and seeds) against bacteria isolated from urinary catheter tips. The following isolates were obtained; Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Klebsiella aerogenes. The agar well diffusion method was used. The average percentages of antimicrobial resistance of the isolates to gentamycin were 45.5% for P. aeruginosa, 42.1% for E. coli, 46.9% for K. aerogenes, and ˃90% for other isolates. Qualitative phytochemical screening of the plant parts extracts was done using chemical test for the screening and identification of bioactive chemical constituents. The ethanolic extract mixtures (leaf, root and seed) had the greatest effect on all the isolates, with inhibition zones (IZs) ranging from 8-26 mm and MICs ranging from <16-32 mg/ml. The Potencies of the C. albidum extracts based on the IZ and MIC values were greater in the extract mixtures, followed by those in the roots. Phytochemical screening revealed that all the extracts contained phenol except for the seeds while tannins were present in all the extracts except the leaves. The activity of the ethanolic extracts of each part at high and low concentrations was greater than that of the aqueous extracts at the same concentrations (p<0.05). The acute toxicity results showed that the LD50 of the extracts was ˃5000 mg/body weight, indicating no toxicity. The antibacterial activities of the extract mixtures and roots on the isolates confirmed the use of C. albidum in folk medicine for the treatment of CAUTIs, hence indicating its antibacterial potential for use in novel antibiotic production.Keywords: antimicrobials, susceptibility, minimum inhibitory concentration, extracts
Procedia PDF Downloads 296809 Story-Wise Distribution of Slit Dampers for Seismic Retrofit of RC Shear Wall Structures
Authors: Minjung Kim, Hyunkoo Kang, Jinkoo Kim
Abstract:
In this study, a seismic retrofit scheme for a reinforced concrete shear wall structure using steel slit dampers was presented. The stiffness and the strength of the slit damper used in the retrofit were verified by cyclic loading test. A genetic algorithm was applied to find out the optimum location of the slit dampers. The effects of the slit dampers on the seismic retrofit of the model were compared with those of jacketing shear walls. The seismic performance of the model structure with optimally positioned slit dampers was evaluated by nonlinear static and dynamic analyses. Based on the analysis results, the simple procedure for determining required damping ratio using capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts was validated. The analysis results showed that the seismic retrofit of the model structure using the slit dampers was more economical than the jacketing of the shear walls and that the capacity spectrum method combined with the simple damper distribution pattern led to satisfactory damper distribution pattern compatible with the solution obtained from the genetic algorithm.Keywords: seismic retrofit, slit dampers, genetic algorithm, jacketing, capacity spectrum method
Procedia PDF Downloads 2756808 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network
Authors: Yasaman Sanayei, Alireza Bahiraie
Abstract:
This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis
Procedia PDF Downloads 4136807 Design of Chaos Algorithm Based Optimal PID Controller for SVC
Authors: Saeid Jalilzadeh
Abstract:
SVC is one of the most significant devices in FACTS technology which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and etc. designing a proper controller is effective in operation of svc. In this paper the equations that describe the proposed system have been linearized and then the optimum PID controller has been designed for svc which its optimal coefficients have been earned by chaos algorithm. Quick damping of oscillations of generator is the aim of designing of optimum PID controller for svc whether the input power of generator has been changed suddenly. The system with proposed controller has been simulated for a special disturbance and the dynamic responses of generator have been presented. The simulation results showed that a system composed with proposed controller has suitable operation in fast damping of oscillations of generator.Keywords: chaos, PID controller, SVC, frequency oscillation
Procedia PDF Downloads 4416806 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence
Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang
Abstract:
It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill
Procedia PDF Downloads 1336805 Expert-Based Validated Measures for Improving Quality Healthcare Services Utilization among Elderly Persons: A Cross-Section Survey
Authors: Uchenna Cosmas Ugwu, Osmond Chukwuemeka Ene
Abstract:
Globally, older adults are considered the most vulnerable groups to age-related diseases including diabetes mellitus, obesity, cardiovascular diseases, cancer and osteoporosis. With improved access to quality healthcare services, these complications can be prevented and the incidence rates reduced to the least occurrence. The aim of this study is to validate appropriate measures for improving quality healthcare services utilization among elderly persons in Nigeria and also to determine the significant association within demographic variables. A cross-sectional survey research design was adopted. Using a convenient sampling technique, a total of 400 experts (150 registered nurses and 250 public health professionals) with minimum of doctoral degree qualification were sampled and studied. A structured instrument titled “Expert-Based Healthcare Services Utilization Questionnaire (EBHSUQ) with .83 reliability index was used for data collection. All the statistical data analysis was completed using frequency counts, percentage scores and chi-square statistics. The results were significant at p≤0.05. It was found that quality healthcare services utilization by elderly persons in Nigeria would be improved if the services are: available (83%), affordable (82%), accessible (79%), suitable (77%), acceptable (77%), continuous (75%) and stress-free (75%). Statistically, significant association existed on quality healthcare services utilization with gender (p=.03<.05) and age (p=.01<.05) while none was observed on work experience (p=.23>.05), marital status (p=.11>.05) and employment category (p=.09>.05). To improve quality healthcare services utilization for elderly persons in Nigeria, the adoption of appropriate measures by Nigerian government and professionals in healthcare sectors are paramount. Therefore, there is need for collaborative efforts by the Nigerian government and healthcare professionals geared towards educating the general public through mass sensitization, awareness campaign, conferences, seminars and workshops for the importance of accessing healthcare services.Keywords: elderly persons, healthcare services, cross-sectional survey research design, utilization.
Procedia PDF Downloads 646804 Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System
Authors: S. Oladoyinbo, A. A. Tijani
Abstract:
Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum.Keywords: multilevel inverter, total harmonics distortion, cascaded h-bridge inverter, flying capacitor
Procedia PDF Downloads 3666803 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 896802 Optimization of Structures Subjected to Earthquake
Authors: Alireza Lavaei, Alireza Lohrasbi, Mohammadali M. Shahlaei
Abstract:
To reduce the overall time of structural optimization for earthquake loads two strategies are adopted. In the first strategy, a neural system consisting self-organizing map and radial basis function neural networks, is utilized to predict the time history responses. In this case, the input space is classified by employing a self-organizing map neural network. Then a distinct RBF neural network is trained in each class. In the second strategy, an improved genetic algorithm is employed to find the optimum design. A 72-bar space truss is designed for optimal weight using exact and approximate analysis for the El Centro (S-E 1940) earthquake loading. The numerical results demonstrate the computational advantages and effectiveness of the proposed method.Keywords: optimization, genetic algorithm, neural networks, self-organizing map
Procedia PDF Downloads 3116801 Developing a Recommendation Library System based on Android Application
Authors: Kunyanuth Kularbphettong, Kunnika Tenprakhon, Pattarapan Roonrakwit
Abstract:
In this paper, we present a recommendation library application on Android system. The objective of this system is to support and advice user to use library resources based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on under association rules, Apriori algorithm. In this project, it was divided the result by the research purposes into 2 parts: developing the Mobile application for online library service and testing and evaluating the system. Questionnaires were used to measure user satisfaction with system usability by specialists and users. The results were satisfactory both specialists and users.Keywords: online library, Apriori algorithm, Android application, black box
Procedia PDF Downloads 4886800 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 3396799 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 666798 Software Transactional Memory in a Dynamic Programming Language at Virtual Machine Level
Authors: Szu-Kai Hsu, Po-Ching Lin
Abstract:
As more and more multi-core processors emerge, traditional sequential programming paradigm no longer suffice. Yet only few modern dynamic programming languages can leverage such advantage. Ruby, for example, despite its wide adoption, only includes threads as a simple parallel primitive. The global virtual machine lock of official Ruby runtime makes it impossible to exploit full parallelism. Though various alternative Ruby implementations do eliminate the global virtual machine lock, they only provide developers dated locking mechanism for data synchronization. However, traditional locking mechanism error-prone by nature. Software Transactional Memory is one of the promising alternatives among others. This paper introduces a new virtual machine: GobiesVM to provide a native software transactional memory based solution for dynamic programming languages to exploit parallelism. We also proposed a simplified variation of Transactional Locking II algorithm. The empirical results of our experiments show that support of STM at virtual machine level enables developers to write straightforward code without compromising parallelism or sacrificing thread safety. Existing source code only requires minimal or even none modi cation, which allows developers to easily switch their legacy codebase to a parallel environment. The performance evaluations of GobiesVM also indicate the difference between sequential and parallel execution is significant.Keywords: global interpreter lock, ruby, software transactional memory, virtual machine
Procedia PDF Downloads 2856797 Continuous Blood Pressure Measurement from Pulse Transit Time Techniques
Authors: Chien-Lin Wang, Cha-Ling Ko, Tainsong Chen
Abstract:
Pulse Blood pressure (BP) is one of the vital signs, and is an index that helps determining the stability of life. In this respect, some spinal cord injury patients need to take the tilt table test. While doing the test, the posture changes abruptly, and may cause a patient’s BP to change abnormally. This may cause patients to feel discomfort, and even feel as though their life is threatened. Therefore, if a continuous non-invasive BP assessment system were built, it could help to alert health care professionals in the process of rehabilitation when the BP value is out of range. In our research, BP assessed by the pulse transit time technique was developed. In the system, we use a self-made photoplethysmograph (PPG) sensor and filter circuit to detect two PPG signals and to calculate the time difference. The BP can immediately be assessed by the trend line. According to the results of this study, the relationship between the systolic BP and PTT has a highly negative linear correlation (R2=0.8). Further, we used the trend line to assess the value of the BP and compared it to a commercial sphygmomanometer (Omron MX3); the error rate of the system was found to be in the range of ±10%, which is within the permissible error range of a commercial sphygmomanometer. The continue blood pressure measurement from pulse transit time technique may have potential to become a convenience method for clinical rehabilitation.Keywords: continous blood pressure measurement, PPG, time transit time, transit velocity
Procedia PDF Downloads 3546796 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering
Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song
Abstract:
The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.Keywords: contour filtering, linear array, photoacoustic tomography, universal back projection
Procedia PDF Downloads 4016795 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave
Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora
Abstract:
The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.Keywords: Enterococcus faecalis, image treatment, octave and network neuronal
Procedia PDF Downloads 2306794 Tenure Security, Agricultural Diversity and Food Security
Authors: Amanuel Hadera Gebreyesus
Abstract:
In the literature, the study of tenure and food security has largely involved separate lines of inquiry. In effect, the nexus among these has received little attention; and the underinvestment in research related to the relationship between tenure and food security deters generation of tenure-related knowledge and policy guidance for improving food and nutrition security. Drawing from this motivation, we study the relationship among tenure security, agricultural diversity and food security and dietary diversity. We employ IV approaches to examine the effect of tenure security and agricultural diversity on food security and dietary diversity. We find tenure security is inversely related with food insecurity as shown by its negative association with hunger scale, hunger index and hunger category. On the other hand, results suggest that tenure security improves minimum dietary diversity of women while we find no association with child dietary diversity. Moreover, agricultural diversity is positively related with minimum dietary diversity of women, which may point to higher accessibility and consumption of dietary food groups by women. Also, findings suggest that farmers use their human (knowledge and skills) and resource (land) endowments to improve food security and dietary diversity. An implication from this is the importance of not only improving access to land but also long-term tenure security to promote agricultural diversity, food security and dietary diversity.Keywords: tenure security, food security, agricultural diversity, dietary diversity, women
Procedia PDF Downloads 2176793 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies
Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov
Abstract:
Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.Keywords: business processes, discrete-event simulation, management, trading industry
Procedia PDF Downloads 3446792 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller
Authors: P. Valsalal, S. Thangalakshmi
Abstract:
There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.Keywords: available line transfer capability, congestion management, FACTS device, Hybrid Fish-Bee Algorithm, ISO, UPFC
Procedia PDF Downloads 3836791 Dynamic Synthesis of a Flexible Multibody System
Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui
Abstract:
This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.Keywords: dynamic response, evolutionary genetic algorithm, flexible bodies, optimization
Procedia PDF Downloads 3216790 Antimicrobial Activity of Ilex paraguariensis Sub-Fractions after Liquid-Liquid Partitioning
Authors: Sabah El-Sawalhi, Elie Fayad, Roula M. Abdel-Massih
Abstract:
Ilex paraguariensis (Yerba Mate) is a medium to large tree commonly consumed by South Americans. Its leaves and stems are associated with different biological activities. The purpose of this study was to evaluate the antibacterial activity of Yerba Mate against Gram-positive and Gram-negative bacterial strains and its action against some resistant bacteria with different resistance profiles. Yerba Mate aqueous extracts were prepared at 70°C for 2 hrs, and the microdilution method was used to determine the minimum inhibitory concentration (MIC). Gram-positive bacteria exhibited a stronger antibacterial activity (MIC ranged between 0.468 mg/mL and 15 mg/mL) than Gram-negative bacteria. Yerba Mate was also extracted with acetone: water (1:1) and then further sub-fractionated with hexane, chloroform, and ethyl acetate. MIC values against Staphylococcus aureus ranged from 0.78 to 2.5 mg/ml for the chloroform fraction, from 1.56 to 3.75 mg/ml for the ethyl acetate fraction, and 0.78 to 1.87 mg/ml for the water fraction. The water fraction also exhibited antibacterial activity against Salmonella species (MIC ranged from 1.56 mg/ml to 3.12 mg/ml). The water fraction exhibited the highest antibacterial activity among all the fractions obtained. More studies are needed to determine the molecule or molecules responsible for this activity.Keywords: antibacterial activity, bacterial resistance, minimum inhibitory concentration, yerba mate
Procedia PDF Downloads 1446789 Frequent Item Set Mining for Big Data Using MapReduce Framework
Authors: Tamanna Jethava, Rahul Joshi
Abstract:
Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.Keywords: frequent item set mining, big data, Hadoop, MapReduce
Procedia PDF Downloads 4366788 Wind Turbine Scaling for the Investigation of Vortex Shedding and Wake Interactions
Authors: Sarah Fitzpatrick, Hossein Zare-Behtash, Konstantinos Kontis
Abstract:
Traditionally, the focus of horizontal axis wind turbine (HAWT) blade aerodynamic optimisation studies has been the outer working region of the blade. However, recent works seek to better understand, and thus improve upon, the performance of the inboard blade region to enhance power production, maximise load reduction and better control the wake behaviour. This paper presents the design considerations and characterisation of a wind turbine wind tunnel model devised to further the understanding and fundamental definition of horizontal axis wind turbine root vortex shedding and interactions. Additionally, the application of passive and active flow control mechanisms – vortex generators and plasma actuators – to allow for the manipulation and mitigation of unsteady aerodynamic behaviour at the blade inboard section is investigated. A static, modular blade wind turbine model has been developed for use in the University of Glasgow’s de Havilland closed return, low-speed wind tunnel. The model components - which comprise of a half span blade, hub, nacelle and tower - are scaled using the equivalent full span radius, R, for appropriate Mach and Strouhal numbers, and to achieve a Reynolds number in the range of 1.7x105 to 5.1x105 for operational speeds up to 55m/s. The half blade is constructed to be modular and fully dielectric, allowing for the integration of flow control mechanisms with a focus on plasma actuators. Investigations of root vortex shedding and the subsequent wake characteristics using qualitative – smoke visualisation, tufts and china clay flow – and quantitative methods – including particle image velocimetry (PIV), hot wire anemometry (HWA), and laser Doppler anemometry (LDA) – were conducted over a range of blade pitch angles 0 to 15 degrees, and Reynolds numbers. This allowed for the identification of shed vortical structures from the maximum chord position, the transitional region where the blade aerofoil blends into a cylindrical joint, and the blade nacelle connection. Analysis of the trailing vorticity interactions between the wake core and freestream shows the vortex meander and diffusion is notably affected by the Reynold’s number. It is hypothesized that the shed vorticity from the blade root region directly influences and exacerbates the nacelle wake expansion in the downstream direction. As the design of inboard blade region form is, by necessity, driven by function rather than aerodynamic optimisation, a study is undertaken for the application of flow control mechanisms to manipulate the observed vortex phenomenon. The designed model allows for the effective investigation of shed vorticity and wake interactions with a focus on the accurate geometry of a root region which is representative of small to medium power commercial HAWTs. The studies undertaken allow for an enhanced understanding of the interplay of shed vortices and their subsequent effect in the near and far wake. This highlights areas of interest within the inboard blade area for the potential use of passive and active flow control devices which contrive to produce a more desirable wake quality in this region.Keywords: vortex shedding, wake interactions, wind tunnel model, wind turbine
Procedia PDF Downloads 2356787 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method
Authors: Atilla Bayram
Abstract:
This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss
Procedia PDF Downloads 3476786 Sparse Principal Component Analysis: A Least Squares Approximation Approach
Authors: Giovanni Merola
Abstract:
Sparse Principal Components Analysis aims to find principal components with few non-zero loadings. We derive such sparse solutions by adding a genuine sparsity requirement to the original Principal Components Analysis (PCA) objective function. This approach differs from others because it preserves PCA's original optimality: uncorrelatedness of the components and least squares approximation of the data. To identify the best subset of non-zero loadings we propose a branch-and-bound search and an iterative elimination algorithm. This last algorithm finds sparse solutions with large loadings and can be run without specifying the cardinality of the loadings and the number of components to compute in advance. We give thorough comparisons with the existing sparse PCA methods and several examples on real datasets.Keywords: SPCA, uncorrelated components, branch-and-bound, backward elimination
Procedia PDF Downloads 3816785 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations
Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha
Abstract:
This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation
Procedia PDF Downloads 1426784 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6
Authors: M. Moslehpour, S. Khorsandi
Abstract:
Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.Keywords: NDP, IPsec, SEND, CGA, modifier, malicious node, self-computing, distributed-computing
Procedia PDF Downloads 2786783 Pre-harvest Application of Nutrients on Quality and Storability of Litchi CV Bombai
Authors: Nazmin Akter, Tariqul Islam, Abu Sayed
Abstract:
Food loss and waste have become critical global issues, with approximately one-third of the world's food production being wasted. Among the various food products, horticultural fruits and vegetables are especially susceptible to loss due to their relatively short shelf lives. Litchi (Litchi chinensis) is one of Bangladesh's most important horticultural fruits. But the problem with this fruit is its short shelf life by losing weight faster after harvest. The experiment was carried out at Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200 Bangladesh during 2020-2021. The objective of this experiment was to see the impact of nutrients viz., urea (1%), calcium chloride (1%), borax (1%), and their combinations on fruit quality and shelf life of litchi cv. Bombai. The experiment was laid out in a randomized block design with 7 treatments and 3 replications. Two sprays of each treatment were applied from the last week of May to June (at 20-day intervals). The results indicated that all the treatments significantly improved the quality parameters of litchi fruits as compared to the control. In terms of physicochemical characteristics fruit weight (20.30g), fruit volume (20m ml), and pulp percent (17.14) were found maximum with minimum stone percent (11.09) with the application of urea 1% + borax 1%+ calcium chloride 1%. Maximum TSS (19.62oBrix), TSS/acidity ratio (24.57), maximum ascorbic acid (45.19 mg/100 g pulp), and minimum acidity (0.80%) were reported with the application of T6 (Urea 1% + borax 1%+ calcium chloride 1%) treatments whereas fruits treated with urea 1% + borax 1% gave maximum total sugars (26.64%) and reducing sugars (19.19%) as compared to control. In the case of storage characters, application of Urea 1% + borax 1%+ calcium chloride 1% resulted in a minimum physiological loss in weight (6.11%), (8.41%), and (10.65%) for 2 days, 4 days, and 6 days respectively. In conclusion, to obtain better quality and increased storage period of litchi fruits, two sprays of urea, borax, and calcium chloride (1%) could be used during the fruit growth and development period at fortnightly intervals.Keywords: litchi chinensis, preharvest, quality, shelf life, postharvest
Procedia PDF Downloads 71