Search results for: genetic algorithms
898 Vehicular Speed Detection Camera System Using Video Stream
Authors: C. A. Anser Pasha
Abstract:
In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.Keywords: radar, image processing, detection, tracking, segmentation
Procedia PDF Downloads 466897 Continuous Measurement of Spatial Exposure Based on Visual Perception in Three-Dimensional Space
Authors: Nanjiang Chen
Abstract:
In the backdrop of expanding urban landscapes, accurately assessing spatial openness is critical. Traditional visibility analysis methods grapple with discretization errors and inefficiencies, creating a gap in truly capturing the human experi-ence of space. Addressing these gaps, this paper introduces a distinct continuous visibility algorithm, a leap in measuring urban spaces from a human-centric per-spective. This study presents a methodological breakthrough by applying this algorithm to urban visibility analysis. Unlike conventional approaches, this tech-nique allows for a continuous range of visibility assessment, closely mirroring hu-man visual perception. By eliminating the need for predefined subdivisions in ray casting, it offers a more accurate and efficient tool for urban planners and architects. The proposed algorithm not only reduces computational errors but also demonstrates faster processing capabilities, validated through a case study in Bei-jing's urban setting. Its key distinction lies in its potential to benefit a broad spec-trum of stakeholders, ranging from urban developers to public policymakers, aid-ing in the creation of urban spaces that prioritize visual openness and quality of life. This advancement in urban analysis methods could lead to more inclusive, comfortable, and well-integrated urban environments, enhancing the spatial experience for communities worldwide.Keywords: visual openness, spatial continuity, ray-tracing algorithms, urban computation
Procedia PDF Downloads 45896 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM
Procedia PDF Downloads 412895 The Searching Artificial Intelligence: Neural Evidence on Consumers' Less Aversion to Algorithm-Recommended Search Product
Authors: Zhaohan Xie, Yining Yu, Mingliang Chen
Abstract:
As research has shown a convergent tendency for aversion to AI recommendation, it is imperative to find a way to promote AI usage and better harness the technology. In the context of e-commerce, this study has found evidence that people show less avoidance of algorithms when recommending search products compared to experience products. This is due to people’s different attribution of mind to AI versus humans, as suggested by mind perception theory. While people hold the belief that an algorithm owns sufficient capability to think and calculate, which makes it competent to evaluate search product attributes that can be obtained before actual use, they doubt its capability to sense and feel, which is essential for evaluating experience product attributes that must be assessed after experience in person. The result of the behavioral investigation (Study 1, N=112) validated that consumers show low purchase intention to experience products recommended by AI. Further consumer neuroscience study (Study 2, N=26) using Event-related potential (ERP) showed that consumers have a higher level of cognitive conflict when faced with AI recommended experience product as reflected by larger N2 component, while the effect disappears for search product. This research has implications for the effective employment of AI recommenders, and it extends the literature on e-commerce and marketing communication.Keywords: algorithm recommendation, consumer behavior, e-commerce, event-related potential, experience product, search product
Procedia PDF Downloads 149894 From Wave-Powered Propulsion to Flight with Membrane Wings: Insights Powered by High-Fidelity Immersed Boundary Methods based FSI Simulations
Authors: Rajat Mittal, Jung Hee Seo, Jacob Turner, Harshal Raut
Abstract:
The perpetual advancement in computational capabilities, coupled with the continuous evolution of software tools and numerical algorithms, is creating novel avenues for research, exploration, and application at the nexus of computational fluid and structural mechanics. Fish leverage their remarkably flexible bodies and fins to harness energy from vortices, propelling themselves with an elegance and efficiency that captivates engineers. Bats fly with unparalleled agility and speed by using their flexible membrane wings. Wave-assisted propulsion (WAP) systems, utilizing elastically mounted hydrofoils, convert wave energy into thrust. Each of these problems involves a complex and elegant interplay between fluid dynamics and structural mechanics. Historically, investigations into such phenomena were constrained by available tools, but modern computational advancements now facilitate exploration of these multi-physics challenges with an unprecedented level of fidelity, precision, and realism. In this work, the author will discuss projects that harness the capabilities of high-fidelity sharp-interface immersed boundary methods to address a spectrum of engineering and biological challenges involving fluid-structure interaction.Keywords: immersed boundary methods, CFD, bioflight, fluid structure interaction
Procedia PDF Downloads 68893 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.Keywords: real-time, multi-vehicle tracking, feature selection, color attribution
Procedia PDF Downloads 161892 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)
Procedia PDF Downloads 233891 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 133890 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources
Authors: PR
Abstract:
Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.Keywords: artificial intelligence, renewable energy sources, spiral model, optimize
Procedia PDF Downloads 6889 The Role of Non-Native Plant Species in Enhancing Food Security in Sub-Saharan Africa
Authors: Thabiso Michael Mokotjomela, Jasper Knight
Abstract:
Intensification of agricultural food production in sub-Saharan Africa is of paramount importance as a means of increasing the food security of communities that are already experiencing a range of environmental and socio-economic stresses. However, achieving this aim faces several challenges including ongoing climate change, increased resistance of diseases and pests, extreme environmental degradation partly due to biological invasions, land tenure and management practices, socio-economic developments of rural populations, and national population growth. In particular, non-native plant species tend to display greater adaptation capacity to environmental stress than native species that form important food resource base for human beings, thus suggesting a potential for usage to shift accordingly. Based on review of the historical benefits of non-native plant species in food production in sub-Saharan Africa, we propose that use of non-invasive, non-native plant species and/or the genetic modification of native species might be viable options for future agricultural sustainability in this region. Coupled with strategic foresight planning (e.g. use of biological control agents that suppress plant species’ invasions), the consumptive use of already-introduced non-native species might help in containment and control of possible negative environmental impacts of non-native species on native species, ecosystems and biodiversity, and soil fertility and hydrology. Use of non-native species in food production should be accompanied by low cost agroecology practices (e.g. conservation agriculture and agrobiodiversity) that may promote the gradual recovery of natural capital, ecosystem services, and promote conservation of the natural environment as well as enhance food security.Keywords: food security, invasive species, agroecology, agrobiodiversity, socio-economic stresses
Procedia PDF Downloads 367888 Interaction of Racial and Gender Disparities in Salivary Gland Cancer Survival in the United States: A Surveillance Epidemiology and End Results Study
Authors: Sarpong Boateng, Rohit Balasundaram, Akua Afrah Amoah
Abstract:
Introduction: Racial and Gender disparities have been found to be independently associated with Salivary Gland Cancers (SGCs) survival; however, to our best knowledge, there are no previous studies on the interplay of these social determinants on the prognosis of SGCs. The objective of this study was to examine the joint effect of race and gender on the survival of SGCs. Methods: We analyzed survival outcomes of 13,547 histologically confirmed cases of SGCs using the Surveillance Epidemiology and End Results (SEER) database (2004 to 2015). Multivariable Cox regression analysis and Kaplan-Meier curves were used to estimate hazard ratios (HR) after controlling for age, tumor characteristics, treatment type and year of diagnosis. Results: 73.5% of the participants were whites, 8.5% were blacks, 10.1% were Hispanics and 58.5% were males. Overall, males had poorer survival than females (HR = 1.16, p=0.003). In the adjusted multivariable model, there were no significant differences in survival by race. However, the interaction of gender and race was statistically significant (p=0.01) in Hispanic males. Thus, compared to White females (reference), Hispanic females had significantly better survival (HR=0.53), whiles Hispanic males had worse survival outcomes (HR=1.82) for SGCs. Conclusions: Our results show significant interactions between race and gender, with racial disparities varying across the different genders for SGCs survival. This study indicates that racial and gender differences are crucial factors to be considered in the prognostic counseling and management of patients with SGCs. Biologic factors, tumor genetic characteristics, chemotherapy, lifestyle, environmental exposures, and socioeconomic and dietary factors are potential yet proven reasons that could account for racial and gender differences in the survival of SGCs.Keywords: salivary, cancer, survival, disparity, race, gender, SEER
Procedia PDF Downloads 199887 Morphometric Parameters and Evaluation of Persian Fallow Deer Semen in Dashenaz Refuge in Iran
Authors: Behrang Ekrami, Amin Tamadon
Abstract:
Persian fallow deer (Dama dama mesopotamica) is belonging to the family Cervidae and is only found in a few protected areas in the northwest, north, and southwest of Iran. The aims of this study were analysis of inbreeding and morphometric parameters of semen in male Persian fallow deer to investigate the cause of reduced fertility of this endangered species in Dasht-e-Naz National Refuge, Sari, Iran. The Persian fallow deer semen was collected from four adult bucks randomly during the breeding and non-breeding season from five dehorned and horned deer's BY an artificial vagina. Twelve blood samples was taken from Persian fallow deer and mitochondrial DNA was extracted, amplified, extracted, sequenced, and then were considered for genetic analysis. The Persian fallow deer semen, both with normal and abnormal spermatozoa, is similar to that of domestic ruminants but very smaller and difficult to observe at the primary observation. The post-mating season collected ejaculates contained abnormal spermatozoa, debris and secretion of accessory glands in horned bucks and accessory glands secretion free of any spermatozoa in dehorned or early velvet budding bucks. Microscopic evaluation in all four bucks during the mating season showed the mean concentration of 9×106 spermatozoa/ml. The mean ±SD of age, testes length and testes width was 4.60±1.52 years, 3.58±0.32 and 1.86±0.09 cm, respectively. The results identified 1120 loci (assuming each nucleotide as locus) in which 377 were polymorphic. In conclusion, reduced fertility of male Persian fallow deer may be caused by inbreeding of the protected herd in a limited area of Dasht-e-Naz National Refuge.Keywords: Persian fallow deer, spermatozoa, reproductive characteristics, morphometric parameters
Procedia PDF Downloads 575886 Quality of Ram Semen in Relation to Scrotal Biometry
Authors: M. M. Islam, S. Sharmin, M. Shah Newaz, N. S. Juyena, M. M. Rahman, P. K. Jha, F. Y. Bari
Abstract:
The aim of the present study was to select the high quality ram by measuring the scrotal biometry which has an effect on semen parameters. Ten rams were selected in the present study. Eight ejaculates were collected from each ram using artificial vagina method. Scrotal circumference was measured before and after semen collection on weekly basis using the Scrotal tape. Bio-metries of scrotum (scrotal length and scrotal volume) were calculated. Semen was evaluated for macroscopic and microscopic characteristics. The average estimated scrotal circumference (cm) and scrotal volume (cm3) in 8 different age groups were 17.16±0.05 cm and 61.30±0.70 cm3, 17.17±0.62 cm and 63.67±4.49 cm3, 17.22±0.52 cm and 64.90±4.21 cm3, 17.72±0.37 cm and 67.10±4.20 cm3, 18.41±0.35cm and 69.52±4.12cm3, 18.45±0.36cm and 77.17±3.81 cm3, 18.55±0.41 cm and 78.72±4.90 cm3, 19.10±0.30 cm and 87.35±5.45 cm3 respectively. The body weight, scrotal circumference and scrotal volume increased with the progress of age (P < 0.05). Body weight of age group 381-410 days (13.62+1.48 kg) was significantly higher than group 169-200 days (10.17±0.05 kg) and 201-230 days (10.42±1.18 kg) (p < 0.05). Scrotal circumference (SC) of age group 381-410 days (19.10±0.30 cm) was significantly higher (p < 0.05) than other groups. In age group 381-410 days, scrotal volume (SCV) (87.35±5.45 cm3) was significantly higher than other first five groups (p < 0.05). Both scrotal circumference and scrotal volume development was positively correlated with the increasing of body weight (R2= 0.51). Semen volume increased accordingly with the increasing of ages, varied from 0.35±0.00 ml to 1.15+0.26 ml. Semen volume of age group 381-410 days (1.15±0.26 ml) was significantly higher than other age groups (p < 0.05) except age group 351-380 days (p > 0.05). Mass activity of different age groups varied from 2.75 (±0.35) to 4.25 (±0.29) ml in the scale of 1-5. Sperm concentration, progressive motility (%),progressively improved according to the increasing of ages, but significant changes in these parameters were seen when the animals reaches the age 291 days or more (p < 0.05). However, normal spermatozoa (%) improved significantly from the age of 261 days or more. Mass activity (mass) was positively correlated with sperm concentration (R2=0.568) and progressive motility (%) (R2=0.616). The relationships of semen volume with body weight and scrotal measurements and sperm concentration indicate that they are useful in evaluating rams for breeding soundness and genetic improvement for fertility in indigenous ram.Keywords: breeding soundness, ram, semen quality, scrotal biometry
Procedia PDF Downloads 364885 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform
Authors: David Jurado, Carlos Ávila
Abstract:
Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis
Procedia PDF Downloads 82884 Beyond Baudrillard: A Critical Intersection between Semiotics and Materialism
Authors: Francesco Piluso
Abstract:
Nowadays, to restore the deconstructive power of semiotics implies a critical analysis of neoliberal ideology, and, even more critically, a confrontation with materialist perspective. The theoretical path of Jean Baudrillard is crucial to understand the ambivalence of this intersection. A semiotic critique of Baudrillard’s work, through tools of both structuralism and interpretative semiotics, has the aim to give materialism a new consistent semiotic approach and vice-versa. According to Baudrillard, the commodity form is characterized by the same abstract and systemic logic of the sign-form, in which the production of the signified (use-value) is a mere ideological mean for the reproduction of the signifiers-chain (exchange-value). Nevertheless, this parallelism is broken by the author himself: if the use-value is deconstructed in its relative logic, the signified and the referent, both as discrete and positive elements, are collapsed on the same plane at the shadows of the signified forms. These divergent considerations lead Baudrillard to the same crucial point: the dismissal of the material world, replaced by the hyperreality as reproduction of a semiotic (genetic) Code. The stress on the concept of form, as an epistemological and semiotic tool to analyse the construction of values in the consumer society, has led to the Code as its ontological drift. In other words, Baudrillard seems to enclose consumer society (and reality) in this immanent and self-fetishized world of signs–an ideological perspective that mystifies the gravity of the material relationships between Northern-Western World and Third World. The notion of Encyclopaedia by Umberto Eco is the key to overturn the relationship of immanence/transcendence between the Code and the economic political of the sign, by understanding the former as an ideological plane within the encyclopedia itself. Therefore, rather than building semiotic (hyper)realities, semiotics has to deal with materialism in terms of material relationships of power which are mystified and reproduced through such ideological ontologies of signs.Keywords: Baudrillard, Code, Eco, Encyclopaedia, epistemology vs. ontology, semiotics vs. materialism
Procedia PDF Downloads 161883 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University
Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang
Abstract:
Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University
Procedia PDF Downloads 314882 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 104881 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives
Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović
Abstract:
In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).Keywords: benzimidazoles, QSAR, ADME, in silico
Procedia PDF Downloads 373880 Design and Optimization of a Small Hydraulic Propeller Turbine
Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink
Abstract:
A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design
Procedia PDF Downloads 149879 Hardware in the Loop Platform for Virtual Commissioning: Case Study of a Hydraulic-Press Model Simulated in Real-Time
Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Ana Maria Macarulla
Abstract:
Hydraulic-press commissioning consumes a great amount of man-hours, due to the fact that it takes place several miles away from where it has been designed. This factor became exacerbated due to control designers’ lack of knowledge about which will be the final controller gains before they start working with it. Virtual commissioning has been postulated as an optimal solution to deal with this lack of knowledge. Here, a case study is presented in which a controller is set up against a real-time model based on a hydraulic-press. The press model is designed following manufacturer specifications and it is embedded in a real-time simulator. This methodology ensures that the model achieves similar responses as the real machine that would be placed on the industry. A deterministic communication protocol is in charge of the bidirectional information transmission between the real-time model and the controller. This platform allows the engineer to test and verify the final control responses with exactly the same hardware that is going to be installed in the hydraulic-press, in other words, realize a virtual commissioning of the electro-hydraulic actuator. The Hardware in the Loop (HiL) platform validates in laboratory conditions and harmless for the machine the control algorithms designed, which allows embedding them afterwards in the industrial environment without further modifications.Keywords: deterministic communication protocol, electro-hydraulic actuator, hardware in the loop, real-time, virtual commissioning
Procedia PDF Downloads 140878 Production Planning for Animal Food Industry under Demand Uncertainty
Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut
Abstract:
This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty
Procedia PDF Downloads 377877 Considerations in Pregnancy Followed by Obesity Surgery
Authors: Maryam Nazari, Atefeh Ghanbari, Saghar Noorinia
Abstract:
Obesity, as an abnormal or excessive accumulation of fat, is caused by genetic, behavioral and environmental factors. Recently, obesity surgeries, such as bariatric surgery, as the last measure to control obesity, have attracted experts and society, especially women, attention, so knowing the possible complications of this major surgery and their control in reproductive age is of particular importance due to its effects on pregnancy outcomes. Bariatric surgery reduces the risk of diabetes and high blood pressure associated with pregnancy, premature birth, macrosomia, stillbirth and dumping syndrome. Although in the first months after surgery, nausea and vomiting caused by changes in intra-abdominal pressure are associated with an increased risk of malabsorption of micronutrients such as folic acid, iron, vitamin B1, D, calcium, selenium and phosphorus and finally, fetal growth disorder. Moreover, serum levels of micronutrients such as vitamin D, calcium, and iron in mothers who used to have bariatric surgery and their babies have been shown to be lower than in mothers without a history of bariatric surgery. Moreover, vitamin A deficiency is shown to be more widespread in pregnancies after bariatric surgery, which leads to visual problems in newborns and premature delivery. However, complications such as the duration of hospitalization of newborns in the NICU, disease rate in the first 28 days of life and congenital anomalies are not significantly different in babies born to mothers undergoing bariatric surgery compared to the control group. In spite of the vast advantages following obesity surgeries, due to the catabolic conditions and severe weight loss followed by such major intervention and the probability of nutrients malnutrition in a pregnant woman and her baby, after having surgery, at least 12 to 18 months should be considered to get pregnant as a recovery period. In addition, taking essential supplements before and at least 6 months after this approach is recommended.Keywords: bariatric surgery, pregnancy, malnutrition, vitamin and mineral deficiency
Procedia PDF Downloads 92876 Functional Connectivity Signatures of Polygenic Depression Risk in Youth
Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip
Abstract:
Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.Keywords: genetics, functional connectivity, pre-adolescents, depression
Procedia PDF Downloads 57875 An Integrated Ecosystem Service-based Approach for the Sustainable Management of Forested Islands in South Korea
Authors: Jang-Hwan Jo
Abstract:
Implementing sustainable island forest management policies requires categorizing islands into groups based on key indicators and establishing a consistent management system. Building on the results of previous studies, a typology of forested islands was established: Type 1 – connected islands with high natural vegetation cover; Type 2 – connected islands with moderate natural vegetation cover; Type 3 – connected islands with low natural vegetation cover; Type 4 – unconnected islands with high natural vegetation cover; Type 5 – unconnected islands with moderate natural vegetation cover; and Type 6 – unconnected islands with low natural vegetation cover. An AHP analysis was conducted with island forest experts to identify priority ecosystem services (ESs) for the sustainable management of each island type. In connected islands, provisioning services (natural resources, natural medicines, etc.) assumed greater importance than regulating (erosion control) and supporting services (genetic diversity). In unconnected islands, particularly those with a small proportion of natural vegetation, regulating services (erosion control) requires greater emphasis in management. Considering that Type 3 islands require urgent management as connectivity to the mainland makes natural vegetation-sparse island forest ecosystems vulnerable to anthropogenic activities, the land-use scoring method was carried out on Jin-do, a Type 3 forested island. Comparisons between AHP-derived expert demand for key island ESs and the spatial distribution of ES supply potential revealed mismatches between the supply and demand of erosion control, freshwater supply, and habitat provision. The framework developed in this study can help guide decisions and indicate where interventions should be focused to achieve sustainable island management.Keywords: ecosystem service, sustainable management, forested islands, Analytic hierarchy process
Procedia PDF Downloads 73874 Physical Fitness in Omani Children with Sickle Cell Disease and Sickle Cell Trait
Authors: Mahfoodha Al-Kitani, Dylan Thompson, Keith Stokes
Abstract:
Sickle cell disease (SCD) and sickle cell trait (SCT) are the most common hematological diseases in Oman according to the national survey of genetic blood disorders. The aim of this study was to determine markers of physical fitness and anthropometrics indices in children with sickle cell disease and children with sickle cell trait and compare them with normal healthy children of the same age. One hundred and twenty male children participated in the present study divided to three groups: 40 with sickle disease (SCD; age, 13.3(.80), height, 131.9(3.5), mass, 29.2(3.1)); 40 with sickle cell trait (SCT; age, 12.2(.80), height, 141.0(9.9), mass, 38.0(4.4)); and 40 controls with normal hemoglobin (Con; age, 12.8(.80), height, 139.4(8.7), mass, 37.2(4.3)). All children completed a 5-min running exercise test on a treadmill at speed corresponding to 5 km/hr. Heart rate and was recorded during exercise and during 10-min of recovery. Blood lactate was measured before and 5 min after the completion of exercise. Children with SCD exhibited a higher mean value (P < 0.05) for percent body fat and fat mass than the normal healthy subjects and SCT subjects. Resting values of hemoglobin were similar in SCT (11.04(.78)) and control (10.8(94)) groups, and lower in SCD (8.89(.54); P < 0.05). There was a strong correlation between peak heart rate and resting hemoglobin levels for the three groups (r= -.472. n= 120, p < .0005).The SCD group (175.2(10.3)) exhibited higher mean heart rate during exercise than those observed in the SCT (143.7(9.5)) and normal control children (144.5(22.4); P < 0.05). Additionally, SCD children showed higher serum lactate values before and after treadmill exercise compared to the other groups (P < 0.05). Children with sickle cell trait demonstrate similar physical fitness level and similar exercise responses to treadmill stress test to normal children. In contrast, SCD children have lower body mass, higher fat mass and lower physical fitness than children with SCT and healthy controls.Keywords: sickle cell disease, sickle cell trait, children, exercise
Procedia PDF Downloads 428873 The Effects of Acupoint Catgut Embedding for Weight Control in Mice Model
Authors: Chanya Inprasit, Ching-Liang Hsieh, Yi-Wen Lin
Abstract:
Obesity (OB) is a hazardous global health problem that has been increasing in prevalence, more severely in last decade. It is the mainly resultant from the imbalance between food consumption and energy expenditure, which is concordant with a modern lifestyle, implying an increase in calories with poorer quality of food intake accompanied by a decrease in physical activities. Obesity does not concern the appearance only but is also a major factor contributing to poor physiology, psychology, society and economic issues. Moreover, OB induces low-grade inflammation in the body through the regulatory effect it enacts on the adipocyte function. Various alternative treatments were investigated for body weight control, including Acupoint Catgut Embedding (ACE). ACE is the implantation of absorbable catgut sutures at specific acupoints, displaying durable and potent stimulation and thereby reducing the treatment frequency. Our study utilized a mouse model to exclude any psychological factors of OB and ACE treatment. High-fat diet and body weight were measured once a week before subjects in ACE and Sham group received the ACE treatment or placebo treatment. We hypothesized that ACE can control body weight through the interaction of the TRPV1 pathways, as TRPV1 accordingly responds to inflammatory factors. The results of body weight variation show a significant decrease in body weight in ACE group compared with the baseline of control and Sham group. Meanwhile, converse results were explored in TRPV1 knockout mice, where a significant maintenance of normal body weight throughout the experiment period was observed. There was no significant difference in food consumption of each group. These finding indicated that TRPV1 pathways and its associated pathways may be involved in the maintenance of body weight, which can be controlled by ACE treatment of genetic manipulation.Keywords: acupoint catgut embedding, obesity, hypothalamus, TRPV1
Procedia PDF Downloads 149872 Development of Cost-effective Sensitive Methods for Pathogen Detection in Community Wastewater for Disease Surveillance
Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Jaiyeop Lee
Abstract:
Global pandemic coronavirus disease (COVID-19) caused by Severe acute respiratory syndrome SARS-CoV-2, to control the spread of the COVID-19 pandemic, wastewater surveillance has been used to monitor SARS-CoV2 prevalence in the community. The challenging part is establishing wastewater surveillance; there is a need for a well-equipped laboratory for wastewater sample analysis. According to many previous studies, reverse transcription-polymerase chain reaction (RT-PCR) based molecular tests are the most widely used and popular detection method worldwide. However, the RT-qPCR based approaches for the detection or quantification of SARS-CoV-2 genetic fragments ribonucleic acid (RNA) from wastewater require a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically requires 6 to 8 hours to provide results for just minimum samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at less-specialized regional laboratories. Therefore, scientists and researchers are conducting experiments for rapid detection methods of COVID-19; in some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories, which are presented in the present study. The ongoing research and development of these highly sensitive and rapid technologies, namely RT-LAMP, ELISA, Biosensors, GeneXpert, allows a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses as well. The effort of this study is to discuss the above effective and regional rapid detection and quantification methods in community wastewater as an essential step in advancing scientific goals.Keywords: rapid detection, SARS-CoV-2, sensitive detection, wastewater surveillance
Procedia PDF Downloads 84871 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian
Abstract:
Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.Keywords: data mining, k-means, road traffic accidents, Waze, Weka
Procedia PDF Downloads 415870 Charting Sentiments with Naive Bayes and Logistic Regression
Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri
Abstract:
The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.Keywords: machine learning, sentiment analysis, visualisation, python
Procedia PDF Downloads 54869 MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligoa
Authors: Anupama Sahoo, Bongyong Lee, Katia Boniface, Julien Seneschal, Sanjaya K. Sahoo, Tatsuya Seki, Chunyan Wang, Soumen Das, Xianlin Han, Michael Steppie, Sudipta Seal, Alain Taieb, Ranjan J. Perera
Abstract:
Vitiligo is a common, chronic skin disorder characterized by loss of epidermal melanocytes and progressive depigmentation. Vitiligo has a complex immune, genetic, environmental, and biochemical etiology, but the exact molecular mechanisms of vitiligo development and progression, particularly those related to metabolic control, are poorly understood. Here we characterized the human vitiligo cell line PIG3V and the normal human melanocytes, HEM-l by RNA-sequencing, targeted metabolomics, and shotgun lipidomics. Melanocyte-enriched miR-211, a known metabolic switch in non-pigmented melanoma cells, was severely downregulated in vitiligo cell line PIG3V and skin biopsies from vitiligo patients, while its novel predicted targets transcriptional co-activator PGC1-α (PPARGC1A), ribonucleotide reductase regulatory subunit M2 (RRM2), and serine-threonine protein kinase TAO1 (TAOK1) were reciprocally upregulated. miR-211 binds to PGC1-α 3’UTR locus and represses it. Although mitochondrial numbers were constant, mitochondrial complexes I, II, and IV and respiratory responses were defective in vitiligo cells. Nanoparticle-coated miR-211 partially augmented the oxygen consumption rate in PIG3V cells. The lower oxygen consumption rate, changes in lipid and metabolite profiles, and increased reactive oxygen species production observed in vitiligo cells appear to be partly due to abnormal regulation of miR-211 and its target genes. These genes represent potential biomarkers and therapeutic targets in human vitiligo.Keywords: metabolism, microRNA, mitochondria, vitiligo
Procedia PDF Downloads 365