Search results for: efficiency zone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7890

Search results for: efficiency zone

5370 Analysis Of Magnetic Anomaly Data For Identification Subsurface Structure Geothermal Manifestations Area Candi Umbul, Grabag, Magelang, Central Java Province, Indonesia

Authors: Ikawati Wulandari

Abstract:

Acquisition of geomagnetic field has been done at Geothermal manifestation Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. The purpose of this research to study sub-surface structure condition and the structure which control the hot springs manifestation. The research area have size of 1,5 km x 2 km and measurement spacing of 150 m. Total magnetic field data, the position, and the north pole direction have acquired by Proton Precession Magnetometer (PPM), Global Positioning System (GPS), and of geology compass, respectively. The raw data has been processed and performed using IGRF (International Geomagnetics Reference Field) correction to obtain total field magnetic anomaly. Upward continuation was performed at 100 meters height using software Magpick. Analysis conclude horizontal position of the body causing anomaly which is located at hot springs manifestation, and it stretch along Northeast - Southwest, which later interpreted as normal fault. This hotsprings manifestation was controlled by the downward fault which becomes a weak zone where hot water from underground the geothermal reservoir leakage

Keywords: PPM, Geothermal, Fault, Grabag

Procedia PDF Downloads 443
5369 Fabrication and Characterization of Folic Acid-Grafted-Thiomer Enveloped Liposomes for Enhanced Oral Bioavailability of Docetaxel

Authors: Farhan Sohail, Gul Shahnaz Irshad Hussain, Shoaib Sarwar, Ibrahim Javed, Zajif Hussain, Akhtar Nadhman

Abstract:

The present study was aimed to develop a hybrid nanocarrier (NC) system with enhanced membrane permeability, bioavailability and targeted delivery of Docetaxel (DTX) in breast cancer. Hybrid NC’s based on folic acid (FA) grafted thiolated chitosan (TCS) enveloped liposomes were prepared with DTX and evaluated in-vitro and in-vivo for their enhanced permeability and bioavailability. Physicochemical characterization of NC’s including particle size, morphology, zeta potential, FTIR, DSC, PXRD, encapsulation efficiency and drug release from NC’s was determined in vitro. Permeation enhancement and p-gp inhibition were performed through everted sac method on freshly excised rat intestine which indicated that permeation was enhanced 5 times as compared to pure DTX and the hybrid NC’s were strongly able to inhibit the p-gp activity as well. In-vitro cytotoxicity and tumor targeting was done using MDA-MB-231 cell line. The stability study of the formulations performed for 3 months showed the improved stability of FA-TCS enveloped liposomes in terms of its particles size, zeta potential and encapsulation efficiency as compared to TCS NP’s and liposomes. The pharmacokinetic study was performed in vivo using rabbits. The oral bioavailability and AUC0-96 was increased 10.07 folds with hybrid NC’s as compared to positive control. Half-life (t1/2) was increased 4 times (58.76 hrs) as compared to positive control (17.72 hrs). Conclusively, it is suggested that FA-TCS enveloped liposomes have strong potential to enhance permeability and bioavailability of hydrophobic drugs after oral administration and tumor targeting.

Keywords: docetaxel, coated liposome, permeation enhancement, oral bioavailability

Procedia PDF Downloads 401
5368 Paleobathymetry and Biostratigraphy of Sambipitu Formation and Its Relation with the Presence of Ichnofossil in Geoheritage Site Ngalang River Yogyakarta

Authors: Harman Dwi R., Alwin Mugiyantoro, Heppy Chintya P.

Abstract:

The location of this research is a part of Geoheritage that located in Nglipar, Gunung Kidul Regency, Yogyakarta Special Region. Whereas in this location, the carbonate sandstone of Sambipitu Formation (early-middle Miocene) is well exposed along Ngalang River, also there are ichnofossil presence which causes this formation to be interesting. The determination of paleobathymetry is particularly important in determining paleoenvironment and paleogeographic. Paleobathymetry can be determined by identifying the presence of Foraminifera bentonik fossil and parasequence emerge. The methods that used in this study are spatial method of field observation with systematic sampling, descriptive method of paleontology, biostratigraphy analysis, geometrical analysis of Ichnofossil, and study literature. The result obtained that paleobathymetry of this location is bathyal zone with maximum regression known by Bulliminoides williamsonianus showing depth 17 fathoms at the age of N3-N5 (Oligocenne-Early Miocene) and the maximum transgression is known by Cibicides pseudoungarianus showing depth 862 fathoms at the age of N8-N9 (Early-Middle Miocene). Where the obtained paleobathymetry supported of the presence and formed the pattern of ichnofossil that found in the study area.

Keywords: paleobathymetry, biostratigraphy, ichnofossil, Ngalang river

Procedia PDF Downloads 156
5367 Controlled Size Synthesis of ZnO and PEG-ZnO NPs and Their Biological Evaluation

Authors: Mahnoor Khan, Bashir Ahmad, Khizar Hayat, Saad Ahmad Khan, Laiba Ahmad, Shumaila Bashir, Abid Ali Khan

Abstract:

The objective of this study was to synthesize the smallest possible size of ZnO NPs using a modified wet chemical synthesis method and to prepare core shell using polyethylene glycol (PEG) as shell material. Advanced and sophisticated techniques were used to confirm the synthesis, size, and shape of these NPs. Rounded, clustered NPs of size 5.343 nm were formed. Both the plain and core shell NPs were tested against MDR bacteria (E. cloacae, E. amnigenus, Shigella, S. odorifacae, Citrobacter, and E. coli). Both of the NPs showed excellent antibacterial properties, whereas E. cloacae showed maximum zone of inhibition of 16 mm, 27 mm, and 32 mm for 500 μg/ml, 1000 μg/ml, and 1500 μg/ml, respectively for plain ZnO NPs and 18 mm, 28 mm and 35 mm for 500 μg/ml, 1000 μg/ml and 1500 μg/ml for core shell NPs. These NPs were also biocompatible on human red blood cells showing little hemolysis of only 4% for 70 μg/ml for plain NPs and 1.5% for 70 μg/ml for core shell NPs. Core shell NPs were highly biocompatible because of the PEG. Their therapeutic effect as photosensitizers in photodynamic therapy (PDT) for cancer treatment was also monitored. The cytotoxicity of ZnO and PEG-ZnO was evaluated using MTT assay. Our results demonstrated that these NPs could generate ROS inside tumor cells after irradiation which in turn initiates an apoptotic pathway leading to cell death hence proving to be an effective candidate for PDT.

Keywords: ZnO, hemolysis, cytotoxiciy assay, photodynamic therapy, antibacterial

Procedia PDF Downloads 122
5366 Transforming Emergency Care: Revolutionizing Obstetrics and Gynecology Operations for Enhanced Excellence

Authors: Lolwa Alansari, Hanen Mrabet, Kholoud Khaled, Abdelhamid Azhaghdani, Sufia Athar, Aska Kaima, Zaineb Mhamdia, Zubaria Altaf, Almunzer Zakaria, Tamara Alshadafat

Abstract:

Introduction: The Obstetrics and Gynecology Emergency Department at Alwakra Hospital has faced significant challenges, which have been further worsened by the impact of the COVID-19 pandemic. These challenges involve issues such as overcrowding, extended wait times, and a notable surge in demand for emergency care services. Moreover, prolonged waiting times have emerged as a primary factor contributing to situations where patients leave without receiving attention, known as left without being seen (LWBS), and unexpectedly abscond. Addressing the issue of insufficient patient mobility in the obstetrics and gynecology emergency department has brought about substantial improvements in patient care, healthcare administration, and overall departmental efficiency. These changes have not only alleviated overcrowding but have also elevated the quality of emergency care, resulting in higher patient satisfaction, better outcomes, and operational rewards. Methodology: The COVID-19 pandemic has served as a catalyst for substantial transformations in the obstetrics and gynecology emergency, aligning seamlessly with the strategic direction of Hamad Medical Corporation (HMC). The fundamental aim of this initiative is to revolutionize the operational efficiency of the OB-GYN ED. To accomplish this mission, a range of transformations has been initiated, focusing on essential areas such as digitizing systems, optimizing resource allocation, enhancing budget efficiency, and reducing overall costs. The project utilized the Plan-Do-Study-Act (PDSA) model, involving a diverse team collecting baseline data and introducing throughput improvements. Post-implementation data and feedback were analysed, leading to the integration of effective interventions into standard procedures. These interventions included optimized space utilization, real-time communication, bedside registration, technology integration, pre-triage screening, enhanced communication and patient education, consultant presence, and a culture of continuous improvement. These strategies significantly reduced waiting times, enhancing both patient care and operational efficiency. Results: Results demonstrated a substantial reduction in overall average waiting time, dropping from 35 to approximately 14 minutes by August 2023. The wait times for priority 1 cases have been reduced from 22 to 0 minutes, and for priority 2 cases, the wait times have been reduced from 32 to approximately 13.6 minutes. The proportion of patients spending less than 8 hours in the OB ED observation beds rose from 74% in January 2022 to over 98% in 2023. Notably, there was a remarkable decrease in LWBS and absconded patient rates from 2020 to 2023. Conclusion: The project initiated a profound change in the department's operational environment. Efficiency became deeply embedded in the unit's culture, promoting teamwork among staff that went beyond the project's original focus and had a positive influence on operations in other departments. This effectiveness not only made processes more efficient but also resulted in significant cost reductions for the hospital. These cost savings were achieved by reducing wait times, which in turn led to fewer prolonged patient stays and reduced the need for additional treatments. These continuous improvement initiatives have now become an integral part of the Obstetrics and Gynecology Division's standard operating procedures, ensuring that the positive changes brought about by the project persist and evolve over time.

Keywords: overcrowding, waiting time, person centered care, quality initiatives

Procedia PDF Downloads 57
5365 Shear Strengthening of RC T-Beams by Means of CFRP Sheets

Authors: Omar A. Farghal

Abstract:

This research aimed to experimentally and analytically investigate the contribution of bonded web carbon fiber reinforced polymer (CFRP) sheets to the shear strength of reinforced concrete (RC) T-beams. Two strengthening techniques using CFRP strips were applied along the shear-span zone: the first one is vertical U-jacket and the later is vertical strips bonded to the beam sides only. Fibers of both U-jacket and side sheets were vertically oriented (θ = 90°). Test results showed that the strengthening technique with U-jacket CFRP sheets improved the shear strength particularly. Three mechanisms of failure were recognized for the tested beams depending upon the end condition of the bonded CFRP sheet. Although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket CFRP sheets showed more or less a ductile behavior at a higher loading level up to a load level just before failure. As a consequence, these beams approved an acceptable enhancement in the structural ductility. Moreover, the obtained results concerning both the strains induced in the CFRP sheets and the maximum loads are used to study the applicability of the analytical models proposed in this study (ACI code) to predict: the nominal shear strength of the strengthened beams.

Keywords: carbon fiber reinforced polymer, wrapping, ductility, shear strengthening

Procedia PDF Downloads 246
5364 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy

Authors: Priya Patel, Paresh Patel, Mihir Raval

Abstract:

Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.

Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability

Procedia PDF Downloads 410
5363 Nonlinear Multivariable Analysis of CO2 Emissions in China

Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu

Abstract:

This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.

Keywords: China, CO₂ emissions, foreign direct investment, grey relational analysis

Procedia PDF Downloads 395
5362 Design and Optimization of a Small Hydraulic Propeller Turbine

Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink

Abstract:

A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.

Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design

Procedia PDF Downloads 142
5361 Dual Metal Organic Framework Derived N-Doped Fe3C Nanocages Decorated with Ultrathin ZnIn2S4 Nanosheets for Efficient Photocatalytic Hydrogen Generation

Authors: D. Amaranatha Reddy

Abstract:

Highly efficient and stable co-catalysts materials is of great important for boosting photo charge carrier’s separation, transportation efficiency, and accelerating the catalytic reactive sites of semiconductor photocatalysts. As a result, it is of decisive importance to fabricate low price noble metal free co-catalysts with high catalytic reactivity, but it remains very challenging. Considering this challenge here, dual metal organic frame work derived N-Doped Fe3C nanocages have been rationally designed and decorated with ultrathin ZnIn2S4 nanosheets for efficient photocatalytic hydrogen generation. The fabrication strategy precisely integrates co-catalyst nanocages with ultrathin two-dimensional (2D) semiconductor nanosheets by providing tightly interconnected nano-junctions and helps to suppress the charge carrier’s recombination rate. Furthermore, constructed highly porous hybrid structures expose ample active sites for catalytic reduction reactions and harvest visible light more effectively by light scattering. As a result, fabricated nanostructures exhibit superior solar driven hydrogen evolution rate (9600 µmol/g/h) with an apparent quantum efficiency of 3.6 %, which is relatively higher than the Pt noble metal co-catalyst systems and earlier reported ZnIn2S4 based nanohybrids. We believe that the present work promotes the application of sulfide based nanostructures in solar driven hydrogen production.

Keywords: photocatalysis, water splitting, hydrogen fuel production, solar-driven hydrogen

Procedia PDF Downloads 125
5360 Analysis of Grid Connected High Concentrated Photovoltaic Systems for Peak Load Shaving in Kuwait

Authors: Adel A. Ghoneim

Abstract:

Air conditioning devices are substantially utilized in the summer months, as a result maximum loads in Kuwait take place in these intervals. Peak energy consumption are usually more expensive to satisfy compared to other standard power sources. The primary objective of the current work is to enhance the performance of high concentrated photovoltaic (HCPV) systems in an attempt to minimize peak power usage in Kuwait using HCPV modules. High concentrated PV multi-junction solar cells provide a promising method towards accomplishing lowest pricing per kilowatt-hour. Nevertheless, these cells have various features that should be resolved to be feasible for extensive power production. A single diode equivalent circuit model is formulated to analyze multi-junction solar cells efficiency in Kuwait weather circumstances taking into account the effects of both the temperature and the concentration ratio. The diode shunt resistance that is commonly ignored in the established models is considered in the present numerical model. The current model results are successfully validated versus measurements from published data to within 1.8% accuracy. Present calculations reveal that the single diode model considering the shunt resistance provides accurate and dependable results. The electrical efficiency (η) is observed to increase with concentration to a specific concentration level after which it reduces. Implementing grid systems is noticed to increase with concentration to a certain concentration degree after which it decreases. Employing grid connected HCPV systems results in significant peak load reduction.

Keywords: grid connected, high concentrated photovoltaic systems, peak load, solar cells

Procedia PDF Downloads 148
5359 Characterization and Optimization of Antimicrobial Compound/S Produced by Asperigillus Fumigatus Isolated from Monuments

Authors: Mohammad A. M. Kewisha

Abstract:

Xerophilic fungi , which are responsible for many cases of biodeterioration monuments, have been known as an interesting source of antimicrobial compounds. Sixty nine fungal strains, isolated from different localities and species inside Egyptian museums, were screened for antimicrobial activity against some bacterial species and unicellular fungi. The most potent antimicrobial activity was obtained by Asperigillus fumigatus which was identified by ITS4 ……. and showed activity against Staphylococcus aureus with 20 mm and C. albicans with18 mm of inhibition zone. Different parameters were optimized to enhance this activity. The culture grown under stationary conditions for 8 days at 30°C and pH 8 gave the best antimicrobial activity. Moreover, both starch and yeast extract showed the most suitable carbon and nitrogen sources, respectively. The antimicrobial compound was purified and subjected to spectroscopic characterization, which revealed that the antimicrobial compound might be 5,7 ethoxy, 4\,5\ methoxy isorhamnetin -3- O- galactoside. This study suggests that Aspergillus fumagates as a potential candidate offering a better scope for the production, purification and isolation of broad-spectrum antimicrobial compounds. These findings will facilitate the scale-up and further purification to ascertain the compounds responsible for antimicrobial activity, which can be exploited for the treatment of biodeterioration monuments and pharmaceutical applications.

Keywords: antimicrobial activity, asperigillus fumigatus, Identification by ITS4, Staphylococcus aureus, C.albicans

Procedia PDF Downloads 44
5358 Development and Characterization of Topical 5-Fluorouracil Solid Lipid Nanoparticles for the Effective Treatment of Non-Melanoma Skin Cancer

Authors: Sudhir Kumar, V. R. Sinha

Abstract:

Background: The topical and systemic toxicity associated with present nonmelanoma skin cancer (NMSC) treatment therapy using 5-Fluorouracil (5-FU) make it necessary to develop a novel delivery system having lesser toxicity and better control over drug release. Solid lipid nanoparticles offer many advantages like: controlled and localized release of entrapped actives, nontoxicity, and better tolerance. Aim:-To investigate safety and efficacy of 5-FU loaded solid lipid nanoparticles as a topical delivery system for the treatment of nonmelanoma skin cancer. Method: Topical solid lipid nanoparticles of 5-FU were prepared using Compritol 888 ATO (Glyceryl behenate) as lipid component and pluronic F68 (Poloxamer 188), Tween 80 (Polysorbate 80), Tyloxapol (4-(1,1,3,3-Tetramethylbutyl) phenol polymer with formaldehyde and oxirane) as surfactants. The SLNs were prepared with emulsification method. Different formulation parameters viz. type and ratio of surfactant, ratio of lipid and ratio of surfactant:lipid were investigated on particle size and drug entrapment efficiency. Results: Characterization of SLNs like–Transmission Electron Microscopy (TEM), Differential Scannig calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Particle size determination, Polydispersity index, Entrapment efficiency, Drug loading, ex vivo skin permeation and skin retention studies, skin irritation and histopathology studies were performed. TEM results showed that shape of SLNs was spherical with size range 200-500nm. Higher encapsulation efficiency was obtained for batches having higher concentration of surfactant and lipid. It was found maximum 64.3% for SLN-6 batch with size of 400.1±9.22 nm and PDI 0.221±0.031. Optimized SLN batches and marketed 5-FU cream were compared for flux across rat skin and skin drug retention. The lesser flux and higher skin retention was obtained for SLN formulation in comparison to topical 5-FU cream, which ensures less systemic toxicity and better control of drug release across skin. Chronic skin irritation studies lacks serious erythema or inflammation and histopathology studies showed no significant change in physiology of epidermal layers of rat skin. So, these studies suggest that the optimized SLN formulation is efficient then marketed cream and safer for long term NMSC treatment regimens. Conclusion: Topical and systemic toxicity associated with long-term use of 5-FU, in the treatment of NMSC, can be minimized with its controlled release with significant drug retention with minimal flux across skin. The study may provide a better alternate for effective NMSC treatment.

Keywords: 5-FU, topical formulation, solid lipid nanoparticles, non melanoma skin cancer

Procedia PDF Downloads 506
5357 Chromite Exploration Using Electrical Resistivity Tomography in Ingessana Hill, Blue Nile State, Sudan

Authors: Mohamed A. Mohamed-Ali, Jannis Simos, Khalid M. Kheiralla

Abstract:

The Ingessana hills in the southern Blue Nile of Sudan are part of the southern sector of the NE-SW trending ophiolithic belt of the Arab-Nubian Shield with mid-neoproterozoic age. The rocks are mainly serpentinized and in parts highly silicified dunites especially towards the contact with the intruding Bau granite. A promising chromite mineralization zones in the area tend to be generally associated with NE-SW trending shear-zones. A detailed geophysical survey employing electrical resistivity tomography (ERT) at 34 lines were carried out over a zone of a known chromite mineralization to test feasibility of detecting and delineating the ore (if exist) and accordingly facilitate the positioning of exploratory drill holes. ERT sections were inverted with smooth constraints inversion code where the contacts between the granite and the ultramafics are showing up clearly. The continuity of mineralization along the contact is not well confirmed. However, the low-resistivity anomalies are probably recognized as potential chromite mineralization zones. These anomalies represent prime targets for further exploration by drilling, trenching or shallow pits. If the results of the drilling or excavations are positive, small open pit exploitations may produce important tonnages of chromite.

Keywords: chromite exploration, ERT, Ingessana Hills, inversion

Procedia PDF Downloads 377
5356 Microclimate Impacts on Solar Panel Power Generation in Midlands Area, UK

Authors: Stamatis Zoras, Boris Ceranic, Ashley Redfern

Abstract:

Green House Gas emissions from domestic properties currently account for a substantial part of the total UK’s carbon emissions and is a priority area for UK to reach zero carbon emissions. However, GHG emissions of urban complexes depend on building, road, structural developments etc surfaces that form urban microclimate. This in turn may further influence renewable energy system power generation that depend on solar or wind potential. Moreover, urban climatic conditions are also influenced by the installation of those power generation systems that may impact their own power generation efficiency. Increased air temperature is attributed to densely installed roof based solar panels that consequently impact their own production efficiency. Installation of roof based solar panels requires adequate guidance to enable housing businesses, councils and organisations to implement sufficient measures for improved power generation in relation to local urban microclimate. How microclimate is affected and how, in return, it affects solar power productivity. Derby Council & Derby Homes have been collecting solar panel power generation data for a large number of properties. The different building areas and system operation performance will be studied against microclimate conditions through time. It is envisaged that the outcomes of the study will support a working up strategy for Derby city to ensure that owned homes would be able to access information and data of solar photo voltaic PV and solar thermal panels potential on social housing, helping residents on low incomes create their own green energy to power their homes and heat their homeshot water.

Keywords: microclimate, solar power, urban climatology, urban morphology

Procedia PDF Downloads 58
5355 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies

Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar

Abstract:

Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.

Keywords: microfluidic device, minitab, statistical optimization, response surface methodology

Procedia PDF Downloads 48
5354 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing

Authors: Daniel M. Muntean, Viorel Ungureanu

Abstract:

More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.

Keywords: adaptive building, energy efficiency, retrofitting, residential buildings, smart grid

Procedia PDF Downloads 288
5353 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 79
5352 Hub Traveler Guidance Signage Evaluation via Panoramic Visualization Using Entropy Weight Method and TOPSIS

Authors: Si-yang Zhang, Chi Zhao

Abstract:

Comprehensive transportation hubs are important nodes of the transportation network, and their internal signage the functions as guidance and distribution assistance, which directly affects the operational efficiency of traffic in and around the hubs. Reasonably installed signage effectively attracts the visual focus of travelers and improves wayfinding efficiency. Among the elements of signage, the visual guidance effect is the key factor affecting the information conveyance, whom should be evaluated during design and optimization process. However, existing evaluation methods mostly focus on the layout, and are not able to fully understand if signage caters travelers’ need. This study conducted field investigations and developed panoramic videos for multiple transportation hubs in China, and designed survey accordingly. Human subjects are recruited to watch panoramic videos via virtual reality (VR) and respond to the surveys. In this paper, Pudong Airport and Xi'an North Railway Station were studied and compared as examples due to their high traveler volume and relatively well-developed traveler service systems. Visual attention was captured by eye tracker and subjective satisfaction ratings were collected through surveys. Entropy Weight Method (EWM) was utilized to evaluate the effectiveness of signage elements and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to further rank the importance of the elements. The results show that the degree of visual attention of travelers significantly affects the evaluation results of guidance signage. Key factors affecting visual attention include accurate legibility, obstruction and defacement rates, informativeness, and whether signage is set up in a hierarchical manner.

Keywords: traveler guidance signage, panoramic video, visual attention, entropy weight method, TOPSIS

Procedia PDF Downloads 55
5351 Exoskeleton-Enhanced Manufacturing: A Study Exploring Psychological and Physical Effects on Assembly Operators' Wellbeing

Authors: Iveta Eimontaite, Sarah R. Fletcher, Michele Surico, Alfio Minissale, Fabio F. Abba

Abstract:

Industry 4.0 offers possibilities for increased production volumes and greater efficiency whilst at the same time presenting new opportunities and challenges for the human workforce. Exoskeletons have been used in healthcare and are now starting to be adopted in manufacturing. The potential benefits of reducing fatigue and physical strain are attractive prospects of the technology for industry; however, the novelty of exoskeletons and surrounding ethical issues raise concerns amongst the stakeholders. The current case study investigated the introduction of an upper body exoskeleton designed to support posture but not increase physical strength in a factory over three time points: before the exoskeleton was introduced, and one and two months post-introduction once operators had experienced working with it. The main focus was to evaluate changes in operators' workload, situation awareness, technology self-efficacy, and physical discomfort following the introduction of the exoskeleton. After using the exoskeleton over two months, operators reported a decrease in temporal demand and an increase in performance of the NASA TLX instrument. Furthermore, over the second month, operators' self-reported technology self-efficacy scores increased, but at the same time, their situation awareness decreased. Interestingly, operators' physical discomfort after using the exoskeleton for two months increased from not uncomfortable to quite uncomfortable in the shoulder, arm, and middle back regions. The results suggest that self-perceived task efficiency improved; however, increased discomfort and decreased situation awareness scores indicate that two months might not be long enough for the exoskeleton to be integrated into operators’ mental body schema. The paper will discuss further implications and suggestions for exoskeleton introduction to manufacturing environments.

Keywords: exoskeleton, manufacturing, mental workload, physical discomfort, situation awareness, technology self-efficacy

Procedia PDF Downloads 121
5350 Evaluation of the Quality of Groundwater in the Zone of the Irrigated Perimeter Guelma-Bouchegouf, Northeast of Algeria

Authors: M. Benhamza, M. Touati, M. Aissaoui

Abstract:

The Guelma-Bouchegouf irrigated area is located in the north-east of the country; it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, physico-chemical and organic analyzes were carried out during the low water period in November 2017, at the level of fourteen wells in the Guelma-Bouchegouf irrigation area. The interpretation of the results of the chemical analyzes shows that the waters of the study area belong to two dominant chemical facies: sulphated-chlorinated-calcium and Sulfated-chlorinated-sodium. The mineral quality of the groundwater in the study area shows that Ca²⁺, Cl⁻ and SO₄²⁻ indicate little to significant pollution, Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. NO₃⁻ and NH⁴⁺ show little to significant pollution throughout the study area. Phosphate represents a significant pollution, with excessive values exceeding the allowable standard. Phosphate concentrations indicate pollution caused by agricultural practices in the irrigated area, following the use of phosphates in the form of chemical fertilizers or pesticides.

Keywords: Algeria, groundwater, irrigated perimeter, pollution

Procedia PDF Downloads 114
5349 Experimental Modal Analysis of a Suspended Composite Beam

Authors: First A. Lahmar Lahbib, Second B. Abdeldjebar Rabiâ, Third C. Moudden B, forth D. Missoum L

Abstract:

Vibration tests are used to identify the elasticity modulus in two directions. This strategy is applied to composite materials glass / polyester. Experimental results made on a specimen in free vibration showed the efficiency of this method. Obtained results were validated by a comparison to results stemming from static tests.

Keywords: beam, characterization, composite, elasticity modulus, vibration.

Procedia PDF Downloads 452
5348 Impact of Transitioning to Renewable Energy Sources on KPIs and AI Modules of data centre

Authors: Ahmed Hossam El Molla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Ma-chine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable genera-tion. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficien-cies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, new Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predic-tive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence (AI), renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators (KPIs), carbon emissions, resiliency

Procedia PDF Downloads 5
5347 Experimental Study on Strength Development of Low Cement Concrete Using Mix Design for Both Binary and Ternary Mixes

Authors: Mulubrhan Berihu, Supratic Gupta, Zena Gebriel

Abstract:

Due to the design versatility, availability, and cost efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economical and environmental benefits besides the reduction of CO2 emission from cement production. The study aims to document the effect on strength property of concrete due to use of low cement by maximizing supplementary cementitious materials like fly ash or marble powder. Based on the different mix proportion of pozzolana and marble powder a range of mix design was formulated. The first part of the project is to study the strength of low cement concrete using fly ash replacement experimentally. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicates that strength is a function of w/b. In the second part a new set of mix design has been carried out with fly ash and marble powder to study the strength of both binary and ternary mixes. In this experimental study, three groups of mix design (c+FA, c+FA+m and c+m), four sets of mixes for each group were taken up. Experimental results show that c+FA has maintained the best strength and impermeability whereas c+m obtained less compressive strength, poorer permeability and split tensile strength. c+FA shows a big difference in gaining of compressive strength from 7 days to 28 days compression strength compared to others and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases the strength decreases significantly. At the same time higher permeability has been seen in the specimens which were tested for three hours than one hour.

Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs

Procedia PDF Downloads 195
5346 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells

Authors: Moustafa Elhamouly, Masayuki Shimada

Abstract:

The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.

Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).

Procedia PDF Downloads 71
5345 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo

Abstract:

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Keywords: impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid

Procedia PDF Downloads 276
5344 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Keywords: direct search, DFIG, equivalent circuit parameters, optimization

Procedia PDF Downloads 246
5343 Catalytic Wet Air Oxidation as a Pretreatment Option for Biodegradability Enhancement of Industrial Effluent

Authors: Sushma Yadav, Anil K. Saroha

Abstract:

Complex industrial effluent generated from chemical industry is contaminated with toxic and hazardous organic compounds and not amenable to direct biological treatment. To effectively remove many toxic organic pollutants has made it evident that new, compact and more efficient systems are needed. Catalytic Wet Air Oxidation (CWAO) is a promising treatment technology for the abatement of organic pollutants in wastewater. A lot of information is available on using CWAO for the treatment of synthetic solution containing single organic pollutant. But the real industrial effluents containing multi-component mixture of organic compounds were less studied. The main objective of this study is to use the CWAO process for converting the organics into compounds more amenable to biological treatment; complete oxidation may be too expensive. Therefore efforts were made in the present study to explore the potential of alumina based Platinum (Pt) catalyst for the treatment of industrial organic raffinate containing toxic constituents like ammoniacal nitrogen, pyridine etc. The catalysts were prepared by incipient wetness impregnation method and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and BET (Brunauer, Emmett, and Teller) surface area. CWAO experiments were performed at atmospheric pressure and (30 °C - 70 °C) temperature conditions and the results were evaluated in terms of COD removal efficiency. The biodegradability test was performed by BOD/COD ratio for checking the toxicity of the industrial wastewater as well as for the treated water. The BOD/COD ratio of treated water was significantly increased and signified that the toxicity of the organics was decreased while the biodegradability was increased, indicating the more amenability towards biological treatment.

Keywords: alumina based pt catalyst, BOD/COD ratio, catalytic wet air oxidation, COD removal efficiency, industrial organic raffinate

Procedia PDF Downloads 293
5342 High-Rise Building with PV Facade

Authors: Jiří Hirš, Jitka Mohelnikova

Abstract:

A photovoltaic system integrated into a high-rise building façade was studied. The high-rise building is located in the Central Europe region with temperate climate and dominant partly cloudy and overcast sky conditions. The PV façade has been monitored since 2013. The three-year monitoring of the façade energy generation shows that the façade has an important impact on the building energy efficiency and sustainable operation.

Keywords: buildings, energy, PV façade, solar radiation

Procedia PDF Downloads 292
5341 Strategies Used by the Saffron Producers of Taliouine (Morocco) to Adapt to Climate Change

Authors: Aziz Larbi, Widad Sadok

Abstract:

In Morocco, the mountainous regions extend over about 26% of the national territory where 30% of the total population live. They contain opportunities for agriculture, forestry, pastureland and mining. The production systems in these zones are characterised by crop diversification. However, these areas have become vulnerable to the effects of climate change. To understand these effects in relation to the population living in these areas, a study was carried out in the zone of Taliouine, in the Anti-Atlas. The vulnerability of crop productions to climate change was analysed and the different ways of adaptation adopted by farmers were identified. The work was done on saffron, the most profitable crop in the target area even though it requires much water. Our results show that the majority of the farmers surveyed had noticed variations in the climate of the region: irregularity of precipitation leading to a decrease in quantity and an uneven distribution throughout the year; rise in temperature; reduction in the cold period and less snow. These variations had impacts on the cropping system of saffron and its productivity. To cope with these effects, the farmers adopted various strategies: better management and use of water; diversification of agricultural activities; increase in the contribution of non-agricultural activities to their gross income; and seasonal migration.

Keywords: climate change, Taliouine, saffron, perceptions, adaptation strategies

Procedia PDF Downloads 50