Search results for: statistical machine translation
4630 Iron Response Element-mRNA Binding to Iron Response Protein: Metal Ion Sensing
Authors: Mateen A. Khan, Elizabeth J. Theil, Dixie J. Goss
Abstract:
Cellular iron homeostasis is accomplished by the coordinated regulated expression of iron uptake, storage, and export. Iron regulate the translation of ferritin and mitochondrial aconitase iron responsive element (IRE)-mRNA by interaction with an iron regulatory protein (IRPs). Iron increases protein biosynthesis encoded in iron responsive element. The noncoding structure IRE-mRNA, approximately 30-nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. Fluorescence anisotropy measurements showed the presence of one binding site on IRP1 for ferritin and mitochondrial aconitase IRE-mRNA. Scatchard analysis revealed the binding affinity (Kₐ) and average binding sites (n) for ferritin and mitochondrial aconitase IRE-mRNA were 68.7 x 10⁶ M⁻¹ and 9.2 x 10⁶ M⁻¹, respectively. In order to understand the relative importance of equilibrium and stability, we further report the contribution of electrostatic interactions in the overall binding of two IRE-mRNA with IRP1. The fluorescence quenching of IRP1 protein was measured at different ionic strengths. The binding affinity of IRE-mRNA to IRP1 decreases with increasing ionic strength, but the number of binding sites was independent of ionic strength. Such results indicate a differential contribution of electrostatics to the interaction of IRE-mRNA with IRP1, possibly related to helix bending or stem interactions and an overall conformational change. Selective destabilization of ferritin and mitochondrial aconitase RNA/protein complexes as reported here explain in part the quantitative differences in signal response to iron in vivo and indicate possible new regulatory interactions.Keywords: IRE-mRNA, IRP1, binding, ionic strength
Procedia PDF Downloads 1284629 Parameter Estimation via Metamodeling
Authors: Sergio Haram Sarmiento, Arcady Ponosov
Abstract:
Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels
Procedia PDF Downloads 5174628 Setting Control Limits For Inaccurate Measurements
Authors: Ran Etgar
Abstract:
The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X ̅-chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter (Y ̅) is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables.Keywords: quality control, process control, round-off, measurement, rounding error
Procedia PDF Downloads 994627 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3354626 Minimizing Total Completion Time in No-Wait Flowshops with Setup Times
Authors: Ali Allahverdi
Abstract:
The m-machine no-wait flowshop scheduling problem is addressed in this paper. The objective is to minimize total completion time subject to the constraint that the makespan value is not greater than a certain value. Setup times are treated as separate from processing times. Several recent algorithms are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that the best proposed algorithm performs significantly better than the earlier existing best algorithm.Keywords: scheduling, no-wait flowshop, algorithm, setup times, total completion time, makespan
Procedia PDF Downloads 3404625 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management
Authors: Ezgi Şendil
Abstract:
Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.Keywords: disaster, NLP, postdisaster management, sentiment analysis
Procedia PDF Downloads 754624 A Clinical Study of Placenta Previa and Its Effect on Fetomaternal Outcome in Scarred and Unscarred Uterus at a Tertiary Care Hospital
Authors: Sharadha G., Suresh Kanakkanavar
Abstract:
Background: Placenta previa is a condition characterized by partial or complete implantation of the placenta in the lower uterine segment. It is one of the main causes of vaginal bleeding in the third trimester and a significant cause of maternal and perinatal morbidity and mortality. Materials and Methods: This is an observational study involving 130 patients diagnosed with placenta previa and satisfying inclusion criteria. The demographic data, clinical, surgical, and treatment, along with maternal and neonatal outcome parameters, were noted in proforma. Results: The incidence of placenta previa among scarred uterus was 1.32%, and in unscarred uterus was 0.67%. The mean age of the study population was 27.12±4.426years. High parity, high abortion rate, multigravida status, and less gestational age at delivery were commonly seen in scarred uterus compared to unscarred uterus. Complete placenta previa, anterior placental position, and adherent placenta were significantly associated with a scarred uterus compared to an unscarred uterus. The rate of caesarean hysterectomy was higher in the scarred uterus, along with statistical association to previous lower-segment caesarean sections. Intraoperative procedures like uterine artery ligation, bakri balloon insertion, and iliac artery ligation were higher in the scarred group. The maternal intensive care unit admission rate was higher in the scarred group and also showed its statistical association with previous lower segment caesarean section. Neonatal outcomes in terms of pre-term birth, still birth, neonatal intensive care unit admission, and neonatal death, though higher in the scarred group, did not differ statistically among the groups. Conclusion: Advancing maternal age, multiparity, prior uterine surgeries, and abortions are independent risk factors for placenta previa. Maternal morbidity is higher in the scarred uterus group compared to the unscarred group. Neonatal outcomes did not differ statistically among the groups. This knowledge would help the obstetricians to take measures to reduce the incidence of placenta previa and scarred uterus which would improve the fetomaternal outcome of placenta previa.Keywords: placenta previa, scarred uterus, unscarred uterus, adherent placenta
Procedia PDF Downloads 594623 Exposing Investor Sentiment In Stock Returns
Authors: Qiang Bu
Abstract:
This paper compares the explanatory power of sentiment level and sentiment shock. The preliminary test results show that sentiment shock plays a more significant role in explaining stocks returns, including the raw return and abnormal return. We also find that sentiment shock beta has a higher statistical significance than sentiment beta. These finding sheds new light on the relationship between investor sentiment and stock returns.Keywords: sentiment level, sentiment shock, explanatory power, abnormal stock return, beta
Procedia PDF Downloads 1374622 Establishing Control Chart Limits for Rounded Measurements
Authors: Ran Etgar
Abstract:
The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X̄ chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter ȳ is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables.Keywords: SPC, round-off data, control limit, rounding error
Procedia PDF Downloads 764621 Effectiveness of Working Memory Training on Cognitive Flexibility
Authors: Leila Maleki, Ezatollah Ahmadi
Abstract:
The aim of this study was to investigate the effectiveness of memory training exercise on cognitive flexibility. The method of this study was experimental. The statistical population selected 40 students 14 years old, samples were chosen by available sampling method and then they were replaced in experimental (training program) group and control group randomly and answered to Wisconsin Card Sorting Test; covariance test results indicated that there were a significant in post-test scores of experimental group (p<0.005).Keywords: cognitive flexibility, working memory exercises, problem solving, reaction time
Procedia PDF Downloads 4244620 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 3264619 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses
Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau
Abstract:
Planning the order picking lists of warehouses to achieve when the costs associated with logistics on the operational performance is a significant challenge. In e-commerce era, this task is especially important productive processes are high. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, the definition of which features should be processed by such algorithms is not a simple task, being crucial to the proposed technique’s success. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A Zone2 picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.Keywords: order picking, warehouse, clustering, unsupervised learning
Procedia PDF Downloads 1594618 Assessment of Climate Change Impacts on the Hydrology of Upper Guder Catchment, Upper Blue Nile
Authors: Fikru Fentaw Abera
Abstract:
Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this paper is to assess the impact of climate change on the hydrology of Upper Guder catchment located in northwest of Ethiopia. The GCM derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) experiments were used for the climate projection. The statistical downscaling model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the soil and water assessment tool (SWAT) model to simulate the corresponding future stream flow regime in Upper Guder catchment of the Abay River Basin. A semi distributed hydrological model, SWAT was developed and Generalized Likelihood Uncertainty Estimation (GLUE) was utilized for uncertainty analysis. GLUE is linked with SWAT in the Calibration and Uncertainty Program known as SWAT-CUP. Three benchmark periods simulated for this study were 2020s, 2050s and 2080s. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight increasing trend in precipitation for both A2a and B2a emission scenarios in both Gedo and Tikur Inch stations for all three bench mark periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the hydrological model SWAT suggested for both A2a and B2a emission scenarios. The model output shows that there may be an annual increase in flow volume up to 35% for both emission scenarios in three benchmark periods in the future. All seasons show an increase in flow volume for both A2a and B2a emission scenarios for all time horizons. Potential evapotranspiration in the catchment also will increase annually on average 3-15% for the 2020s and 7-25% for the 2050s and 2080s for both A2a and B2a emissions scenarios.Keywords: climate change, Guder sub-basin, GCM, SDSM, SWAT, SWAT-CUP, GLUE
Procedia PDF Downloads 3654617 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 124616 Asynchronous Sequential Machines with Fault Detectors
Authors: Seong Woo Kwak, Jung-Min Yang
Abstract:
A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector
Procedia PDF Downloads 3494615 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor
Authors: Barenten Suciu
Abstract:
In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor
Procedia PDF Downloads 2754614 Predicting Personality and Psychological Distress Using Natural Language Processing
Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi
Abstract:
Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality
Procedia PDF Downloads 794613 Two-Stage Flowshop Scheduling with Unsystematic Breakdowns
Authors: Fawaz Abdulmalek
Abstract:
The two-stage flowshop assembly scheduling problem is considered in this paper. There are more than one parallel machines at stage one and an assembly machine at stage two. The jobs will be processed into the flowshop based on Johnson rule and two extensions of Johnson rule. A simulation model of the two-stage flowshop is constructed where both machines at stage one are subject to random failures. Three simulation experiments will be conducted to test the effect of the three job ranking rules on the makespan. Johnson Largest heuristic outperformed both Johnson rule and Johnson Smallest heuristic for two performed experiments for all scenarios where each experiments having five scenarios.Keywords: flowshop scheduling, random failures, johnson rule, simulation
Procedia PDF Downloads 3394612 Community Engagement Policy for Decreasing Childhood Lead Poisoning in Philadelphia
Authors: Hasibe Caballero-Gomez, Richard Pepino
Abstract:
Childhood lead poisoning is an issue that continues to plague major U.S. cities. Lead poisoning has been linked to decreases in academic achievement and IQ at levels as low as 5 ug/dL. Despite efforts from the Philadelphia Health Department to curtail systemic childhood lead poisoning, children continue to be identified with elevated blood lead levels (EBLLs) above the CDC reference level for diagnosis. This problem disproportionately affects low-income Black communities. At the moment, remediation is costly, and with the current policies in place, comprehensive remediation seems unrealistic. This research investigates community engagement policy and the ways pre-exisiting resources in target communities can be adjusted to decrease childhood lead poisoning. The study was done with two methods: content analysis and case studies. The content analysis includes 12 interviews from stakeholders and five published policy recommendations. The case studies focus on Baltimore, Chicago, Rochester, and St. Louis, four cities with significant childhood lead poisoning. Target communities were identified by mapping five factors that indicate a higher risk for lead poisoning. Seven priority zipcodes were identified for the model developed in this study. For these urban centers, 28 policy solutions and suggestions were identified, with three being identified at least four times in the content analysis and case studies. These three solutions create an interdependent model that offers increased community awareness and engagement with the issue that could potentially improve health and social outcomes for at-risk children.Keywords: at-risk populations, community engagement, environmental justice, policy translation
Procedia PDF Downloads 1204611 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 734610 Integrating Service Learning into a Business Analytics Course: A Comparative Investigation
Authors: Gokhan Egilmez, Erika Hatfield, Julie Turner
Abstract:
In this study, we investigated the impacts of service-learning integration on an undergraduate level business analytics course from multiple perspectives, including academic proficiency, community awareness, engagement, social responsibility, and reflection. We assessed the impact of the service-learning experience by using a survey developed primarily based on the literature review and secondarily on an ad hoc group of researchers. Then, we implemented the survey in two sections, where one of the sections was a control group. We compared the results of the empirical survey visually and statistically.Keywords: business analytics, service learning, experiential education, statistical analysis, survey research
Procedia PDF Downloads 1114609 Lack of Physical Activity In Schools: Study Carried Out on School-aged Adolescents
Authors: Bencharif Meriem, Sersar Ibrahim, Djaafri Zineb
Abstract:
Introduction and purpose of the study: Education plays a fundamental role in the lives of young people, but what about their physical well-being as they spend long hours sitting at school? School inactivity is a problem that deserves particular attention because it can have significant repercussions on the health and development of students. The aim of this study was to describe and evaluate the physical activity of students in different practices in class, at recess and in the canteen. Material and methods: A physical activity diary and an anthropometric measurement sheet (weight, height) were provided to 123 school-aged adolescents. The measurements were carried out according to international recommendations. The statistical tests were carried out with the R software. 3.2.4. The significance threshold retained was 0.05. Results and Statistical Analysis: One hundred and twenty-three students agreed to participate in the study. Their average age was 16.5±1.60 years. Overweight was present in 8.13% and obesity in 4.06%. For the practice of physical activity, during physical education and sports classes, all students played sports with an average of 1.94±1.00 hours/week, of which 74.00% sweated or were out of breath during these hours of physical activity. It was also noted that boys practiced sports more than girls (p<0.0001). Each day, on average, students spent 39.78±37.85 min walking or running during recess. On the other hand, they spent, on average 4.25±2.65 hours sitting per day in class, at recess, in the canteen, etc., without counting the time spent in front of a screen. The increasing use of screens has become a major concern for parents and educators. On average, students spent approximately 42.90±38.41 min per day using screens in class, at recess, in the canteen and at home. (computer, tablet, telephone, video games, etc.) and therefore to a prolonged sedentary lifestyle. On average, students sat for more than 1.5 hours without moving for at least 2 minutes in a row approximately 1.72±0.71 times per day. Conclusion: These students spent many hours sitting at school. This prolonged inactivity can have negative consequences on their health, including problems with posture and cardiovascular health. It is crucial that schools, educators and parents collaborate to promote more active learning environments where students can move more and thus contribute to their overall well-being. It's time to rethink how we approach education and student health to give them a healthier, more active future.Keywords: physical acivity, sedentarity, adolescents, school
Procedia PDF Downloads 604608 Effects of Sublethal Concentrations of Parkia biglobosa Pod on Weight Gain in the African Catfish, Clarias gariepinus Juveniles
Authors: M. I. Oshimagye, V. O. Ayuba, P. A. Annune
Abstract:
The effect of Sublethal Concentrations of Parkia biglobosa pod extract on the growth and survival of Clarias gariepinus juveniles (mean weight 32.73g ± 0.0) were investigated under laboratory conditions for 8 weeks using the static renewal and continuous aeration system. Statistical analysis showed that fish exposed to various concentrations had significantly lower (P<0.05) growth rate than the control groups. The reduction in growth was observed to be directly proportional to increase in concentration. However, at 50 mg/L no significant depression in weight was observed.Keywords: Clarias gariepinus, Parkia biglobosa, pod, weight
Procedia PDF Downloads 4994607 Acoustic Analysis of Psycho-Communication Disorders within Moroccan Students
Authors: Brahim Sabir
Abstract:
Psycho-Communication disorders negatively affect the academic curriculum for students in higher education. Thus, understanding these disorders, their causes and effects will give education specialists a tool for the decision, which will lead to the resolution of problems related to the integration of students with Psycho-Communication disorders. It is in this context that a statistical study was conducted, targeting the population object of study, namely Moroccan students. Pathological voice samples were recorded and analyzed acoustically with PRAAT software, in order to build a model that will be the basis for the objective diagnostic.Keywords: psycho-communication disorders, acoustic analysis, PRAAT
Procedia PDF Downloads 3904606 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)
Procedia PDF Downloads 3094605 On Coverage Probability of Confidence Intervals for the Normal Mean with Known Coefficient of Variation
Authors: Suparat Niwitpong, Sa-aat Niwitpong
Abstract:
Statistical inference of normal mean with known coefficient of variation has been investigated recently. This phenomenon occurs normally in environment and agriculture experiments when the scientist knows the coefficient of variation of their experiments. In this paper, we constructed new confidence intervals for the normal population mean with known coefficient of variation. We also derived analytic expressions for the coverage probability of each confidence interval. To confirm our theoretical results, Monte Carlo simulation will be used to assess the performance of these intervals based on their coverage probabilities.Keywords: confidence interval, coverage probability, expected length, known coefficient of variation
Procedia PDF Downloads 3944604 An Effective Preventive Program of HIV/AIDS among Hill Tribe Youth, Thailand
Authors: Tawatchai Apidechkul
Abstract:
This operational research was conducted and divided into two phases: the first phase aimed to determine the risk behaviors used a cross-sectional study design, following by the community participatory research design to develop the HIV/AIDS preventive model among the Akha youths. The instruments were composed of completed questionnaires and assessment forms that were tested for validity and reliability before use. Study setting was Jor Pa Ka and Saen Suk Akha villages, Mae Chan District, Chiang Rai, Thailand. Study sample were the Akha youths lived in the villages. Means and chi-square test were used for the statistical testing. Results: Akha youths in the population mobilization villages live in agricultural families with low income and circumstance of narcotic drugs. The average age was 16 (50.00%), 51.52% Christian, 48.80% completed secondary school, 43.94% had annual family income of 30,000-40,000 baht. Among males, 54.54% drank, 39.39% smoked, 7.57% used amphetamine, first sexual intercourse reported at 14 years old, 50.00% had 2-5 partners, 62.50% had unprotected sex (no-condom). Reasons of unprotected sex included not being able to find condom, unawareness of need to use condoms, and dislike. 28.79% never been received STI related information, 6.06% had STI. Among females, 15.15% drank, 28.79% had sexual intercourse and had first sexual intercourse less than 15 year old. 40.00% unprotected sex (no-condom), 10.61% never been received STI related information, and 4.54% had STI. The HIV/AIDS preventive model contained two components. Peer groups among the youths were built around interests in sports. Improving knowledge would empower their capability and lead to choices that would result in HIV/AIDS prevention. The empowering model consisted of 4 courses: a. human reproductive system and its hygiene, b. risk-avoid skills, family planning, and counseling techniques, c. HIV/AIDS and other STIs, d. drugs and related laws and regulations. The results of the activities found that youths had a greater of knowledge and attitude levels for HIV/AIDS prevention with statistical significance (χ2-τεστ= 12.87, p-value= 0.032 and χ2-τεστ= 9.31, p-value<0.001 respectively). A continuous and initiative youths capability development program is the appropriate process to reduce the spread of HIV/AIDS in youths, particularly in the population who have the specific of language and culture.Keywords: AIV/AIDS, preventive program, effective, hill tribe
Procedia PDF Downloads 3704603 The Ratio of Second to Fourth Digit Length Correlates with Cardiorespiratory Fitness in Male College Students Men but Not in Female
Authors: Cheng-Chen Hsu
Abstract:
Background: The ratio of the length of the second finger (index finger, 2D) to the fourth finger (ring finger, 4D) (2D:4D) is a putative marker of prenatal hormones. A low 2D:4D ratio is related to high prenatal testosterone (PT) levels. Physiological research has suggested that a low 2D:4D ratio is correlated with high sports ability. Aim: To examine the association between cardiorespiratory fitness and 2D:4D. Methods: Assessment of 2D:4D; Images of hands were collected from participants using a computer scanner. Hands were placed lightly on the surface of the plate. Image analysis was performed using Image-Pro Plus 5.0 software. Feature points were marked at the tip of the finger and at the center of the proximal crease on the second and fourth digits. Actual measurement was carried out automatically, 2D:4D was calculated by dividing 2nd by 4th digit length. YMCA 3-min Step Test; The test involves stepping up and down at a rate of 24 steps/min for 3 min; a tape recording of the correct cadence (96 beats/min) is played to assist the participant in keeping the correct pace. Following the step test, the participant immediately sits down and, within 5 s, the tester starts counting the pulse for 1 min. The score for the test, the total 1-min postexercise heart rate, reflects the heart’s ability to recover quickly. Statistical Analysis ; Pearson’s correlation (r) was used for assessing the relationship between age, physical measurements, one-minute heart rate after YMCA 3-minute step test (HR) and 2D:4D. An independent-sample t-test was used for determining possible differences in HR between subjects with low and high values of 2D:4D. All statistical analyses were carried out with SPSS 18 for Window. All P-values were two-tailed at P = 0.05, if not reported otherwise. Results: A median split by 2D:4D was applied, resulting in a high and a low group. One-minute heart rate after YMCA 3-minute step test was significantly difference between groups of male right-hand 2D:4D (p = 0.024). However, no difference in left-hand 2D:4D values between groups in male, and no digit ratio difference between groups in female. Conclusion: The results showed that cardiopulmonary fitness is related to right 2D:4D, only in men. We argue that prenatal testosterone may have an effect on cardiorespiratory fitness in male but not in female.Keywords: college students, digit ratio, finger, step test, fitness
Procedia PDF Downloads 2754602 Downscaling Daily Temperature with Neuroevolutionary Algorithm
Authors: Min Shi
Abstract:
State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms
Procedia PDF Downloads 3494601 Economic Policy to Stimulate Industrial Development in Georgia
Authors: Gulnaz Erkomaishvili
Abstract:
The article analyzes the modern level of industrial production in Georgia, shows the export-import of industrial products and evaluates the results of the activities of institutions implementing industrial policy. The research showed us that the level of development of industry in the country and its export potential are quite low. The article concludes that in the modern phase of industrial development, the country should choose a model focused on technological development and maximum growth of export potential. Objectives. The aim of the research is to develop an economic policy that promotes the development of industry and to look for ways to implement it effectively. Methodologies This paper uses general and specific methods, in particular, analysis, synthesis, induction, deduction, scientific abstraction, comparative and statistical methods, as well as experts’ evaluation. In-depth interviews with experts were conducted to determine quantitative and qualitative indicators; Publications of the National Statistics Office of Georgia are used to determine the regularity between analytical and statistical estimations. Also, theoretical and applied research of international organizations and scientist-economists are used. Contributions Based on the identified challenges in the area of industry, recommendations for the implementation of an active industrial policy in short and long term periods were developed. In particular: the government's priority orientation of industrial development; paying special attention to the processing industry sectors that Georgia has the potential to produce; supporting the development of scientific fields; Determination of certain benefits for those investors who invest money in industrial production; State partnership with the private sector, manifested in the fight against bureaucracy, corruption and crime, creating favorable business conditions for entrepreneurs; Coordination between education - science - production should be implemented in the country. Much attention should be paid to basic scientific research, which does not require purely commercial returns in the short term, science should become a real productive force; Special importance should be given to the creation of an environment that will support the expansion of export-oriented production; Overcoming barriers to entry into export markets.Keywords: industry, sectoral structure of industry, exsport-import of industrial products, industrial policy
Procedia PDF Downloads 106