Search results for: negative binomial model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20698

Search results for: negative binomial model

18208 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures

Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman

Abstract:

Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.

Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction

Procedia PDF Downloads 48
18207 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 112
18206 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 185
18205 Investigating the Subjective Factors Related to the Need for Psychological Help of the College Students

Authors: Ismail Ay

Abstract:

In this study, it is aimed to analyze the relations of the factors such as the learned resourcefulness, self-efficacy, self-regulation and subjective well-being which are thought to affect the needs of the university students for psychological help and to determine if the subjective well-being mediates other factors in the prediction of the needs of the university students for psychological help. The population of the study is formed of undergraduates who get education in 16 faculties in the central campus of the University of Atatürk in the spring term of 2012-2013 academic years. The sample of the study is formed of 1205 undergraduates (female=666, 55,3 %; male=539, 44,7 %; average of age =21,49; Sd=2,18) selected from the mentioned universe by convenience sampling method. “Need for Psychological Help Scale” has been developed as a part of the study to determine the needs for psychological help. “Short Self-Regulation Questionnaire” has been adapted into Turkish to determine the self-regulation skills. Apart from these, Rosenbaum’s Learned Resourcefulness Scale, General Self-Efficacy Scale and to determine subjective well-being; Satisfaction with Life Scale and Positive and Negative Affect Scale have been used within the study. SPSS 22.0 and LISREL 9.1 have been used in the analysis of the data. Pearson product-moment correlation, descriptive analysis, factor analysis and path analysis to test the research hypothesis has been used in the study. According to obtained data, the learned resourcefulness factor does not predict the subjective well-being; however, it highly predicts the self-regulation and self-efficacy factors. It has been determined that the self-regulation and self-efficacy factors predict the subjective well-being in a positive way and medium level, and subjective well-being mediates self-regulation and self-efficacy factors to predict the needs for psychological help. It was also determined that subjective well-being predicts the needs for psychological help in a negative way and fair level. All these results have been discussed in terms of the related theories and literature, and several suggestions have been made.

Keywords: need for psychological help, self-regulation, self-efficacy, learned resourcefulness, subjective well-being, Maslow, psychological needs

Procedia PDF Downloads 357
18204 Frustration Measure for Dipolar Spin Ice and Spin Glass

Authors: Konstantin Nefedev, Petr Andriushchenko

Abstract:

Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0.

Keywords: frustrations, parameter of order, statistical physics, magnetism

Procedia PDF Downloads 169
18203 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation

Authors: Yoonsuh Jung, Steven N. MacEachern

Abstract:

Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.

Keywords: cross-validation, model selection, quantile regression, tuning parameter selection

Procedia PDF Downloads 438
18202 An Empirical Analysis of the Relation between Entrepreneur's Leadership and Team Creativity: The Role of Psychological Empowerment, Cognitive Diversity, and Environmental Uncertainty

Authors: Rui Xing, Xiaowen Zhao, Hao Huang, Chang Liu

Abstract:

Creativity is regarded as vital for new ventures' development since the whole process of entrepreneurship is rooted in the creation and exploration of new ideas. The entrepreneurial leader is central to the entrepreneurial team, who plays an especially important role in this process. However, few scholars have studied the impact entrepreneurs' leadership styles on the creativity of entrepreneurial teams. In this study, we integrate the historically disjointed literatures of leadership style and team creativity under entrepreneurship circumstance to understand why and when entrepreneurs' different leadership style relates to team creativity. Focus on answering the following questions: Is humility leadership necessarily better than narcissism leadership at increasing the creativity of entrepreneurial teams? Moreover, in which situations humility leadership or narcissism leadership is more conducive to the entrepreneurial team's creativity? Based on the componential theory of creativity and entrepreneurial cognition theory, we explore the relationship between entrepreneurs' leadership style and team creativity, treating team cognitive diversity and environmental uncertainty as moderators and psychological empowerment as mediators. We tested our hypotheses using data gathered from 64 teams and 256 individual members from 53 new firms in China's first-tier cities such as Beijing and Shanghai. We found that there was a significant positive relation between entrepreneurs' humble leadership and psychological empowerment, and the more significant the positive correlation was when the environmental uncertainty was high. In addition, there was a significant negative relation between entrepreneurs' narcissistic leadership and psychological empowerment, and the negative relation was weaker in teams with a high team cognitive diversity value. Furthermore, both entrepreneurs' humble leadership and team psychological empowerment were significantly positively related to team creativity. While entrepreneurs' narcissistic leadership was negatively related to team creativity, and the negative relationship was weaker in teams with a high team cognitive diversity or a high environmental uncertainty value. This study has some implications for both scholars and entrepreneurs. Firstly, our study enriches the understanding of the role of leadership in entrepreneurial team creativity. Different from previous team creativity literatures, focusing on TMT and R&D team, this study is a significant attempt to demonstrate that entrepreneurial leadership style is particularly relevant to the core requirements of team creativity. Secondly, this study introduces two moderating variables, cognitive diversity and environmental uncertainty, to explore the different boundary conditions under which the two leadership styles play their roles, which is helpful for entrepreneurs to understand how to leverage leadership to improve entrepreneurial team creativity, how to recruit cognitively diverse employees to moderate the effects of inappropriate leadership to the team. Finally, our findings showed that entrepreneurs' humble leadership makes a unique contribution to explaining team creativity through team psychological empowerment.

Keywords: entrepreneurs’ leadership style, entrepreneurial team creativity, team psychological empowerment, team cognitive diversity, environmental uncertainty

Procedia PDF Downloads 133
18201 Uncertainty in Risk Modeling

Authors: Mueller Jann, Hoffmann Christian Hugo

Abstract:

Conventional quantitative risk management in banking is a risk factor of its own, because it rests on assumptions such as independence and availability of data which do not hold when rare events of extreme consequences are involved. There is a growing recognition of the need for alternative risk measures that do not make these assumptions. We propose a novel method for modeling the risk associated with investment products, in particular derivatives, by using a formal language for specifying financial contracts. Expressions in this language are interpreted in the category of values annotated with (a formal representation of) uncertainty. The choice of uncertainty formalism thus becomes a parameter of the model, so it can be adapted to the particular application and it is not constrained to classical probabilities. We demonstrate our approach using a simple logic-based uncertainty model and a case study in which we assess the risk of counter party default in a portfolio of collateralized loans.

Keywords: risk model, uncertainty monad, derivatives, contract algebra

Procedia PDF Downloads 576
18200 Comparison Analysis of CFD Turbulence Fluid Numerical Study for Quick Coupling

Authors: JoonHo Lee, KyoJin An, JunSu Kim, Young-Chul Park

Abstract:

In this study, the fluid flow characteristics and performance numerical study through CFD model of the Non-split quick coupling for flow control in hydraulic system equipment for the aerospace business group focused to predict. In this study, we considered turbulence models for the application of Computational Fluid Dynamics for the CFD model of the Non-split Quick Coupling for aerospace business. In addition to this, the adequacy of the CFD model were verified by comparing with standard value. Based on this analysis, accurate the fluid flow characteristics can be predicted. It is, therefore, the design of the fluid flow characteristic contribute the reliability for the Quick Coupling which is required in industries on the basis of research results.

Keywords: CFD, FEM, quick coupling, turbulence

Procedia PDF Downloads 384
18199 The Significance of Intellectual Capital and Strategic Orientations on Innovation Capability in Malaysian ICTSMEs

Authors: Juliana Osman, David Gilbert, Caroline Tan

Abstract:

Innovation capability is recognized as a critical factor that contributes to promoting firm growth and wealth creation. While studies on innovation are in abundance, few empirical studies have been undertaken to examine the relationships of intellectual capital with innovation capability, and research investigating the combinations of strategic orientation dimensions is limited and virtually nothing in regard to the Malaysian context. This research investigates the impact of intellectual capital and three strategic orientations on the innovation capability and firm performance of Malaysian ICT SMEs. Data was collected from 213 firms relating to intellectual capital and the three strategic orientations; market orientation, learning orientation and technology orientation. Using partial least squares structural equation modelling (PLS-SEM) to analyse the data, results indicate that while market orientation has a direct negative relationship to firm performance, it is positively related to performance through the mediating effect of innovation capability. Learning orientation and technology orientation are mediated by innovation capability, while intellectual capital was found to be partially mediated by innovation capability. Findings indicate that firm performance is positively and significantly related to innovation capability and that market orientation, learning orientation, technology orientation and intellectual capital are all significant and positively related to innovation capability. The developed model indicates that Malaysian ICT SMEs would perform better with greater emphasis on developing innovation capability through enhancement of intellectual capital and the strategic orientations measured in this study.

Keywords: innovation capability, intellectual capital, strategic orientations, PLS-SEM

Procedia PDF Downloads 472
18198 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 9
18197 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that it is not linked to planning software such as Microsoft Project, which lacks the database required for data storage. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, HR reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: primavera P6, SQL, Power BI, EVM, integration management

Procedia PDF Downloads 108
18196 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 90
18195 Nature as a Human Health Asset: An Extensive Review

Authors: C. Sancho Salvatierra, J. M. Martinez Nieto, R. García Gonzalez-Gordon, M. I. Martinez Bellido

Abstract:

Introduction: Nature could act as an asset for human health protecting against possible diseases and promoting the state of both physical and mental health. Goals: This paper aims to determine which natural elements present evidence that show positive influence on human health, on which particular aspects and how. It also aims to determine the best biomarkers to measure such influence. Method: A systematic literature review was carried out. First, a general free text search was performed in databases, such as Scopus, PubMed or PsychInfo. Secondly, a specific search was performed combining keywords in order of increasing complexity. Also the Snowballing technique was used and it was consulted in the CSIC’s (The Spanish National Research Council). Databases: Of the 130 articles obtained and reviewed, 80 referred to natural elements that influenced health. These 80 articles were classified and tabulated according to the nature elements found, the health aspects studied, the health measurement parameters used and the measurement techniques used. In this classification the results of the studies were codified according to whether they were positive, negative or neutral both for the elements of nature and for the aspects of health studied. Finally, the results of the 80 selected studies were summarized and categorized according to the elements of nature that showed the greatest positive influence on health and the biomarkers that had shown greater reliability to measure said influence. Results: Of the 80 articles studied, 24 (30.0%) were reviews and 56 (70.0%) were original research articles. Among the 24 reviews, 18 (75%) found positive results of natural elements on health, and 6 (25%) both positive and negative effects. Of the 56 original articles, 47 (83.9%) showed positive results, 3 (5.4%) both positive and negative, 4 (7.1%) negative effects, and 2 (3.6%) found no effects. The results reflect positive effects of different elements of nature on the following pathologies: diabetes, high blood pressure, stress, attention deficit hyperactivity disorder, psychotic, anxiety and affective disorders. They also show positive effects on the following areas: immune system, social interaction, recovery after illness, mood, decreased aggressiveness, concentrated attention, cognitive performance, restful sleep, vitality and sense of well-being. Among the elements of nature studied, those that show the greatest positive influence on health are forest immersion, natural views, daylight, outdoor physical activity, active transport, vegetation biodiversity, natural sounds and the green residences. As for the biomarkers used that show greater reliability to measure the effects of natural elements are the levels of cortisol (both in blood and saliva), vitamin D levels, serotonin and melatonin, blood pressure, heart rate, muscle tension and skin conductance. Conclusions: Nature is an asset for health, well-being and quality of life. Awareness programs, education and health promotion are needed based on the elements that nature brings us, which in turn generate proactive attitudes in the population towards the protection and conservation of nature. The studies related to this subject in Spain are very scarce. Aknowledgements. This study has been promoted and partially financed by the Environmental Foundation Jaime González-Gordon.

Keywords: health, green areas, nature, well-being

Procedia PDF Downloads 277
18194 The Technophobia among Older Adults in China

Authors: Erhong Sun, Xuchun Ye

Abstract:

Technophobia, namely the fear or dislike of modern advanced technologies, plays a central role in age-related digital divides and is considered a new risk factor for older adults, which can affect the daily lives of people through low adherence to digital living. Indeed, there is considerable heterogeneity in the group of older adults who feel technophobia. Therefore, the aim of this study was to identify different technophobia typologies of older people and to examine their associations with the subjective age factor. A sample of 704 retired elderly over the age of 55 was recruited in China. Technophobia and subjective age were assessed with a questionnaire, respectively. Latent profile analysis was used to identify technophobia subgroups, using three dimensions including techno-anxiety, techno-paranoia, and privacy concerns as indicators. The association between the identified technophobia subgroups and subjective age was explored. In summary, four different technophobia typologies were identified among older adults in China. Combined with an investigation of personal background characteristics and subjective age, it draws a more nuanced image of the technophobia phenome among older adults in China. First, not all older adults suffer from technophobia, with about half of the elderly subjects belonging to the profiles of “Low-technophobia” and “Medium-technophobia.” Second, privacy concern plays an important role in the classification of technophobia among older adults. Third, subjective age might be a protective factor for technophobia in older adults. Although the causal direction between identified technophobia typologies and subjective age remains uncertain, our suggests that future interventions should better focus on subjective age by breaking the age stereotype of technology to reduce the negative effect of technophobia on older. Future development of this research will involve extensive investigation of the detailed impact of technophobia in senior populations, measurement of the negative outcomes, as well as formulation of innovative educational and clinical pathways.

Keywords: technophobia, older adults, latent profile analysis, subjective age

Procedia PDF Downloads 72
18193 Verification of a Simple Model for Rolling Isolation System Response

Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly

Abstract:

Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.

Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system

Procedia PDF Downloads 250
18192 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 420
18191 Islamic Finance: What is the Outlook for Italy?

Authors: Paolo Pietro Biancone

Abstract:

The spread of Islamic financial instruments is an opportunity to offer integration for the immigrant population and to attract, through the specific products, the richness of sovereign funds from the "Arab" countries. However, it is important to consider the possibility of comparing a traditional finance model, which in recent times has given rise to many doubts, with an "alternative" finance model, where the ethical aspect arising from religious principles is very important.

Keywords: banks, Europe, Islamic finance, Italy

Procedia PDF Downloads 270
18190 Fuzzy Logic Modeling of Evaluation the Urban Skylines by the Entropy Approach

Authors: Murat Oral, Seda Bostancı, Sadık Ata, Kevser Dincer

Abstract:

When evaluating the aesthetics of cities, an analysis of the urban form development depending on design properties with a variety of factors is performed together with a study of the effects of this appearance on human beings. Different methods are used while making an aesthetical evaluation related to a city. Entropy, in its preliminary meaning, is the mathematical representation of thermodynamic results. Measuring the entropy is related to the distribution of positional figures of a message or information from the probabilities standpoint. In this study, analysis of evaluation the urban skylines by the entropy approach was modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between application data and RBMTF is done by using absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of evaluation the urban skylines by the entropy approach. As a result, RBMTF model has shown satisfying relation with experimental results, which suggests an alternative method to evaluation of the urban skylines by the entropy approach.

Keywords: urban skylines, entropy, rule-based Mamdani type, fuzzy logic

Procedia PDF Downloads 290
18189 The BL-5D Model: The Development of a Model of Instructional Design for Blended Learning Activities

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Júlia Vilafranca Molero, Cinta Gascon, Arianna Vitiello, Tina Baloh

Abstract:

It has long been recognized that the creation of any teaching content can be enhanced if the development process follows a pre-defined approach, which is often referred to as an instructional design methodology. These methodologies typically define a number of stages, or phases, that an educator should undertake to help ensure the quality of the final teaching content that is developed. In this paper, we present an instructional design methodology that is focused specifically on the introduction of blended resources into a heretofore bricks-and-mortar course. To achieve this, research was undertaken concerning a range of models of instructional design, as well as literature covering some of the key challenges and “pain points” of blending. Following this, our model, the BL-5D model, is presented, which incorporates some key questions at each stage of this five-stage methodology to guide the development process. Finally, a discussion of some of the key themes and issues that have been uncovered in this work is presented, as well as a template for a blended learning case study that emerged from this approach.

Keywords: blended learning, challenges of blended learning, design methodologies, instructional design

Procedia PDF Downloads 119
18188 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads

Authors: Jia-Jang Wu

Abstract:

The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.

Keywords: moving load, moving substructure, dynamic responses, forced vibration responses

Procedia PDF Downloads 352
18187 Social Collaborative Learning Model Based on Proactive Involvement to Promote the Global Merit Principle in Cultivating Youths' Morality

Authors: Wera Supa, Panita Wannapiroon

Abstract:

This paper is a report on the designing of the social collaborative learning model based on proactive involvement to Promote the global merit principle in cultivating youths’ morality. The research procedures into two phases, the first phase is to design the social collaborative learning model based on proactive involvement to promote the global merit principle in cultivating youths’ morality, and the second is to evaluate the social collaborative learning model based on proactive involvement. The sample group in this study consists of 15 experts who are dominant in proactive participation, moral merit principle and youths’ morality cultivation from executive level, lecturers and the professionals in information and communication technology expertise selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. This study has explored that there are four significant factors in promoting the hands-on collaboration of global merit scheme in order to implant virtues to adolescences which are: 1) information and communication Technology Usage; 2) proactive involvement; 3) morality cultivation policy, and 4) global merit principle. The experts agree that the social collaborative learning model based on proactive involvement is highly appropriate.

Keywords: social collaborative learning, proactive involvement, global merit principle, morality

Procedia PDF Downloads 388
18186 Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil from the Leaves of Thymus vulgaris L.

Authors: Tsige Reda

Abstract:

Essential oil of Thymus vulgaris was extracted by means of hydro-distillation. This study was done to investigate the chemical composition, antibacterial and antioxidant activities. The chemical composition of the essential oils was determined using gas chromatography coupled to mass spectroscopy (GC-MS). Using disc diffusion assay the antibacterial activity was assessed on one Gram-positive bacteria and one Gram-negative bacteria. The percentage oil yield of the essential oil was found to be 0.97 ± 0.08% (w/w) with yellow color. The physicochemical constants of the oil were also noted. The phytochemical screening of the plant extract revealed the presence of tannins, saponins, phenol, flavonoids, terpenoids, steroids and alkaloids. A total of 18 chemical constituents were identified by Gas Chromatography-Mass Spectroscopy analysis representing 100% of the total essential oil of Thymus vulgaris, with thymol (31.977%), o-cymene (29.992%), and carvacrol (14.541%). Previous studies have revealed that the thymol, o-cymen and carvacrol components of Thymus vulgaris are responsible for their biological activities. Thymus vulgaris have been used traditionally to treat a wide variety of infections. Based on the extensive use and lack of scientific evidence, a study was embarked upon to determine its bioactivity. The essential oil of Thymus vulgaris leaves exhibited higher activity towards the Gram-positive bacteria (Staphylococcus aurous) than the Gram-negative bacteria (Escherichia coli) and also has good antioxidant activity, and can be used medicinal and therapeutic applications. This activity may be due to the high amount of thymol, o-cymen and carvacrol.

Keywords: hydro-distillation, Thymus vulgaris, essential oil composition, phytochemical screening, physicochemical constants, antioxidant activity, antibacterial activity

Procedia PDF Downloads 437
18185 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.

Procedia PDF Downloads 154
18184 Childhood Trauma and Borderline Personality: An Analysis of the Root Causes and Treatment Plans

Authors: Sidika McNeil

Abstract:

Borderline personality disorder (BPD) is a personality disorder that has been found to have strong origins in childhood trauma. One of the key symptoms of BPD is an association with irregular moods swings, as well as suicidal ideation (SI). Owing to the typically severe trauma patients experience during childhood, it is hard for them to control their emotions and thus makes it hard to emotionally regulate. It is then very common for those suffering from BPD to turn to unhealthy coping mechanisms, such as substance use, unhealthy relationships, and more, often unsuccessfully creating experiences that facilitate safety which leads to further negative experiences. With the high suicide rating among children, adolescents, and teens, and an ever-increasing number of children being diagnosed with BPD, it is very important that more research is done to find further treatments for patients who are currently suffering. Methods: Utilizing data found in prior studies, this paper will analyze the literature to focus on a comprehensive treatment plan for those with DBT. It is currently suggested that with the use of dialectical behavioral therapy (DBT), a therapy that focuses on changing negative thinking patterns and pushes for more positive ones is helpful for treatment for those with BPD. Though this therapy is not a cure to BPD, it does help mitigate the risk; this essay will explore other options that can further the treatment process, such as cognitive analytical therapy (CAT), which focuses on delving into the past to find the root causes of an issue to create coping strategies and harm reduction, a type of therapy used to aid patients in lowering the use of substances without complete cessation. Results: The research provides enough evidence to link between the treatment of BPD with the utilization of CAT.

Keywords: borderline personality disorder, cognitive analytical therapy, dialectical behavioral therapy, harm reduction, suicidal ideation

Procedia PDF Downloads 176
18183 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels

Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand

Abstract:

The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.

Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution

Procedia PDF Downloads 530
18182 Tourist Cultural Literacy: Scale Development and Validation

Authors: Yun-Ru Tsai, Jo-Hui Lin

Abstract:

The cultural interactions between tourists and destination communities have received increased attention. Tourists play an important role in constructing a rewarding intercultural experience and cultural understanding. Cultural literacy is the ability for tourists to negotiate different cultures, this research aimed to develop a measurement of Tourist Cultural Literacy (TCL), the result provides a theoretical framework to assess how tourists interact with different cultural destinations. A pilot qualitative research was conducted in order to generate the initial items. In this study, the procedure of developing the TCL scale was divided into two parts. First, an exploratory factor analysis was conducted, a 25-item TCL scale was developed and six factors were identified: cultural sensitivity, appreciation of the culture, respect for the culture, knowledge of the culture, participate in the culture, and empathy for the culture. Second, confirmatory factor analyses and structural equation modeling were employed, the six-factor model was verified, and was proven to have good fit, reliability, convergent validity, discriminant validity, and criterion-related validity. The study provides managerial implications for tourist management and education, the popularization of TCL might increase the respect and understanding between tourists and local societies as well as decrease the cultural shocks and negative social-cultural impacts derived from tourism activities, thereby reducing the maintenance cost of management and allowing tourists to obtain a better cultural experience. Future research suggestions are also provided.

Keywords: cultural literacy, cultural tourism, scale development, tourism contact

Procedia PDF Downloads 354
18181 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 155
18180 Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR

Authors: Bry X., Trottier C., Mortier F., Cornu G., Verron T.

Abstract:

We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data.

Keywords: Component-Model, Fisher Scoring Algorithm, GLM, PLS Regression, SCGLR, SEER, THEME

Procedia PDF Downloads 396
18179 A Model Towards Creating Positive Accounting Classroom Conditions That Supports Successful Learning at School

Authors: Vine Petzer, Mirna Nel

Abstract:

An explanatory mixed method design was used to investigate accounting classroom conditions in the Further Education and Training (FET) Phase in South Africa. A descriptive survey research study with a heterogeneous group of learners and teachers was conducted in the first phase. In the qualitative phase, semi-structured individual interviews with learners and teachers, as well as observations in the accounting classroom, were employed to gain more in depth understanding of the learning conditions in the accounting classroom. The findings of the empirical research informed the development of a model for teachers in accounting, supporting them to use more effective teaching methods and create positive learning conditions for all learners to experience successful learning. A model towards creating positive Accounting classroom conditions that support successful learning was developed and recommended for education policy and decision-makers for use as a classroom intervention capacity building tool. The model identifies and delineates classroom practices that exert significant effect on learner attainment of quality education.

Keywords: accounting classroom conditions, positive education, successful learning, teaching accounting

Procedia PDF Downloads 146