Search results for: hybrid energy resources
11610 Non-Centrifugal Cane Sugar Production: Heat Transfer Study to Optimize the Use of Energy
Authors: Fabian Velasquez, John Espitia, Henry Hernadez, Sebastian Escobar, Jader Rodriguez
Abstract:
Non-centrifuged cane sugar (NCS) is a concentrated product obtained through the evaporation of water contain from sugarcane juice inopen heat exchangers (OE). The heat supplied to the evaporation stages is obtained from the cane bagasse through the thermochemical process of combustion, where the thermal energy released is transferred to OE by the flue gas. Therefore, the optimization of energy usage becomes essential for the proper design of the production process. For optimize the energy use, it is necessary modeling and simulation of heat transfer between the combustion gases and the juice and to understand the major mechanisms involved in the heat transfer. The main objective of this work was simulated heat transfer phenomena between the flue gas and open heat exchangers using Computational Fluid Dynamics model (CFD). The simulation results were compared to field measured data. Numerical results about temperature profile along the flue gas pipeline at the measurement points are in good accordance with field measurements. Thus, this study could be of special interest in design NCS production process and the optimization of the use of energy.Keywords: mathematical modeling, design variables, computational fluid dynamics, overall thermal efficiency
Procedia PDF Downloads 12511609 Carbon Dioxide Capture and Utilization by Using Seawater-Based Industrial Wastewater and Alkanolamine Absorbents
Authors: Dongwoo Kang, Yunsung Yoo, Injun Kim, Jongin Lee, Jinwon Park
Abstract:
Since industrial revolution, energy usage by human-beings has been drastically increased resulting in the enormous emissions of carbon dioxide into the atmosphere. High concentration of carbon dioxide is well recognized as the main reason for the climate change by breaking the heat equilibrium of the earth. In order to decrease the amount of carbon dioxide emission, lots of technologies have been developed. One of the methods is to capture carbon dioxide after combustion process using liquid type absorbents. However, for some nations, captured carbon dioxide cannot be treated and stored properly due to their geological structures. Also, captured carbon dioxide can be leaked out when crust activities are active. Hence, the method to convert carbon dioxide as stable and useful products were developed. It is usually called CCU, that is, Carbon Capture and Utilization. There are several ways to convert carbon dioxide into useful substances. For example, carbon dioxide can be converted and used as fuels such as diesel, plastics, and polymers. However, these types of technologies require lots of energy to make stable carbon dioxide into a reactive one. Hence, converting it into metal carbonates salts have been studied widely. When carbon dioxide is captured by alkanolamine-based liquid absorbents, it exists as ionic forms such as carbonate, carbamate, and bicarbonate. When adequate metal ions are added, metal carbonate salt can be produced by ionic reaction with fast reaction kinetics. However, finding metal sources can be one of the problems for this method to be commercialized. If natural resources such as calcium oxide were used to supply calcium ions, it is not thought to have the economic feasibility to use natural resources to treat carbon dioxide. In this research, high concentrated industrial wastewater produced from refined salt production facility have been used as metal supplying source, especially for calcium cations. To ensure purity of final products, calcium ions were selectively separated in the form of gypsum dihydrate. After that, carbon dioxide is captured using alkanolamine-based absorbents making carbon dioxide into reactive ionic form. And then, high purity calcium carbonate salt was produced. The existence of calcium carbonate was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) images. Also, carbon dioxide loading curves for absorption, conversion, and desorption were provided. Also, in order to investigate the possibility of the absorbent reuse, reabsorption experiments were performed either. Produced calcium carbonate as final products is seemed to have potential to be used in various industrial fields including cement and paper making industries and pharmaceutical engineering fields.Keywords: alkanolamine, calcium carbonate, climate change, seawater, industrial wastewater
Procedia PDF Downloads 18511608 Barriers and Facilitators of Implementing Digital Mental Health Resources in Underserved Regions of Ontario during the COVID-19 Pandemic
Authors: Samaneh Abedini, Diana Urajnik, Nicole Naccarato
Abstract:
A high prevalence of mental health problems was observed in marginalized youth living in underserved regions of Ontario during the COVID-19 pandemic. To address this issue, a growing number of community-based traditional mental health services are offering digital mental health resources due to their accessibility, affordability, and scalability. The feasibility of providing these resources in underserved regions has been examined by researchers rather than by representatives of effective services within a mental health system. Indeed, digitalized mental health contents are not routinely embedded within local mental health organizations' services in Northern Ontario, where they can make a substantial impact. To date, many technology-based mental health initiatives have not been effectively implemented in this region. The obstacles associated with implementing digitalized mental health resources in Northern Ontario may be unique to that region. Thus, specific context-based considerations might need to be applied for developing and implementing digital resources by regional mental health organizations in Northern Ontario. The target population was child-serving organizations situated in northeastern Ontario, specifically within Greater Sudbury and the Sudbury District. A sample of six organizations were selected with representation from the mental health, social, and healthcare sectors. The project supervisor was in a unique position to access the organizations by virtue of existing relationships with the practice and lay communities at large. Thus, recruitment was conducted through professional outreach in partnership with the Center for Rural and Northern Health Research (CRaNHR). Semi-structured interviews were conducted with 1-2 key personnel (e.g., administrator, clinician) from participating organizations. Audio recordings from the semi-structured interviews were transcribed verbatim and thematically analyzed supported by NVivo. Thematic analysis of the data resulted in a total of 13 excerpts which were categorized into two major themes including 1) digital mental health services as a valuable resource for organizations both during and after the pandemic, and 2) barriers and facilitators to a successful implementation of digital mental health resources in northern Ontario. Four secondary themes were identified: 1) perceived barriers to implementation of digital mental health resources to the offered services by mental health agencies; 2) acceptability and feasibility of digital health sources for people living in northern Ontario; 3) data security, safety, and risk; and 4) connecting with clients. The employees of mental health organizations in northern Ontario considered digital mental health resources as generally acceptable to youth. However, they raised several concerns that may affect their implementation into routine practice and service delivery. The implementation of digital systems should be simple and straightforward and should enhance rather than hinder clinical workflows for staff. A clear plan for implementing technological services is also required for the successful adoption of digital systems. For successful adoption and implementation of digital systems, staff views must be considered.Keywords: COVID-19 pandemic, digital mental health resources, Ontario, underserved
Procedia PDF Downloads 10111607 On Energy Condition Violation for Shifting Negative Mass Black Holes
Authors: Manuel Urueña Palomo
Abstract:
In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations.Keywords: black holes, CPT symmetry, negative mass, time transformation
Procedia PDF Downloads 14911606 New Hybrid Process for Converting Small Structural Parts from Metal to CFRP
Authors: Yannick Willemin
Abstract:
Carbon fibre-reinforced plastic (CFRP) offers outstanding value. However, like all materials, CFRP also has its challenges. Many forming processes are largely manual and hard to automate, making it challenging to control repeatability and reproducibility (R&R); they generate significant scrap and are too slow for high-series production; fibre costs are relatively high and subject to supply and cost fluctuations; the supply chain is fragmented; many forms of CFRP are not recyclable, and many materials have yet to be fully characterized for accurate simulation; shelf life and outlife limitations add cost; continuous-fibre forms have design limitations; many materials are brittle; and small and/or thick parts are costly to produce and difficult to automate. A majority of small structural parts are metal due to high CFRP fabrication costs for the small-size class. The fact that CFRP manufacturing processes that produce the highest performance parts also tend to be the slowest and least automated is another reason CFRP parts are generally higher in cost than comparably performing metal parts, which are easier to produce. Fortunately, business is in the midst of a major manufacturing evolution—Industry 4.0— one technology seeing rapid growth is additive manufacturing/3D printing, thanks to new processes and materials, plus an ability to harness Industry 4.0 tools. No longer limited to just prototype parts, metal-additive technologies are used to produce tooling and mold components for high-volume manufacturing, and polymer-additive technologies can incorporate fibres to produce true composites and be used to produce end-use parts with high aesthetics, unmatched complexity, mass customization opportunities, and high mechanical performance. A new hybrid manufacturing process combines the best capabilities of additive—high complexity, low energy usage and waste, 100% traceability, faster to market—and post-consolidation—tight tolerances, high R&R, established materials, and supply chains—technologies. The platform was developed by Zürich-based 9T Labs AG and is called Additive Fusion Technology (AFT). It consists of a design software offering the possibility to determine optimal fibre layup, then exports files back to check predicted performance—plus two pieces of equipment: a 3d-printer—which lays up (near)-net-shape preforms using neat thermoplastic filaments and slit, roll-formed unidirectional carbon fibre-reinforced thermoplastic tapes—and a post-consolidation module—which consolidates then shapes preforms into final parts using a compact compression press fitted with a heating unit and matched metal molds. Matrices—currently including PEKK, PEEK, PA12, and PPS, although nearly any high-quality commercial thermoplastic tapes and filaments can be used—are matched between filaments and tapes to assure excellent bonding. Since thermoplastics are used exclusively, larger assemblies can be produced by bonding or welding together smaller components, and end-of-life parts can be recycled. By combining compression molding with 3D printing, higher part quality with very-low voids and excellent surface finish on A and B sides can be produced. Tight tolerances (min. section thickness=1.5mm, min. section height=0.6mm, min. fibre radius=1.5mm) with high R&R can be cost-competitively held in production volumes of 100 to 10,000 parts/year on a single set of machines.Keywords: additive manufacturing, composites, thermoplastic, hybrid manufacturing
Procedia PDF Downloads 9611605 Energy Audit and Renovation Scenarios for a Historical Building in Rome: A Pilot Case Towards the Zero Emission Building Goal
Authors: Domenico Palladino, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Silvia Di Turi
Abstract:
The aim to achieve a fully decarbonized building stock by 2050 stands as one of the most challenging issues within the spectrum of energy and climate objectives. Numerous strategies are imperative, particularly emphasizing the reduction and optimization of energy demand. Ensuring the high energy performance of buildings emerges as a top priority, with measures aimed at cutting energy consumptions. Concurrently, it is imperative to decrease greenhouse gas emissions by using renewable energy sources for the on-site energy production, thereby striving for an energy balance leading towards zero-emission buildings. Italy's predominant building stock comprises ancient buildings, many of which hold historical significance and are subject to stringent preservation and conservation regulations. Attaining high levels of energy efficiency and reducing CO2 emissions in such buildings poses a considerable challenge, given their unique characteristics and the imperative to adhere to principles of conservation and restoration. Additionally, conducting a meticulous analysis of these buildings' current state is crucial for accurately quantifying their energy performance and predicting the potential impacts of proposed renovation strategies on energy consumption reduction. Within this framework, the paper presents a pilot case in Rome, outlining a methodological approach for the renovation of historic buildings towards achieving Zero Emission Building (ZEB) objective. The building has a mixed function with offices, a conference hall, and an exposition area. The building envelope is made of historical and precious materials used as cladding which must be preserved. A thorough understanding of the building's current condition serves as a prerequisite for analyzing its energy performance. This involves conducting comprehensive archival research, undertaking on-site diagnostic examinations to characterize the building envelope and its systems, and evaluating actual energy usage data derived from energy bills. Energy simulations and audit are the first step in the analysis with the assessment of the energy performance of the actual current state. Subsequently, different renovation scenarios are proposed, encompassing advanced building techniques, to pinpoint the key actions necessary for improving mechanical systems, automation and control systems, and the integration of renewable energy production. These scenarios entail different levels of renovation, ranging from meeting minimum energy performance goals to achieving the highest possible energy efficiency level. The proposed interventions are meticulously analyzed and compared to ascertain the feasibility of attaining the Zero Emission Building objective. In conclusion, the paper provides valuable insights that can be extrapolated to inform a broader approach towards energy-efficient refurbishment of historical buildings that may have limited potential for renovation in their building envelopes. By adopting a methodical and nuanced approach, it is possible to reconcile the imperative of preserving cultural heritage with the pressing need to transition towards a sustainable, low-carbon future.Keywords: energy conservation and transition, energy efficiency in historical buildings, buildings energy performance, energy retrofitting, zero emission buildings, energy simulation
Procedia PDF Downloads 6811604 Techno-Economic Prospects of High Wind Energy Share in Remote vs. Interconnected Island Grids
Authors: Marina Kapsali, John S. Anagnostopoulos
Abstract:
On the basis of comparative analysis of alternative “development scenarios” for electricity generation, the main objective of the present study is to investigate the techno-economic viability of high wind energy (WE) use at the local (island) level. An integrated theoretical model is developed based on first principles assuming two main possible scenarios for covering future electrification needs of a medium–sized Greek island, i.e. Lesbos. The first scenario (S1), assumes that the island will keep using oil products as the main source for electricity generation. The second scenario (S2) involves the interconnection of the island with the mainland grid to satisfy part of the electricity demand, while remarkable WE penetration is also achieved. The economic feasibility of the above solutions is investigated in terms of determining their Levelized Cost of Energy (LCOE) for the time-period 2020-2045, including also a sensitivity analysis on the worst/reference/best Cases. According to the results obtained, interconnection of Lesbos Island with the mainland grid (S2) presents considerable economic interest in comparison to autonomous development (S1) with WE having a prominent role to this effect.Keywords: electricity generation cost, levelized cost of energy, mainland, wind energy surplus
Procedia PDF Downloads 34211603 A Model-Based Approach for Energy Performance Assessment of a Spherical Stationary Reflector/Tracking Absorber Solar Concentrator
Authors: Rosa Christodoulaki, Irene Koronaki, Panagiotis Tsekouras
Abstract:
The aim of this study is to analyze the energy performance of a spherical Stationary Reflector / Tracking Absorber (SRTA) solar concentrator. This type of collector consists of a segment of a spherical mirror placed in a stationary position facing the sun and a cylindrical absorber that tracks the sun by a simple pivoting motion about the center of curvature of the reflector. The energy analysis is performed through the development of a dynamic simulation model in TRNSYS software that calculates the annual heat production and the efficiency of the SRTA solar concentrator. The effect of solar concentrator design features and characteristics, such the reflector material, the reflector diameter, the receiver type, the solar radiation level and the concentration ratio, are discussed in details. Moreover, the energy performance curve of the SRTA solar concentrator, for various temperature differences between the mean fluid temperature and the ambient temperature and radiation intensities is drawn. The results are shown in diagrams, visualizing the effect of solar, optical and thermal parameters to the overall performance of the SRTA solar concentrator throughout the year. The analysis indicates that the SRTA solar concentrator can operate efficiently under a wide range of operating conditions.Keywords: concentrating solar collector, energy analysis , stationary reflector, tracking absorber
Procedia PDF Downloads 20111602 A Genetic Algorithm Based Sleep-Wake up Protocol for Area Coverage in WSNs
Authors: Seyed Mahdi Jameii, Arash Nikdel, Seyed Mohsen Jameii
Abstract:
Energy efficiency is an important issue in the field of Wireless Sensor Networks (WSNs). So, minimizing the energy consumption in this kind of networks should be an essential consideration. Sleep/wake scheduling mechanism is an efficient approach to handling this issue. In this paper, we propose a Genetic Algorithm-based Sleep-Wake up Area Coverage protocol called GA-SWAC. The proposed protocol puts the minimum of nodes in active mode and adjusts the sensing radius of each active node to decrease the energy consumption while maintaining the network’s coverage. The proposed protocol is simulated. The results demonstrate the efficiency of the proposed protocol in terms of coverage ratio, number of active nodes and energy consumption.Keywords: wireless sensor networks, genetic algorithm, coverage, connectivity
Procedia PDF Downloads 52111601 Knowledge Management: Why is So Difficult? From “A Good Idea” to Organizational Contribute
Authors: Lisandro Blas, Héctor Tamanini
Abstract:
From earliest 90 to now, no many companies or organization can “really” implement a knowledge management (KM) system that works (no only viewed from a measurement model, but in this continuity). Which are the reasons of that? Some of the reason maybe could be embedded in how KM is demanded (usefulness, priority, experts, a definition of KM) vs the importance and resources that the organizations afford (budget, responsible of a specific area of KM, intangibility). Many organizations “claim” the importance of Knowledge Management but thhese demands are not reflecting these claims in their future actions. With another’s tools or managements ideas the organizations put the economics and human resources to work. Why it´s not occur in KM? This paper tray to explain some of this reasons and tray to deal with this situations through a survey done in 2011 for a IAPG (Argentinean Institute from Oil & Gas) Congress.Keywords: knowledge management into organizations, new perspectives, failure in implementation, claim
Procedia PDF Downloads 42111600 Assessment of Multi-Domain Energy Systems Modelling Methods
Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell
Abstract:
Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.Keywords: CHPV, thermal storage, control, dynamic simulation
Procedia PDF Downloads 24011599 Africa and the Gas Supply Crisis to European Countries under the Russian-Ukrainian War: A Study on the Nigerian-Algerian Gas Pipeline project Importance
Authors: Mohammed Lamine Benaouda
Abstract:
This paper seeks to shed light on the African continent role with the crisis of natural gas supplies to European countries, which resulted from the repercussions of the Russian-Ukrainian war, by examining the case of re-launching the Trans-Saharan Gas Pipeline project Nigeria-Algeria, and clarifying the strategic importance This project is mutually beneficial in the long run. The paper relied on the analytical and statistical method in order to find out the the impact that the project represents on the huge needs of the European gas market on the one hand, and monitoring the various economic gains for Algeria and Nigeria on the other hand, in addition, the comparative approach to assess the possible effects of the success and feasibility of the project economy for all its beneficiaries. The paper founds that the complexity has multiplied in the global energy market in general and the European one in particular, following what the world witnessed from the repercussions of the Russian-Ukrainian war, as well as the extreme importance of the poles of African countries in the arena of the international struggle over resources, which allows them a margin From maneuvering and regional and global influence in various fields. With regard to the research outcoms and the future scope, the researcher believes that the African continent, in light of international competition and conflict, as well as what the world is witnessing in terms of restoring balances of power in the current international system, will play very important roles, especially with its enormous natural and human capabilities, which enable it to Weighting future conflicts over energy and spheres of influence.Keywords: algeria, nigeria, west africa, ECOWAS, gas supplies, russia, ukrain
Procedia PDF Downloads 8011598 Adaptability of Steel-Framed Industrialized Building System In Post-Service Life
Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi
Abstract:
Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, the importance of sustainability principles for building construction is obviously known and great significance must be attached to the consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have a positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and the environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.Keywords: adaptability, durability, open building, service life, structural building system
Procedia PDF Downloads 43511597 Enhancing the Performance of Vapor Compression Refrigeration Systems Using HFC134a by Nanoparticles Suspensions
Authors: Hafsi Khebab, Zirari Mounir, Mohamed Nadjib Bouaziz
Abstract:
High Global Warming Potential refrigerants (HydroFluroCarbons) are one of the worst greenhouse gases used in a wide variety of applications, including refrigeration and air-conditioning. Nanotechnology is a promising field in sustainable energy to reduce energy and ecological resource consumption for HVACR (heat, ventilation, air conditioning, and refrigeration) systems. Most researchers reported an improvement in heat transfer coefficient, Coefficient of performance. In this report, a brief summary has been done on the performance enhancement of the Vapor Compression Refrigeration system using HFC134a with nano refrigerants.Keywords: nanorefrigerant, HFCs, greenhouse gases, GWP, HVACR systems, energy saving
Procedia PDF Downloads 8211596 Surface Nanocrystalline and Hardening Effects of Ti–Al–V Alloy by Electropulsing Ultrasonic Shock
Authors: Xiaoxin Ye, Guoyi Tang
Abstract:
The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It’s indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It’s different from conventional experiments and theory. It’s discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it’s supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.Keywords: titanium alloys, electropulsing, ultrasonic shock, microhardness, nanocrystalline
Procedia PDF Downloads 29111595 Infrared Thermography as an Informative Tool in Energy Audit and Software Modelling of Historic Buildings: A Case Study of the Sheffield Cathedral
Authors: Ademuyiwa Agbonyin, Stamatis Zoras, Mohammad Zandi
Abstract:
This paper investigates the extent to which building energy modelling can be informed based on preliminary information provided by infrared thermography using a thermal imaging camera in a walkthrough audit. The case-study building is the Sheffield Cathedral, built in the early 1400s. Based on an informative qualitative report generated from the thermal images taken at the site, the regions showing significant heat loss are input into a computer model of the cathedral within the integrated environmental solution (IES) virtual environment software which performs an energy simulation to determine quantitative heat losses through the building envelope. Building data such as material thermal properties and building plans are provided by the architects, Thomas Ford and Partners Ltd. The results of the modelling revealed the portions of the building with the highest heat loss and these aligned with those suggested by the thermal camera. Retrofit options for the building are also considered, however, may not see implementation due to a desire to conserve the architectural heritage of the building. Results show that thermal imaging in a walk-through audit serves as a useful guide for the energy modelling process. Hand calculations were also performed to serve as a 'control' to estimate losses, providing a second set of data points of comparison.Keywords: historic buildings, energy retrofit, thermal comfort, software modelling, energy modelling
Procedia PDF Downloads 17011594 Site Selection in Adaptive Reuse Architecture for Social Housing in Johannesburg, South Africa
Authors: Setapo Moloi, Jun-Ichiro Giorgos Tsutsumi
Abstract:
South Africa’s need for the provision of housing within its major city centres, specifically Gauteng Province (GP), is a major concern. Initiatives for converting misused/ unused buildings to suitable housing for residents who work in the city as well as prospective citizens are currently underway, one aspect that is needed currently, is the re-possession of these buildings repurposing, into housing communities for quality low cost mixed density housing and for this process to have minimal strain on existing infrastructure like energy, emission reduction etc. Unfortunately, there are instances in Johannesburg, the country’s economic capital, with 2017 estimates claiming that 700 buildings lay unused or misused due to issues that will be discussed in this paper, these then become hubs for illegal activity and are an unacceptable form of shelter. It can be argued that the provision of inner-city social housing is lacking, but not due to the unavailability of funding or usable land and buildings, but that these assets are not being used appropriately nor to their full potential. Currently the GP government has mandated the re-purposing of all buildings that meet their criteria (structural stability, feasibility, adaptability, etc.) with the intention of inviting interested parties to propose conversions of the buildings into densified social housing. Going forward, the proposed focus is creation of social housing communities within existing buildings which may be retrofitted with sustainable technologies, green design strategies and principles, aiming for the finished buildings to achieve ‘Net-Zero/Positive’ status. A Net-Zero building, according to The Green Building Council of South Africa (GBCSA) is a building which manages to produce resources it needs to function, and reduces wastage, emissions and demand of these resources during its lifespan. The categories which GBCSA includes are carbon, water, waste and ecology, this may include material selection, construction methods, etc.Keywords: adaptive reuse, conversion, net-zero, social housing, sustainable communities
Procedia PDF Downloads 13811593 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt
Authors: Eman Ghoneim, Amr S. Fahil
Abstract:
Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS
Procedia PDF Downloads 12011592 A Preliminary Study Examining the Effect of Tourism as Perceived by Locals: From Perspective of Conservative of Research Theory
Authors: Ali Ahmad AlGassim
Abstract:
The objective of this study is to explore the local community perceptions toward the impact of tourism from the COR theory perspective. The current study used qualitative methods and purposive sampling to engage informants. Data was collected using an online survey with closed-ended and open-ended questions from 57 informants living in Al-Jufa Village, and then data was analysed using content analysis. The findings showed that COR theory help explains the residents’ perception of the threat and stress of losing resources. The findings showed the residents feel stressed about losing resources, such as lands, houses, heritage, sociocultural and Islamic values, as well as job and investment opportunities if the village is developed for tourism. Findings also present that one group of residents declared rejections and aiming to resist the development if it takes place, and they will not allowing foreigners to come and live in the village. The findings also show that this stress and strain can be alleviated by allowing residents to participate in the development. Finally, the residents of Al-Juhfa showed a high level of feeling of ownership towards their resources.Keywords: perception of threat, effect of tourism, COR theory, local community, impact of tourism, Saudi Arabia
Procedia PDF Downloads 26511591 An Approach to Determine Proper Daylighting Design Solution Considering Visual Comfort and Lighting Energy Efficiency in High-Rise Residential Building
Authors: Zehra Aybike Kılıç, Alpin Köknel Yener
Abstract:
Daylight is a powerful driver in terms of improving human health, enhancing productivity and creating sustainable solutions by minimizing energy demand. A proper daylighting system allows not only a pleasant and attractive visual and thermal environment, but also reduces lighting energy consumption and heating/cooling energy load with the optimization of aperture size, glazing type and solar control strategy, which are the major design parameters of daylighting system design. Particularly, in high-rise buildings where large openings that allow maximum daylight and view out are preferred, evaluation of daylight performance by considering the major parameters of the building envelope design becomes crucial in terms of ensuring occupants’ comfort and improving energy efficiency. Moreover, it is increasingly necessary to examine the daylighting design of high-rise residential buildings, considering the share of residential buildings in the construction sector, the duration of occupation and the changing space requirements. This study aims to identify a proper daylighting design solution considering window area, glazing type and solar control strategy for a high-residential building in terms of visual comfort and lighting energy efficiency. The dynamic simulations are carried out/conducted by DIVA for Rhino version 4.1.0.12. The results are evaluated with Daylight Autonomy (DA) to demonstrate daylight availability in the space and Daylight Glare Probability (DGP) to describe the visual comfort conditions related to glare. Furthermore, it is also analyzed that the lighting energy consumption occurred in each scenario to determine the optimum solution reducing lighting energy consumption by optimizing daylight performance. The results revealed that it is only possible that reduction in lighting energy consumption as well as providing visual comfort conditions in buildings with the proper daylighting design decision regarding glazing type, transparency ratio and solar control device.Keywords: daylighting , glazing type, lighting energy efficiency, residential building, solar control strategy, visual comfort
Procedia PDF Downloads 17611590 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking
Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid
Abstract:
The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module
Procedia PDF Downloads 17611589 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010.Keywords: CO2 emissions, Egypt, energy consumption, GDP, time series analysis
Procedia PDF Downloads 61511588 Effects of Bile Acids and Lipase Supplementation in Low-Energy Diets on Growth Performance and Meat Quality in Broiler Chickens
Authors: Muhammad Adeel Arshad, Shaukat Ali Bhatti
Abstract:
The study aimed to investigate the effect of bile acids and lipase supplementation in low-energy diets on growth performance and meat quality of broilers. Seven hundred day-old Cobb-500 broiler chicks with an average initial body weight of 45.9 ± 0.3 g were assigned to 5 dietary treatments, with five replications of 28 birds each in a completely randomized design. The five treatments were as follows: (i) HE: broilers received a diet with high energy content; (ii) LE: broilers received a diet with low energy content and energy content reduced by 100 kcal/kg as compared to HE; (iii) LEB: broilers received a diet similar to the LE group supplemented with 300 g/ton bile acids; (iv) LEL: broilers received a diet similar to the LE group supplemented with 180 g/ton lipase enzyme and (v) LEBL: broilers received a diet similar to the LE group supplemented with both 300 g/ton bile acids and 180 g/ton lipase enzyme. The experimental period lasted for 35 days. Broilers fed HE had a lower (P < 0.05) body weight (BW) gain and lower feed intake (1-35 d), but during finisher period (21-35 d), BW gain was similar with other treatments. Feed conversion ratio (FCR) was lower in HE and higher in LEBL group (P < 0.05), while the LE, LEB, and LEL had intermediate values. At 35 d no difference occurred between treatment for water holding capacity and pH of breast and thigh muscles (P > 0.05). The relative weight of pancreas was higher (P < 0.05) in LEB treatment but lower (P < 0.05) in LEL treatment. In conclusion, bile acids and lipase supplementation at 300 g/ton and 150g/ton of feed in low-energy diets respectively had no effect on broiler performance and meat quality. However, FCR was improved in HE treatment.Keywords: bile acids, energy, enzyme, growth
Procedia PDF Downloads 12011587 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability
Authors: Xvelian Qin
Abstract:
Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.Keywords: space under bridge, potential evaluation, high density urban area, updated using
Procedia PDF Downloads 7811586 The Relationship between Renewable Energy, Real Income, Tourism and Air Pollution
Authors: Eyup Dogan
Abstract:
One criticism of the energy-growth-environment literature, to the best of our knowledge, is that only a few studies analyze the influence of tourism on CO₂ emissions even though tourism sector is closely related to the environment. The other criticism is the selection of methodology. Panel estimation techniques that fail to consider both heterogeneity and cross-sectional dependence across countries can cause forecasting errors. To fulfill the mentioned gaps in the literature, this study analyzes the impacts of real GDP, renewable energy and tourism on the levels of carbon dioxide (CO₂) emissions for the top 10 most-visited countries around the world. This study focuses on the top 10 touristic (most-visited) countries because they receive about the half of the worldwide tourist arrivals in late years and are among the top ones in 'Renewables Energy Country Attractiveness Index (RECAI)'. By looking at Pesaran’s CD test and average growth rates of variables for each country, we detect the presence of cross-sectional dependence and heterogeneity. Hence, this study uses second generation econometric techniques (cross-sectionally augmented Dickey-Fuller (CADF), and cross-sectionally augmented IPS (CIPS) unit root test, the LM bootstrap cointegration test, and the DOLS and the FMOLS estimators) which are robust to the mentioned issues. Therefore, the reported results become accurate and reliable. It is found that renewable energy mitigates the pollution whereas real GDP and tourism contribute to carbon emissions. Thus, regulatory policies are necessary to increase the awareness of sustainable tourism. In addition, the use of renewable energy and the adoption of clean technologies in tourism sector as well as in producing goods and services play significant roles in reducing the levels of emissions.Keywords: air pollution, tourism, renewable energy, income, panel data
Procedia PDF Downloads 18411585 Ground States of Structure of Even ¹⁰⁴-¹⁰⁶ Ru Isotopes
Authors: I. Hossain, Huda H. Kassim, Fadhil I. Sharrad, Said A. Mansour
Abstract:
In this conference, we apply the interacting boson model-1 (IBM-1) formula for U(5) symmetry in order to calculate the energy levels and reduced transition probabilities for a few yrast transitions in Ru with neutron N=60, 62. The neutron rich even-even isotopes of Ru are very interesting to investigate using IBM-1, because even 104,106Ru isotopes are great consequence due to excited near the magic number 50. The calculation of ground state band and B(E2) values using IBM-1 for Z=44 are not calculated to describe the valuable information of nuclear structure by U(5) limit. The parameters in the formula are deduced based on the experimental energy level and value of B(E2, 2+->0+). The yrast states and transition strength B(E2) from 1st 4+ to 1st 2+, 1st 6+ to 1st 4+ and 1st 8+ to 1st 6+ states of Ru for even N= 60, 62 were calculated. The quadrupole moments, deformation parameters and U(5) limit were discussed for those nuclei.Keywords: B(E2), energy level, ¹⁰⁴Ru, ¹⁰⁶Ru
Procedia PDF Downloads 34811584 Mindset Change: Unlocking the Potential for Community-Based Rural Development in Uganda
Authors: Daisy Owomugasho Ndikuno
Abstract:
The paper explores the extent to which mindset change has been critical in the community rural development in Uganda. It is descriptive research with The Parish Development Model as a case study. The results show that rural community development is possible and its success largely depends on harnessing local resources and knowledge; leveraging education, empowerment and awareness; creating sustainable livelihoods and encouraging entrepreneurship and innovation; access to financial resources; and building collaborative networks and partnerships. In all these, the role of mindset change is critical. By instilling a positive, collaborative and innovative mindset, rural communities can overcome challenges and chat a path towards sustainable development.Keywords: community, development, mindset, change
Procedia PDF Downloads 9311583 The Impact of High Labour Turnover on Sustainable Housing Delivery in South Africa
Authors: Azola Agrienette Mayeza, Madifedile Thasi
Abstract:
Due to the contractual nature of jobs and employment opportunities in the construction industry and the seeming surplus of potential employees in South Africa, there is a little interest on the part of employers to put in place policies to retain experienced workers. Ironically these are the workers that the companies have expended significant resources on, in terms of training and capabilities development. The construction industry has been experiencing high materials wastages and health and safety issues to score very low on the sustainability agenda as regards resources management and safety. This study carried out an assessment of the poor retention of experienced workers in the construction industry on the capacity to deliver sustainable housing in South Africa. It highlights the economic, safety and resources conservation and other benefits accruable from a high retention of key employees to the South African construction industry towards the delivery of sustainable housing. It presents data that strongly support the hypothesis that high turnover of skilled employees as a result of the industry belief of zero incentive to retain employees beyond the contractual period, is responsible for the high wastages of resources in the industry and the safety issues. A high turnover of experienced employees in the construction industry was found to impact on the industry performance in terms of timely, cost effective and quality delivery of construction projects, particularly when measured against the government sustainable housing agenda. It also results in unplanned expenses required to train replacing employees during project executions as well as company goodwill which ultimately has a huge impact on sustainable housing delivery in South Africa.Keywords: labour turnover, construction industry, sustainable housing, materials wastage, housing delivery, South Africa
Procedia PDF Downloads 37011582 Phenology and Size in the Social Sweat Bee, Halictus ligatus, in an Urban Environment
Authors: Rachel A. Brant, Grace E. Kenny, Paige A. Muñiz, Gerardo R. Camilo
Abstract:
The social sweat bee, Halictus ligatus, has been documented to alter its phenology as a response to changes in temporal dynamics of resources. Furthermore, H. ligatus exhibits polyethism in natural environments as a consequence of the variation in resources. Yet, we do not know if or how H. ligatus responds to these variations in urban environments. As urban environments become much more widespread, and human population is expected to reach nine billion by 2050, it is crucial to distinguish how resources are allocated by bees in cities. We hypothesize that in urban regions, where floral availability varies with human activity, H. ligatus will exhibit polyethism in order to match the extremely localized spatial variability of resources. We predict that in an urban setting, where resources vary both spatially and temporally, the phenology of H. ligatus will alter in response to these fluctuations. This study was conducted in Saint Louis, Missouri, at fifteen sites each varying in size and management type (community garden, urban farm, prairie restoration). Bees were collected by hand netting from 2013-2016. Results suggest that the largest individuals, mostly gynes, occurred in lower income neighborhood community gardens in May and August. We used a model averaging procedure, based on information theoretical methods, to determine a best model for predicting bee size. Our results suggest that month and locality within the city are the best predictors of bee size. Halictus ligatus was observed to comply with the predictions of polyethism from 2013 to 2015. However, in 2016 there was an almost complete absence of the smallest worker castes. This is a significant deviation from what is expected under polyethism. This could be attributed to shifts in planting decisions, shifts in plant-pollinator matches, or local climatic conditions. Further research is needed to determine if this divergence from polyethism is a new strategy for the social sweat bee as climate continues to alter or a response to human dominated landscapes.Keywords: polyethism, urban environment, phenology, social sweat bee
Procedia PDF Downloads 22111581 Environmental Policy Instruments and Greenhouse Gas Emissions: VAR Analysis
Authors: Veronika Solilová, Danuše Nerudová
Abstract:
The paper examines the interaction between the environmental taxation, size of government spending on environmental protection and greenhouse gas emissions and gross inland energy consumption. The aim is to analyze the effects of environmental taxation and government spending on environmental protection as an environmental policy instruments on greenhouse gas emissions and gross inland energy consumption in the EU15. The empirical study is performed using a VAR approach with the application of aggregated data of EU15 over the period 1995 to 2012. The results provide the evidence that the reactions of greenhouse gas emission and gross inland energy consumption to the shocks of environmental policy instruments are strong, mainly in the short term and decay to zero after about 8 years. Further, the reactions of the environmental policy instruments to the shocks of greenhouse gas emission and gross inland energy consumption are also strong in the short term, however with the deferred effects. In addition, the results show that government spending on environmental protection together with gross inland energy consumption has stronger effect on greenhouse gas emissions than environmental taxes in EU15 over the examined period.Keywords: VAR analysis, greenhouse gas emissions, environmental taxation, government spending
Procedia PDF Downloads 293