Search results for: electronic learning platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10450

Search results for: electronic learning platform

7960 Hate Speech Detection Using Machine Learning: A Survey

Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile

Abstract:

Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.

Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection

Procedia PDF Downloads 185
7959 University Short Courses Web Application Using ASP.Net

Authors: Ahmed Hariri

Abstract:

E-Learning has become a necessity in the advanced education. It is easier for the student and teacher communication also it speed up the process with less time and less effort. With the progress and the enormous development of distance education must keep up with this age of making a website that allows students and teachers to take all the advantages of advanced education. In this regards, we developed University Short courses web application which is specially designed for Faculty of computing and information technology, Rabigh, Kingdom of Saudi Arabia. After an elaborate review of the current state-of-the-art methods of teaching and learning, we found that instructors deliver extra short courses and workshop to students to enhance the knowledge of students. Moreover, this process is completely manual. The prevailing methods of teaching and learning consume a lot of time; therefore in this context, University Short courses web application will help to make process easy and user friendly. The site allows for students can view and register short courses online conducted by instructor also they can see courses starting dates, finishing date and locations. It also allows the instructor to put things on his courses on the site and see the students enrolled in the study material. Finally, student can print the certificate after finished the course online. ASP.NET, SQLSERVER, JavaScript SQL SERVER Database will use to develop the University Short Courses web application.

Keywords: e-learning, short courses, ASP.NET, SQL SERVER

Procedia PDF Downloads 138
7958 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.

Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning

Procedia PDF Downloads 115
7957 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher

Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan

Abstract:

Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.

Keywords: built environment, conventional planning, indigenous learning space, responsive design

Procedia PDF Downloads 113
7956 A Comparative Analysis of Vocabulary Learning Strategies among EFL Freshmen and Senior Medical Sciences Students across Different Fields of Study

Authors: M. Hadavi, Z. Hashemi

Abstract:

Learning strategies play an important role in the development of language skills. Vocabulary learning strategies as the backbone of these strategies have become a major part of English language teaching. This study is a comparative analysis of Vocabulary Learning Strategies (VLS) use and preference among freshmen and senior EFL medical sciences students with different fields of study. 449 students (236 freshman and 213 seniors) participated in the study. 64.6% were female and 35.4% were male. The instrument utilized in this research was a questionnaire consisting of 41 items related to the students’ approach to vocabulary learning. The items were classified under eight sections as dictionary strategies, guessing strategies, study preferences, memory strategies, autonomy, note- taking strategies, selective attention, and social strategies. The participants were asked to answer each item with a 5-point Likert-style frequency scale as follows:1) I never or almost never do this, 2) I don’t usually do this, 3) I sometimes do this, 4) I usually do this, and 5)I always or almost always do this. The results indicated that freshmen students and particularly surgical technology students used more strategies compared to the seniors. Overall guessing and dictionary strategies were the most frequently used strategies among all the learners (p=0/000). The mean and standard deviation of using VLS in the students who had no previous history of participating in the private English language classes was less than the students who had attended these type of classes (p=0/000). Female students tended to use social and study preference strategies whereas male students used mostly guessing and dictionary strategies. It can be concluded that the senior students under instruction from the university have learned to rely on themselves and choose the autonomous strategies more, while freshmen students use more strategies that are related to the study preferences.

Keywords: vocabulary leaning strategies, medical sciences, students, linguistics

Procedia PDF Downloads 455
7955 Identifying the Risks on Philippines’ Pre- and Post-Disaster Media Communication on Natural Hazards

Authors: Neyzielle Ronnicque Cadiz

Abstract:

The Philippine is a hotbed of disasters and is a locus of natural hazards. With an average of 20 typhoons entering the Philippine Area of Responsibility (PAR) each year, seven to eight (7-8) of which makes landfall. The country rather inevitably suffers from climate-related calamities. With this vulnerability to natural hazards, the relevant hazard-related issues that come along with the potential threat and occurrence of a disaster oftentimes garners lesser media attention than when a disaster actually occurred. Post-disaster news and events flood the content of news networks primarily focusing on, but not limited to, the efforts of the national government in resolving post-disaster displacement, and all the more on the community leaders’ incompetence in disaster mitigation-- even though the University of the Philippines’ NOAH Center work hand in hand with different stakeholders for disaster mitigation communication efforts. Disaster risk communication is actually a perennial dilemma. There are so many efforts to reach the grassroots level but emergency and disaster preparedness messages inevitably fall short.. The Philippines is very vulnerable to hazards risk and disasters but social media posts and communication efforts mostly go unnoticed, if not argued upon. This study illustrates the outcomes of a research focusing on the print, broadcast, and social media’s role on disaster communication involving the natural catastrophic events that took place in the Philippines from 2009 to present. Considering the country’s state of development, this study looks on the rapid and reliable communication between the government, and the relief/rescue workers in the affected regions; and how the media portrays these efforts effectively. Learning from the disasters that have occurred in the Philippines over the past decade, effective communication can ensure that any efforts to prepare and respond to disasters can make a significant difference. It can potentially either break or save lives. Recognizing the role of communications is not only in improving the coordination of vital services for post disaster; organizations gave priority in reexamining disaster preparedness mechanisms through the Communication with Communities (CwC) programs. This study, however, looks at the CwC efforts of the Philippine media platforms. CwC, if properly utilized by the media, is an essential tool in ensuring accountability and transparency which require effective exchange of information between disasters and survivors and responders. However, in this study, it shows that the perennial dilemma of the Philippine media is that the Disaster Risk Reduction and Management (DRRM) efforts of the country lie in the clouded judgment of political aims. This kind of habit is a multiplier of the country’s risk and insecurity. Sometimes the efforts in urging the public to take action seem useless because the challenge lies on how to achieve social, economic, and political unity using the tri-media platform.

Keywords: Philippines at risk, pre/post disaster communication, tri-media platform, UP NOAH

Procedia PDF Downloads 185
7954 Integrating Cultures in Institutions of Higher Learning in South Africa

Authors: N. Mesatywa

Abstract:

The aim of the article is to emphasize and motivate for the role of integrating cultures in institutions of learning. The article has used a literature review methodology. Findings indicate that cultures espouse immense social capital that can: facilitate and strengthen moral education that will help learners in mitigating moral decadence and HIV/AIDS; embrace and strengthen the tenets of peace and tranquility among learners from different backgrounds; can form education against xenophobia; can facilitate the process of cultural paradigm shift that will slow down cultural attrition and decadence; can bring back cultural strength, cultural revival, cultural reawakening and cultural emancipation, etc. The article recommends governments to finance cultural activities in institutions of learning; to allow cultural practitioners to be part and parcel of cultural education; and challenge people to pride in the social capital of their indigenous cultures.

Keywords: cultures, cultural practitioners, integration, traditional healers

Procedia PDF Downloads 464
7953 Media-Based Interventions to Influence English Language Learning: A Case of Bangladesh

Authors: Md. Mizanoor Rahman, Md. Zakir Hossain Talukder, M. Mahruf C. Shohel, Prithvi Shrestha

Abstract:

In Bangladesh, classroom practice and English Learning (EL) competencies acquired both by the teacher and learner in primary and secondary schools are still very weak. Therefore, English is the most commonly failed examination subject at the school level; in addition, there are severe problems in communicative English by the Bangladeshi nationals– this has been characterized as a constraint to economic development. Job applicants and employees often lack English language skills necessary to work effectively. As a result; both government and its international development partners such as DFID, UNESCO, and CIDA have been very active to uplift the quality of the English language learning and implementing projects with innovative approaches. Recently; the economy has been increasing and in line with this, the technology has been deployed in English learning to improve reading, writing, speaking and listening skills. Young Bangladeshi creative, from a variety of backgrounds including film, animation, photography, and digital media are being trained to develop ideas for English Language Teaching (ELT) media. They are being motivated to develop a wide range of ideas for low cost English learning media products. English Language education policy in Bangladesh supports communicative language teaching practices and accordingly, actors have been influencing curriculum, textbook, deployment of technology and assessment changes supporting communicative ELT. The various projects are also being implemented to reform the curriculum, revise the textbook and adjust the assessment mechanism so that the country can increase in proficiency in communicative English among the population. At present; the numbers of teachers, students and adult learners classified at higher levels of proficiency because of deployment of technology and motivation for learning and using English among school population of Bangladesh. The current paper discusses the various interventions in Bangladesh with appropriate media to improve the competencies of the ELT among population.

Keywords: English learning, technology, education, psychological sciences

Procedia PDF Downloads 420
7952 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 95
7951 The Role of Gender in English Language Acquisition for Chinese Medical Students

Authors: Christopher Celozzi, Sarah Kochav

Abstract:

Our research investigates the numerous challenges faced by Chinese ESL university students enrolled in the medical and related healthcare professional fields. The over-arching research question is how gender influences classroom participation and learning. The second research question addressed is 'what instructional strategies may be utilized to promote student participation and language acquisition?'. Participants’ language ability has been assessed and evaluated in order to facilitate the establishment of a statistical baseline for the subsequent intervention. This research delves deeper into each individual’s personal and academic circumstances, in an effort to reveal any held intrinsic gender beliefs and social identities that may influence learning. Also considered is the impact on learning for a homogenized student population within a uniform, highly structured learning environment. Specially, what is the influence of China’s ‘one-child policy’ on individual learning habits? The impact of their millennial identity and reliance on social media is also examined. A qualitative methodology with a case study approach is employed, with interviews conducted among the participants. Student response to the intervention and selected remediation strategies are documented, analyzed and discussed. The findings of the study may serve to inform educator instructional practice, while advancing the student learner in their pursuit of English competency in highly competitive professions.

Keywords: Chinese students, gender, English, language acquisition

Procedia PDF Downloads 208
7950 Effects of Foreign-language Learning on Bilinguals' Production in Both Their Languages

Authors: Natalia Kartushina

Abstract:

Foreign (second) language (L2) learning is highly promoted in modern society. Students are encouraged to study abroad (SA) to achieve the most effective learning outcomes. However, L2 learning has side effects for native language (L1) production, as L1 sounds might show a drift from the L1 norms towards those of the L2, and this, even after a short period of L2 learning. L1 assimilatory drift has been attributed to a strong perceptual association between similar L1 and L2 sounds in the mind of L2 leaners; thus, a change in the production of an L2 target leads to the change in the production of the related L1 sound. However, nowadays, it is quite common that speakers acquire two languages from birth, as, for example, it is the case for many bilingual communities (e.g., Basque and Spanish in the Basque Country). Yet, it remains to be established how FL learning affects native production in individuals who have two native languages, i.e., in simultaneous or very early bilinguals. Does FL learning (here a third language, L3) affect bilinguals’ both languages or only one? What factors determine which of the bilinguals’ languages is more susceptible to change? The current study examines the effects of L3 (English) learning on the production of vowels in the two native languages of simultaneous Spanish-Basque bilingual adolescents enrolled into the Erasmus SA English program. Ten bilingual speakers read five Spanish and Basque consonant-vowel-consonant-vowel words two months before their SA and the next day after their arrival back to Spain. Each word contained the target vowel in the stressed syllable and was repeated five times. Acoustic analyses measuring vowel openness (F1) and backness (F2) were performed. Two possible outcomes were considered. First, we predicted that L3 learning would affect the production of only one language and this would be the language that would be used the most in contact with English during the SA period. This prediction stems from the results of recent studies showing that early bilinguals have separate phonological systems for each of their languages; and that late FL learner (as it is the case of our participants), who tend to use their L1 in language-mixing contexts, have more L2-accented L1 speech. The second possibility stated that L3 learning would affect both of the bilinguals’ languages in line with the studies showing that bilinguals’ L1 and L2 phonologies interact and constantly co-influence each other. The results revealed that speakers who used both languages equally often (balanced users) showed an F1 drift in both languages toward the F1 of the English vowel space. Unbalanced speakers, however, showed a drift only in the less used language. The results are discussed in light of recent studies suggesting that the amount of language use is a strong predictor of the authenticity in speech production with less language use leading to more foreign-accented speech and, eventually, to language attrition.

Keywords: language-contact, multilingualism, phonetic drift, bilinguals' production

Procedia PDF Downloads 113
7949 Physicochemical Investigation of Caffeic Acid and Caffeinates with Chosen Metals (Na, Mg, Al, Fe, Ru, Os)

Authors: Włodzimierz Lewandowski, Renata Świsłocka, Aleksandra Golonko, Grzegorz Świderski, Monika Kalinowska

Abstract:

Caffeic acid (3,4-dihydroxycinnamic) is distributed in a free form or as ester conjugates in many fruits, vegetables and seasonings including plants used for medical purpose. Caffeic acid is present in propolis – a substance with exceptional healing properties used in natural medicine since ancient times. The antioxidant, antibacterial, antiinflammatory and anticarcinogenic properties of caffeic acid are widely described in the literature. The biological activity of chemical compounds can be modified by the synthesis of their derivatives or metal complexes. The structure of the compounds determines their biological properties. This work is a continuation of the broader topic concerning the investigation of the correlation between the electronic charge distribution and biological (anticancer and antioxidant) activity of the chosen phenolic acids and their metal complexes. In the framework of this study the synthesis of new metal complexes of sodium, magnesium, aluminium, iron (III) ruthenium (III) and osmium (III) with caffeic acid was performed. The spectroscopic properties of these compounds were studied by means of FT-IR, FT-Raman, UV-Vis, ¹H and ¹³C NMR. The quantum-chemical calculations (at B3LYP/LAN L2DZ level) of caffeic acid and selected complexes were done. Moreover the antioxidant properties of synthesized complexes were studied in relation to selected stable radicals (method of reduction of DPPH and method of reduction of ABTS). On the basis of the differences in the number, intensity and locations of the bands from the IR, Raman, UV/Vis and NMR spectra of caffeic acid and its metal complexes the effect of metal cations on the electronic system of ligand was discussed. The geometry, theoretical spectra and electronic charge distribution were calculated by the use of Gaussian 09 programme. The geometric aromaticity indices (Aj – normalized function of the variance in bond lengths; BAC - bond alternation coefficient; HOMA – harmonic oscillator model of aromaticity and I₆ – Bird’s index) were calculated and the changes in the aromaticity of caffeic acid and its complexes was discussed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02-352.

Keywords: antioxidant properties, caffeic acid, metal complexes, spectroscopic methods

Procedia PDF Downloads 220
7948 Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells

Authors: Soraya Abtouche, Zeyneb Ghoualem, Syrine Daoudi, Lina Ouldmohamed, Xavier Assfeld

Abstract:

This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2.

Keywords: DSSC, porphyrin, TD-DFT, electronic properties, donor-acceptor groups

Procedia PDF Downloads 84
7947 Information and Communication Technologies-Based Urban Spaces: From Planning and Design to Implementation

Authors: Yountaik Leem, Kwang Woo Nam, Sang Ho Lee, Tae Heon Moon

Abstract:

As to the development of the capitalist economy, local governments put their focuses on economic growth and quality of life including the management of declined urban area. Together with the rapid advances in ICTs (information and communication technologies) Korean government tried to adapt ICTs to urban spaces to catch these two goals. Ubiquitous city, concept introduced by Mark Weiser in 1988, is a kind of ICTs based urban space which can provide IT services anytime and anywhere. This paper introduces the experience of developing ICTs-based urban planning and it’s implementation process and discusses the effect of the R&D based U-City test-bed project. For a community center of a residential zone in a newly developing city, spatial problems and citizen’s needs were identified to plan IT-based urban services. The paper also describes the structure and functions of Community O/S (COS) as an IT platform which controls data and urban devices such as media facades and U-poles. Not only one-way information but also Interactive services were included. Public creating activities using this platform also added –CO2 emission management and citizen making safety map, etc. The effects of the comprehensive U-City planning in S/W, H/W and human-ware were discussed on the case study of similar individual projects.

Keywords: ICTs-based urban planning, implementation, public IT service, U-City

Procedia PDF Downloads 329
7946 The Use of Serious Games in the Context of Education 4.0: Enhancing Learning in High Schools and Universities

Authors: Maciej Zaręba, Paweł Dawid

Abstract:

The changing picture of modern education requires innovative methodologies to meet the demands of new generations of students. Serious games, which use gamification principles to enrich the learning process, have become key tools for increasing student engagement and developing basic skills. This article explores the use of serious games in Education 4.0, focusing on their implementation in teaching manufacturing management and engineering principles at the high school and university levels. By simulating complex, real-world challenges and their solutions, serious games provide immersive and interactive learning environments that appeal to Generation Y and Z. These simulations enable students to participate in decision-making in realistic contexts, effectively bridging the gap between theoretical teaching and practical application. Based on the principles of Education 4.0 - which emphasizes personalized, experiential and technology-based learning - serious games foster cognitive engagement, critical thinking, problem-solving solving and collaborative competencies. Additionally, this study assesses the transformative potential of serious games in reshaping traditional educational practices, equipping students with the flexible skills necessary to thrive in an increasingly connected and dynamic global landscape.

Keywords: serious games, education 4.0, gamification, eLearning

Procedia PDF Downloads 14
7945 Impact of Sports and Entertainment Marketing Strategies on the Professional Practices of Sports Managers in Nigeria

Authors: Ibraheem Musa Oluwatoyin, Olawuni Adisa, Abdulraheem Yinusa Owolabi

Abstract:

Nigeria's sports industry has grown, but ineffective management, inadequate marketing, and limited stakeholder engagement hinder progress. Effective marketing strategies are crucial, yet empirical research on their impact on Nigerian sports managers is scarce. This study investigates the impact of sports and entertainment marketing strategies on the professional practices of sports managers in Nigeria, employing a quantitative research design grounded in the Theory of Planned Behavior. The target population comprises 1,108 sports managers across various organizations in Nigeria, with a stratified random sample of 301 participants, ensuring representativeness based on organizational type (sports commissions/councils) and geographical zones. Data was collected using a structured questionnaire, which included sections on demographic information, the evaluation of marketing strategies, and their impact on decision-making, operational efficiency, stakeholder engagement, and performance. The questionnaire items were adapted from validated scales in marketing and sports management literature, achieving a Cronbach’s alpha of 0.85, indicating high internal consistency. Data collection occurred over eight weeks through both online and face-to-face surveys, ensuring ethical compliance with informed consent and data anonymization. Descriptive and inferential statistical methods, including Pearson Product Moment Correlation (PPMC), were employed for data analysis. The PPMC analyses revealed statistically significant relationships between digital platform marketing (r = 0.63, p = 0.000), sports marketing experience (r = 0.51, p = 0.000), and producing engaging sports content (r = 0.61, p = 0.000) with professional practices. These results suggest that digital platform marketing, sports marketing experience, and the creation of engaging content significantly enhance the effectiveness and performance of sports managers in Nigeria. The study contributes valuable insights for stakeholders in Nigeria’s sports industry, providing actionable recommendations for improving sports management practices through strategic marketing approaches.

Keywords: professional practice, digital platform, experience sports marketing, producing engaging sports content

Procedia PDF Downloads 11
7944 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 89
7943 Collaborative Writing on Line with Apps During the Time of Pandemic: A Systematic Literature Review

Authors: Giuseppe Liverano

Abstract:

Today’s school iscalledupon to take the lead role in supporting students towards the formation of conscious identity and a sense of responsible citizenship, through the development of key competencies for lifelong learning A rolethatrequiresit to be ready for change and to respond to the ever new needs of students, by adopting new pedagogical and didactic models and new didactic devices. Information and Communication Technologies, in this sense, reveal themselves to be usefulresourcesthatpermit to focus attention on the learning of eachindividualstudentunderstoodas a dynamic and relational process of constructing shared and participatedmeanings. The use of collaborative writing apps represents a democratic and shared knowledge way of constructionthroughICTs. It promotes the learning of reading-writing, literacy, and the development of transversal competencies in an inclusive perspective peer-to-peer comparison and reflectionthatstimulates the transfer of thought into speech and writing, the transformation of knowledge through a trialogicalapproach to learning generates enthusiasm and strengthensmotivationItrepresents a “different” way of expressing the training needs which come from several disciplinary fields of subjects with different cultures. The contribution aims to reflect on the formative value of collaborative writing through apps and analyse some proposals on line at school during the time of pandemic in order to highlight their critical aspects and pedagogical perspectives.

Keywords: collaborative writing, formative value, online, apps, pandemic

Procedia PDF Downloads 161
7942 Visual Thinking Routines: A Mixed Methods Approach Applied to Student Teachers at the American University in Dubai

Authors: Alain Gholam

Abstract:

Visual thinking routines are principles based on several theories, approaches, and strategies. Such routines promote thinking skills, call for collaboration and sharing of ideas, and above all, make thinking and learning visible. Visual thinking routines were implemented in the teaching methodology graduate course at the American University in Dubai. The study used mixed methods. It was guided by the following two research questions: 1). To what extent do visual thinking inspire learning in the classroom, and make time for students’ questions, contributions, and thinking? 2). How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Eight student teachers enrolled in the teaching methodology course at the American University in Dubai (Spring 2017) participated in the following study. First, they completed a survey that measured to what degree they believed visual thinking routines inspired learning in the classroom and made time for students’ questions, contributions, and thinking. In order to build on the results from the quantitative phase, the student teachers were next involved in a qualitative data collection phase, where they had to answer the question: How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Results revealed that the implementation of visual thinking routines in the classroom strongly inspire learning in the classroom and make time for students’ questions, contributions, and thinking. In addition, student teachers explained how visual thinking routines allow for organization, variety, thinking, and documentation. As with all original, new, and unique resources, visual thinking routines are not free of challenges. To make the most of this useful and valued resource, educators, need to comprehend, model and spread an awareness of the effective ways of using such routines in the classroom. It is crucial that such routines become part of the curriculum to allow for and document students’ questions, contributions, and thinking.

Keywords: classroom display, student engagement, thinking classroom, visual thinking routines

Procedia PDF Downloads 231
7941 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams

Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew

Abstract:

Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.

Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions

Procedia PDF Downloads 121
7940 Alternative Funding Strategies for Tertiary Education in Nigeria: Quest for Improved Quality of Teaching and Learning

Authors: Temitayo Olaitan

Abstract:

There is a growing concern about the quality of Nigerian tertiary education. This paper maintains that quality in tertiary education relates to the development of intellectual independence, which sharpens the minds of the individual and helps transform the society economically, socially and politically. However, the paper underscores underfunding as a critical challenge to the quality of teaching and learning in tertiary education. To this end, this paper emphasizes the role of internally generated revenue (IGR) and other alternative funding strategies (public-private partnership) as inevitable for quality tertiary education. This paper hinges on stakeholders approach as a means of ensuring quality teaching and learning in tertiary education. This paper recommends that school managers should seek professional and more efficient ways of developing their revenue generating systems. It also recommends that institutions should restructure to accommodate an alternative funding strategy such as private/corporate sponsorship to ensure that sustainable initiatives are created. The paper concludes that Nigerian government should come up with a policy on how private sectors should support in improving the quality of tertiary education through active participation in funding and physical facilities development in Nigerian higher institutions of learning.

Keywords: alternative funding, budgetary allocation, quality education, tertiary education

Procedia PDF Downloads 465
7939 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: agricultural object detection, deep learning, machine vision, YOLO family

Procedia PDF Downloads 203
7938 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate

Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas

Abstract:

Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.

Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks

Procedia PDF Downloads 111
7937 Impact of Instructional Designing in Digital Game-Based Learning for Enhancing Students' Motivation

Authors: Shafaq Rubab

Abstract:

The primary reason for dropping out of school is associated with students’ lack of motivation in class, especially in mathematics. Digital game-based learning is an approach that is being actively explored; there are very few learning games based on proven instructional design models or frameworks due to which the effectiveness of the learning games suffers. The purpose of this research was twofold: first, developing an appropriate instructional design model and second, evaluating the impact of the instructional design model on students’ motivation. This research contributes significantly to the existing literature in terms of student motivation and the impact of instructional design model in digital game-based learning. The sample size for this study consists of two hundred out-of-school students between the age of 6 and 12 years. The research methodology used for this research was a quasi-experimental approach and data was analyzed by using the instructional material motivational survey questionnaire which is adapted from the Keller Arcs model. Control and experimental groups consisting of two hundred students were analyzed by utilizing instructional material motivational survey (IMMS), and comparison of result from both groups showed the difference in the level of motivation of the students. The result of the research showed that the motivational level of student in the experimental group who were taught by the game was higher than the student in control group (taught by conventional methodology). The mean score of the experimental group against all subscales (attention, relevance, confidence, and satisfaction) of IMMS survey was higher; however, no statistical significance was found between the motivational scores of control and experimental group. The positive impact of game-based learning on students’ level of motivation, as measured in this study, strengthens the case for the use of pedagogically sound instructional design models in the design of interactive learning applications. In addition, the present study suggests learning from interactive, immersive applications as an alternative solution for children, especially in Third World countries, who, for various reasons, do not attend school. The mean score of experimental group against all subscales of IMMS survey was higher; however, no statistical significance was found between motivational scores of control and experimental group.

Keywords: digital game-based learning, students’ motivation, and instructional designing, instructional material motivational survey

Procedia PDF Downloads 427
7936 Employer Learning, Statistical Discrimination and University Prestige

Authors: Paola Bordon, Breno Braga

Abstract:

This paper investigates whether firms use university prestige to statistically discriminate among college graduates. The test is based on the employer learning literature which suggests that if firms use a characteristic for statistical discrimination, this variable should become less important for earnings as a worker gains labor market experience. In this framework, we use a regression discontinuity design to estimate a 19% wage premium for recent graduates of two of the most selective universities in Chile. However, we find that this premium decreases by 3 percentage points per year of labor market experience. These results suggest that employers use college selectivity as a signal of workers' quality when they leave school. However, as workers reveal their productivity throughout their careers, they become rewarded based on their true quality rather than the prestige of their college.

Keywords: employer learning, statistical discrimination, college returns, college selectivity

Procedia PDF Downloads 581
7935 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 75
7934 Using Differentiated Instruction Applying Cognitive Approaches and Strategies for Teaching Diverse Learners

Authors: Jolanta Jonak, Sylvia Tolczyk

Abstract:

Educational systems are tasked with preparing students for future success in academic or work environments. Schools strive to achieve this goal, but often it is challenging as conventional teaching approaches are often ineffective in increasingly diverse educational systems. In today’s ever-increasing global society, educational systems become increasingly diverse in terms of cultural and linguistic differences, learning preferences and styles, ability and disability. Through increased understanding of disabilities and improved identification processes, students having some form of disabilities tend to be identified earlier than in the past, meaning that more students with identified disabilities are being supported in our classrooms. Also, a large majority of students with disabilities are educated in general education environments. Due to cognitive makeup and life experiences, students have varying learning styles and preferences impacting how they receive and express what they are learning. Many students come from bi or multilingual households and with varying proficiencies in the English language, further impacting their learning. All these factors need to be seriously considered when developing learning opportunities for student's. Educators try to adjust their teaching practices as they discover that conventional methods are often ineffective in reaching each student’s potential. Many teachers do not have the necessary educational background or training to know how to teach students whose learning needs are more unique and may vary from the norm. This is further complicated by the fact that many classrooms lack consistent access to interventionists/coaches that are adequately trained in evidence-based approaches to meet the needs of all students, regardless of what their academic needs may be. One evidence-based way for providing successful education for all students is by incorporating cognitive approaches and strategies that tap into affective, recognition, and strategic networks in the student's brain. This can be done through Differentiated Instruction (DI). Differentiated Instruction is increasingly recognized model that is established on the basic principles of Universal Design for Learning. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have opportunities to learn through approaches that are suitable to their needs. This approach improves the educational outcomes of students with special needs and it benefits other students as it accommodates learning styles as well as the scope of unique learning needs that are evident in the typical classroom setting. Differentiated Instruction also is recognized as an evidence-based best practice in education and is highly effective when it is implemented within the tiered system of the Response to Intervention (RTI) model. Recognition of DI becomes more common; however, there is still limited understanding of the effective implementation and use of strategies that can create unique learning environments for each student within the same setting. Through employing knowledge of a variety of instructional strategies, general and special education teachers can facilitate optimal learning for all students, with and without a disability. A desired byproduct of DI is that it can eliminate inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability.

Keywords: differentiated instruction, universal design for learning, special education, diversity

Procedia PDF Downloads 225
7933 Brain Networks and Mathematical Learning Processes of Children

Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke

Abstract:

Neurological findings provide foundational results for many different disciplines. In this article we want to discuss these with a special focus on mathematics education. The intention is to make neuroscience research useful for the description of cognitive mathematical learning processes. A key issue of mathematics education is that students often behave as if their mathematical knowledge is constructed in isolated compartments with respect to the specific context of the original learning situation; supporting students to link these compartments to form a coherent mathematical society of mind is a fundamental task not only for mathematics teachers. This aspect goes hand in hand with the question if there is such a thing as abstract general mathematical knowledge detached from concrete reality. Educational Neuroscience may give answers to the question why students develop their mathematical knowledge in isolated subjective domains of experience and if it is generally possible to think in abstract terms. To address these questions, we will provide examples from different fields of mathematics education e.g. students’ development and understanding of the general concept of variables or the mathematical notion of universal proofs. We want to discuss these aspects in the reflection of functional studies which elucidate the role of specific brain regions in mathematical learning processes. In doing this the paper addresses concept formation processes of students in the mathematics classroom and how to support them adequately considering the results of (educational) neuroscience.

Keywords: brain regions, concept formation processes in mathematics education, proofs, teaching-learning processes

Procedia PDF Downloads 154
7932 Electronic and Optical Properties of YNi4Si-Type DyNi4Si Compound: A Full Potential Study

Authors: Dinesh Kumar Maurya, Sapan Mohan Saini

Abstract:

A theoretical formalism to calculate the structural, electronic and optical properties of orthorhombic crystals from first principle calculations is described. This is applied first time to new YNi4Si-type DyNi4Si compound. Calculations are performed using full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Our optimized results of lattice parameters show good agreement to the previously reported experimental study. Analysis of the calculated band structure of DyNi4Si compound demonstrates their metallic character. We found Ni-3d states mainly contribute to density of states from -5.0 eV to the Fermi level while the Dy-f states peak stands tall in comparison to the small contributions made by the Ni-d and R-d states above Fermi level, which is consistent with experiment, in DNi4Si compound. Our calculated optical conductivity compares well with the experimental data and the results are analyzed in the light of band-to-band transitions. We also report the frequency-dependent refractive index n(ω) and the extinction coefficient k(ω) of the compound.

Keywords: band structure, density of states, optical properties, LSDA+U approximation, YNi4Si- type DyNi4Si compound

Procedia PDF Downloads 354
7931 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students

Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle

Abstract:

The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.

Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education

Procedia PDF Downloads 103