Search results for: electronic intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3277

Search results for: electronic intelligence

787 A Systematic Review on Measuring the Physical Activity Level and Pattern in Persons with Chronic Fatigue Syndrome

Authors: Kuni Vergauwen, Ivan P. J. Huijnen, Astrid Depuydt, Jasmine Van Regenmortel, Mira Meeus

Abstract:

A lower activity level and imbalanced activity pattern are frequently observed in persons with chronic fatigue syndrome (CFS) / myalgic encephalomyelitis (ME) due to debilitating fatigue and post-exertional malaise (PEM). Identification of measurement instruments to evaluate the activity level and pattern is therefore important. The objective is to identify measurement instruments suited to evaluate the activity level and/or pattern in patients with CFS/ME and review their psychometric properties. A systematic literature search was performed in the electronic databases PubMed and Web of Science until 12 October 2016. Articles including relevant measurement instruments were identified and included for further analysis. The psychometric properties of relevant measurement instruments were extracted from the included articles and rated based on the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. The review was performed and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 49 articles and 15 unique measurement instruments were found, but only three instruments were evaluated in patients with CFS/ME: the Chronic Fatigue Syndrome-Activity Questionnaire (CFS-AQ), Activity Pattern Interview (API) and International Physical Activity Questionnaire-Short Form (IPAQ-SF), three self-report instruments measuring the physical activity level. The IPAQ-SF, CFS-AQ and API are all equally capable of evaluating the physical activity level, but none of the three measurement instruments are optimal to use. No studies about the psychometric properties of activity monitors in patients with CFS/ME were found, although they are often used as the gold standard to measure the physical activity pattern. More research is needed to evaluate the psychometric properties of existing instruments, including the use of activity monitors.

Keywords: chronic fatigue syndrome, data collection, physical activity, psychometrics

Procedia PDF Downloads 227
786 Smart Wheel Chair: A Design to Accommodate Vital Sign Monitoring

Authors: Stephanie Nihan, Jayson M. Fadrigalan, Pyay P. San, Steven M. Santos, Weihui Li

Abstract:

People of all ages who use wheelchairs are left with the inconvenience of not having an easy way to take their vital signs. Typically, patients are required to visit the hospital in order to take the vital signs. VitalGO is a wheel chair system that equipped with medical devices to take vital signs and then transmit data to a mobile application for convenient, long term health monitoring. The vital signs include oxygen saturation, heart rate, and blood pressure, breathing rate and body temperature. Oxygen saturation and heart rate are monitored through pulse oximeter. Blood pressure is taken through a radar sensor. Breathing rate is derived through thoracic impedance while body temperature is measured through an infrared thermometer. The application receives data through bluetooth and stores in a database for review in a simple graphical interface. The application will have the ability to display this data over various time intervals such as a day, week, month, 3 months, 6 months and a year. The final system for the mobile app can also provide an interface for both the user and their physician(s) to record notes or keep record of daily symptoms that a patient might be having. The user’s doctor will be granted access by the user to view the patient information for assistance with a more accurate diagnosis. Also, this wheelchair accessory conveniently includes a foldable table/desk as somewhere to place an electronic device that may be used to access the app. The foldable table will overall contribute to the wheelchair user’s increased comfort and will give them somewhere to place food, a book, or any other form of entertainment that would normally be hard to juggle on their lap.

Keywords: wheel chair, vital sign, mobile application, telemedicine

Procedia PDF Downloads 331
785 Systematic Review and Meta-Analysis of Mid-Term Survival, and Recurrent Mitral Regurgitation for Robotic-Assisted Mitral Valve Repair

Authors: Ramanen Sugunesegran, Michael L. Williams

Abstract:

Over the past two decades surgical approaches for mitral valve (MV) disease have evolved with the advent of minimally invasive techniques. Robotic mitral valve repair (RMVr) safety and efficacy has been well documented, however, mid- to long-term data are limited. The aim of this review was to provide a comprehensive analysis of the available mid- to long-term term data for RMVr. Electronic searches of five databases were performed to identify all relevant studies reporting minimum 5-year data on RMVr. Pre-defined primary outcomes of interest were overall survival, freedom from MV reoperation and freedom from moderate or worse mitral regurgitation (MR) at 5-years or more post-RMVr. A meta-analysis of proportions or means was performed, utilizing a random effects model, to present the data. Kaplan-Meier curves were aggregated using reconstructed individual patient data. Nine studies totaling 3,300 patients undergoing RMVr were identified. Rates of overall survival at 1-, 5- and 10-years were 99.2%, 97.4% and 92.3%, respectively. Freedom from MV reoperation at 8-years post RMVr was 95.0%. Freedom from moderate or worse MR at 7-years was 86.0%. Rates of early post-operative complications were low with only 0.2% all-cause mortality and 1.0% cerebrovascular accident. Reoperation for bleeding was low at 2.2% and successful RMVr was 99.8%. Mean intensive care unit and hospital stay were 22.4 hours and 5.2 days, respectively. RMVr is a safe procedure with low rates of early mortality and other complications. It can be performed with low complication rates in high volume, experienced centers. Evaluation of available mid-term data post-RMVr suggests favorable rates of overall survival, freedom from MV reoperation and freedom from moderate or worse MR recurrence.

Keywords: mitral valve disease, mitral valve repair, robotic cardiac surgery, robotic mitral valve repair

Procedia PDF Downloads 82
784 The Effect of Recycling on Price Volatility of Critical Metals in the EU (2010-2019): An Application of Multivariate GARCH Family Models

Authors: Marc Evenst Jn Jacques, Sophie Bernard

Abstract:

Electrical and electronic applications, as well as rechargeable batteries, are common in any economy. They also contain a number of important and valuable metals. It is critical to investigate the impact of these new materials or volume sources on the metal market dynamics. This paper investigates the impact of responsible recycling within the European region on metal price volatility. As far as we know, no empirical studies have been conducted to assess the role of metal recycling in metal market price volatility. The goal of this paper is to test the claim that metal recycling helps to cushion price volatility. A set of circular economy indicators/variables, namely, 1) annual total trade values of recycled metals, 2) annual volume of scrap traded and 3) circular material use rate, and 4) information about recycling, are used to estimate the volatility of monthly spot prices of regular metals. A combination of the GARCH-MIDAS model for mixed frequency data sampling and a simple GARCH (1,1) model for the same frequency variables was adopted to examine the potential links between each variable and price volatility. We discovered that from 2010 to 2019, except for Nickel, scrap consumption (Millions of tons), Scrap Trade Values, and Recycled Material use rate had no significant impact on the price volatility of standard metals (Aluminum, Lead) and precious metals (Gold and Platinum). Worldwide interest in recycling has no impact on returns or volatility. Specific interest in metal recycling did have a link to the mean return equation for Aluminum, Gold and to the volatility equation for lead and Nickel.

Keywords: recycling, circular economy, price volatility, GARCH, mixed data sampling

Procedia PDF Downloads 57
783 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector

Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau

Abstract:

Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.

Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement

Procedia PDF Downloads 198
782 A Preliminary Investigation on Factors That Influence Road Users' Speeding Behaviour on Selected Roads in Peninsular Malaysia

Authors: Farah Fazlinda Binti Mohamad, Ahmad Saifizul Abdullah, Mohamed Rehan Karim , Jamilah Mohamad, Siti Hikmah Musthar

Abstract:

Road safety is an important issue in Malaysia. It become important as it is discussed widely throughout printed and electronic media. Most of the news portrays on road accident and fatalities have increased the concern of everyone. This issue affects everyone's life as everyone shares the roads. The most vulnerable victims are the road user who uses the roads every day. It is appalling when World Health Organization (WHO) reported that in every 100,000 of population in Malaysia, 23 fatalities recorded due to road accident alone. This figure is quite alarming and requires serious attention. Furthermore, research by Malaysian Institute of Road Safety Research concluded that that speeding has contributed to 60% of all road accident in the country. Therefore, this study aims to elucidate the factors that influence road users’ speeding behaviour on selected roads in Peninsular Malaysia. To achieve this, set of questionnaires has distributed to 500 respondents on selected roads in Peninsular Malaysia. The respondents came from various demographic backgrounds in order to have a fair opinion on the issue. Using descriptive analysis, the results have indicated that psychological factors such as emotion and attitude of road user are the prominent factors that influence the road user’s speeding behaviour. Furthermore, the results have shown that male road users were dominant in speeding compared to female, which led to increased vulnerability to road injuries and fatalities. These findings are very useful in order for us to understand road users’ driving behaviour. Relevant authorities should also revise the existing countermeasures and find ways to reduce road accident. Engineers and road experts could cooperate in designing new road specifications for the road user. Nevertheless, it is important to comprehend this speeding issue and factors associated with it. Each road user should take this matter seriously and responsibly as road safety is a responsibility of all.

Keywords: countermeasures, psychological, road safety, speeding

Procedia PDF Downloads 527
781 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease

Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove

Abstract:

Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.

Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease

Procedia PDF Downloads 106
780 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 90
779 Adaptive Certificate-Based Mutual Authentication Protocol for Mobile Grid Infrastructure

Authors: H. Parveen Begam, M. A. Maluk Mohamed

Abstract:

Mobile Grid Computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using different types of electronic portable devices. In a grid environment the security issues are like authentication, authorization, message protection and delegation handled by GSI (Grid Security Infrastructure). Proving better security between mobile devices and grid infrastructure is a major issue, because of the open nature of wireless networks, heterogeneous and distributed environments. In a mobile grid environment, the individual computing devices may be resource-limited in isolation, as an aggregated sum, they have the potential to play a vital role within the mobile grid environment. Some adaptive methodology or solution is needed to solve the issues like authentication of a base station, security of information flowing between a mobile user and a base station, prevention of attacks within a base station, hand-over of authentication information, communication cost of establishing a session key between mobile user and base station, computing complexity of achieving authenticity and security. The sharing of resources of the devices can be achieved only through the trusted relationships between the mobile hosts (MHs). Before accessing the grid service, the mobile devices should be proven authentic. This paper proposes the dynamic certificate based mutual authentication protocol between two mobile hosts in a mobile grid environment. The certificate generation process is done by CA (Certificate Authority) for all the authenticated MHs. Security (because of validity period of the certificate) and dynamicity (transmission time) can be achieved through the secure service certificates. Authentication protocol is built on communication services to provide cryptographically secured mechanisms for verifying the identity of users and resources.

Keywords: mobile grid computing, certificate authority (CA), SSL/TLS protocol, secured service certificates

Procedia PDF Downloads 305
778 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 148
777 Studying Second Language Development from a Complex Dynamic Systems Perspective

Authors: L. Freeborn

Abstract:

This paper discusses the application of complex dynamic system theory (DST) to the study of individual differences in second language development. This transdisciplinary framework allows researchers to view the trajectory of language development as a dynamic, non-linear process. A DST approach views language as multi-componential, consisting of multiple complex systems and nested layers. These multiple components and systems continuously interact and influence each other at both the macro- and micro-level. Dynamic systems theory aims to explain and describe the development of the language system, rather than make predictions about its trajectory. Such a holistic and ecological approach to second language development allows researchers to include various research methods from neurological, cognitive, and social perspectives. A DST perspective would involve in-depth analyses as well as mixed methods research. To illustrate, a neurobiological approach to second language development could include non-invasive neuroimaging techniques such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to investigate areas of brain activation during language-related tasks. A cognitive framework would further include behavioural research methods to assess the influence of intelligence and personality traits, as well as individual differences in foreign language aptitude, such as phonetic coding ability and working memory capacity. Exploring second language development from a DST approach would also benefit from including perspectives from the field of applied linguistics, regarding the teaching context, second language input, and the role of affective factors such as motivation. In this way, applying mixed research methods from neurobiological, cognitive, and social approaches would enable researchers to have a more holistic view of the dynamic and complex processes of second language development.

Keywords: dynamic systems theory, mixed methods, research design, second language development

Procedia PDF Downloads 135
776 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110
775 Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices

Authors: K. Swapna

Abstract:

A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices.

Keywords: glasses, J-O parameters, photoluminescence, I-H model

Procedia PDF Downloads 158
774 Development of Automatic Farm Manure Spreading Machine for Orchards

Authors: Barış Ozluoymak, Emin Guzel, Ahmet İnce

Abstract:

Since chemical fertilizers are used for meeting the deficiency of plant nutrients, its many harmful effects are not taken into consideration for the structure of the earth. These fertilizers are hampering the work of the organisms in the soil immediately after thrown to the ground. This interference is first started with a change of the soil pH and micro organismic balance is disrupted by reaction in the soil. Since there can be no fragmentation of plant residues, organic matter in the soil will be increasingly impoverished in the absence of micro organismic living. Biological activity reduction brings about a deterioration of the soil structure. If the chemical fertilization continues intensively, soils will get worse every year; plant growth will slow down and stop due to the intensity of chemical fertilizers, yield decline will be experienced and farmer will not receive an adequate return on his investment. In this research, a prototype of automatic farm manure spreading machine for orange orchards that not just manufactured in Turkey was designed, constructed, tested and eliminate the human drudgery involved in spreading of farm manure in the field. The machine comprised several components as a 5 m3 volume hopper, automatic controlled hydraulically driven chain conveyor device and side delivery conveyor belts. To spread the solid farm manure automatically, the machine was equipped with an electronic control system. The hopper and side delivery conveyor designs fitted between orange orchard tree row spacing. Test results showed that the control system has significant effects on reduction in the amount of unnecessary solid farm manure use and avoiding inefficient manual labor.

Keywords: automatic control system, conveyor belt application, orchard, solid farm manure

Procedia PDF Downloads 285
773 Prompt Design for Code Generation in Data Analysis Using Large Language Models

Authors: Lu Song Ma Li Zhi

Abstract:

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.

Keywords: large language models, prompt design, data analysis, code generation

Procedia PDF Downloads 40
772 Benefits of Occupational Therapy for Children with Intellectual Disabilities in the Aspects of Vocational Activities and Instrumental Activities of Daily Life

Authors: Shakhawath Hossain, Tazkia Tahsin

Abstract:

Introduction/Background: Intellectual disability is a disability characterized by significant limitations both in intellectual functioning and in adaptive behavior, which covers many everyday social and practical skills. Vocational education is a multi-professional approach that is provided to individuals of working age with health-related impairments, limitations, or restrictions with work functioning and whose primary aim is to optimize work participation. Instrumental Activities of Daily Living activities to support daily life within the home and community. Like as community mobility, financial management, meal preparation, and clean-up, shopping. Material and Method: Electronic searches of Medline, PubMed, Google scholar, OT Seeker literature using the key terms of intellectual disability, vocational rehabilitation, instrumental activities of daily living and Occupational Therapy, as well as a thorough manual search for relevant literature. Results: There were 13 articles, all qualitative and quantitative, which are included in this review. All studies were mixed methods in design. To take the Occupational Therapy services, there is a significant improvement in their children's various areas like as sensory issues, cognitive abilities, perceptual skills, visual, motor planning, and group therapy. After taking the vocational and instrumental activities of daily living training children with intellectual disabilities to participate in their daily activities and work as an employee different company or organizations. Conclusion: The persons with intellectual disability are an integral part of our society who deserves social support and opportunities like other human beings. From the result section of the project papers, it is found that the significant benefits of Occupational Therapy services in the aspects of vocational and instrumental activities of daily living.

Keywords: occupational therapy, daily living activities, intellectual disabilities, instrumental ADL

Procedia PDF Downloads 130
771 Integrative Biology Teaching and Learning Model Based on STEM Education

Authors: Narupot Putwattana

Abstract:

Changes in global situation such as environmental and economic crisis brought the new perspective for science education called integrative biology. STEM has been increasingly mentioned for several educational researches as the approach which combines the concept in Science (S), Technology (T), Engineering (E) and Mathematics (M) to apply in teaching and learning process so as to strengthen the 21st-century skills such as creativity and critical thinking. Recent studies demonstrated STEM as the pedagogy which described the engineering process along with the science classroom activities. So far, pedagogical contents for STEM explaining the content in biology have been scarce. A qualitative literature review was conducted so as to gather the articles based on electronic databases (google scholar). STEM education, engineering design, teaching and learning of biology were used as main keywords to find out researches involving with the application of STEM in biology teaching and learning process. All articles were analyzed to obtain appropriate teaching and learning model that unify the core concept of biology. The synthesized model comprised of engineering design, inquiry-based learning, biological prototype and biologically-inspired design (BID). STEM content and context integration were used as the theoretical framework to create the integrative biology instructional model for STEM education. Several disciplines contents such as biology, engineering, and technology were regarded for inquiry-based learning to build biological prototype. Direct and indirect integrations were used to provide the knowledge into the biology related STEM strategy. Meanwhile, engineering design and BID showed the occupational context for engineer and biologist. Technological and mathematical aspects were required to be inspected in terms of co-teaching method. Lastly, other variables such as critical thinking and problem-solving skills should be more considered in the further researches.

Keywords: biomimicry, engineering approach, STEM education, teaching and learning model

Procedia PDF Downloads 255
770 Surveillance of Adverse Events Following Immunization during New Vaccines Introduction in Cameroon: A Cross-Sectional Study on the Role of Mobile Technology

Authors: Andreas Ateke Njoh, Shalom Tchokfe Ndoula, Amani Adidja, Germain Nguessan Menan, Annie Mengue, Eric Mboke, Hassan Ben Bachir, Sangwe Clovis Nchinjoh, Yauba Saidu, Laurent Cleenewerck De Kiev

Abstract:

Vaccines serve a great deal in protecting the population globally. Vaccine products are subject to rigorous quality control and approval before use to ensure safety. Even if all actors take the required precautions, some people could still have adverse events following immunization (AEFI) caused by the vaccine composition or an error in its administration. AEFI underreporting is pronounced in low-income settings like Cameroon. The Country introduced electronic platforms to strengthen surveillance. With the introduction of many novel vaccines, like COVID-19 and the novel Oral Polio Vaccine (nOPV) 2, there was a need to monitor AEFI in the Country. A cross-sectional study was conducted from July to December 2022. Data on AEFI per region of Cameroon were reviewed for the past five years. Data were analyzed with MS Excel, and the results were presented in proportions. AEFI reporting was uncommon in Cameroon. With the introduction of novel vaccines in 2021, the health authorities engaged in new tools and training to capture cases. AEFI detected almost doubled using the open data kit (ODK) compared to previous platforms, especially following the introduction of the nOPV2 and COVID-19 vaccines. The AEFI rate was 1.9 and 160 per administered 100 000 doses of nOPV2 and COVID-19 vaccines, respectively. This mobile tool captured individual information for people with AEFI from all regions. The platform helped to identify common AEFI following the use of these new vaccines. The ODK mobile technology was vital in improving AEFI reporting and providing data to monitor using new vaccines in Cameroon.

Keywords: adverse events following immunization, cameroon, COVID-19 vaccines, nOPV, ODK

Procedia PDF Downloads 88
769 Dynamics of Follicle Vascular Perfusion, Dimensions, Antrum Growth, Circulating Angiogenic Mediators from Deviation to Ovulation

Authors: Elshymaa A. Abdelnaby, Amal M. Abo El-Maaty

Abstract:

This study aimed to investigate dynamics of dominant and subordinate follicles change in dimensions, vascularity and angiogenic hormones after completing deviation till ovulation. Five cyclic mares were subjected to daily blood sampling and rectal Doppler ultrasonographic examination along two estrous cycles. Using electronic calipers, three diameters were recorded for each follicle to estimate area and volume. Leptin, Insulin-like growth factor-I (IGF-1), nitric oxide (NO) and estradiol (E2) were measured. Area of color- and power- Doppler modes with area and circumference of the first (preovulatory) and subordinate follicles were measured in pixels. Follicles were classified into F1O (preovulatory), F2O (subordinate), F3O (third ovulatory) on the dominant ovary and F1C (first contra) and F2C (second contra) on the contralateral ovary. Days before ovulation significantly (P < 0.0001) affected diameter, circumference, area, volume, area/pixel and antrum area of the preovulatory follicle. With the increase of diameter, area, volume area/pixel, antrum area/pixel and circumference of F1O, those of all subordinates were decreasing. The blue blood flow area, power and power minus red blood flow area of F1O increased from day -6 till day of ovulation (day 0), but red blood flow area significantly decreased. F1O had the lowest percent of colored pixels and percent of the colored pixels without antrum. Estradiol and leptin increased from day -6 till day 0 but IGF-1 decreased till day -1 but NO achieved a peak on day -3 then decreased till day 0. In conclusion, antrum growth, blood flow and angiogenic hormones play a role in maturation and ovulation of the dominant follicle in mares.

Keywords: angiogenic hormones, blood flow, mare, preovulatory follicle

Procedia PDF Downloads 313
768 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 109
767 Business Feasibility of Online Marketing of Food and Beverages Products in India

Authors: Dimpy Shah

Abstract:

The global economy has substantially changed in last three decades. Now almost all markets are transparent and visible for global customers. The corporates are now no more reliant on local markets for trade. The information technology revolution has changed business dynamics and marketing practices of corporate. The markets are divided into two different formats: traditional and virtual. In very short span of time, many e-commerce portals have captured global market. This strategy is well supported by global delivery system of multinational logistic companies. Now the markets are dealing with global supply chain networks, which are more demand driven and customer oriented. The corporate have realized importance of supply chain integration and marketing in this competitive environment. The Indian markets are also significantly affected with all these changes. In terms of population, India is in second place after China. In terms of demography, almost half of the population is of youth. It has been observed that the Indian youth are more inclined towards e-commerce and prefer to buy goods from web portal. Initially, this trend was observed in Indian service sector, textile and electronic goods and now further extended in other product categories. The FMCG companies have also recognized this change and started integration of their supply chain with e-commerce platform. This paper attempts to understand contemporary marketing practices of corporate in e-commerce business in Indian food and beverages segment and also tries to identify innovative marketing practices for proper execution of their strategies. The findings are mainly focused on supply chain re-integration and brand building strategies with proper utilization of social media.

Keywords: FMCG (Fast Moving Consumer Goods), ISCM (Integrated supply chain management), RFID (Radio Frequency Identification), traditional and virtual formats

Procedia PDF Downloads 275
766 Synthesis of Highly Stable Pseudocapacitors From Secondary Resources

Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Mofarah

Abstract:

Fabrication of the state-of-the-art portable pseudocapacitors with the desired transparency, mechanical flexibility, capacitance, and durability is challenging. In most cases, the fabrication of such devices requires critical elements which are either under the crisis of depletion or their extraction from virgin mineral ores have sever environmental impacts. This urges the use of secondary resources instead of virgin resources in fabrication of advanced devices. In this research, ultrathin films of defect-rich Mn1−x−y(CexLay)O2−δ with controllable thicknesses in the range between 5 nm to 627 nm and transmittance (≈29–100%) have been fabricated via an electrochemical chronoamperometric deposition technique using an aqueous precursor derived during the selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries. Intercalation/de-intercalation of anionic O2− through the atomic tunnels of the stratified Mn1−x−y(CexLay)O2−δ crystallites was found to be responsible for outstanding areal capacitance of 3.4 mF cm−2 of films with 86% transmittance. The intervalence charge transfer among interstitial Ce/La cations and Mn oxidation states within the Mn1−x−y(CexLay)O2−δ structure resulted in excellent capacitance retention of ≈90% after 16 000 cycles. The synthesised transparent flexible Mn1−x−y(CexLay)O2−δ full-cell pseudocapacitor device possessed the energy and power densities of 0.088 μWh cm⁻² and 843 µW cm⁻², respectively. These values show insignificant changes under vigorous twisting and bending to 45–180° confirming these value-added materials are intriguing alternatives for size-sensitive energy storage devices. This research confirms the feasibility of utilisation of secondary waste resources for the fabrication of high-quality pseudocapacitors with engineered defects with the desired flexibility, transparency, and cycling stability suitable for size-sensitive portable electronic devices.

Keywords: pseudocapacitors, energy storage devices, flexible and transparent, sustainability

Procedia PDF Downloads 87
765 Studying the Effect of Different Sizes of Carbon Fiber on Locally Developed Copper Based Composites

Authors: Tahir Ahmad, Abubaker Khan, Muhammad Kamran, Muhammad Umer Manzoor, Muhammad Taqi Zahid Butt

Abstract:

Metal Matrix Composites (MMC) is a class of weight efficient structural materials that are becoming popular in engineering applications especially in electronic, aerospace, aircraft, packaging and various other industries. This study focuses on the development of carbon fiber reinforced copper matrix composite. Keeping in view the vast applications of metal matrix composites,this specific material is produced for its unique mechanical and thermal properties i.e. high thermal conductivity and low coefficient of thermal expansion at elevated temperatures. The carbon fibers were not pretreated but coated with copper by electroless plating in order to increase the wettability of carbon fiber with the copper matrix. Casting is chosen as the manufacturing route for the C-Cu composite. Four different compositions of the composite were developed by varying the amount of carbon fibers by 0.5, 1, 1.5 and 2 wt. % of the copper. The effect of varying carbon fiber content and sizes on the mechanical properties of the C-Cu composite is studied in this work. The tensile test was performed on the tensile specimens. The yield strength decreases with increasing fiber content while the ultimate tensile strength increases with increasing fiber content. Rockwell hardness test was also performed and the result followed the increasing trend for increasing carbon fibers and the hardness numbers are 30.2, 37.2, 39.9 and 42.5 for sample 1, 2, 3 and 4 respectively. The microstructures of the specimens were also examined under the optical microscope. Wear test and SEM also done for checking characteristic of C-Cu marix composite. Through casting may be a route for the production of the C-Cu matrix composite but still powder metallurgy is better to follow as the wettability of carbon fiber with matrix, in that case, would be better.

Keywords: copper based composites, mechanical properties, wear properties, microstructure

Procedia PDF Downloads 364
764 The Impact of Artificial Intelligence on Pharmacy and Pharmacology

Authors: Mamdouh Milad Adly Morkos

Abstract:

Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global health

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, virtual learning low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways

Procedia PDF Downloads 81
763 Three Decades of the Fourth Estate in Ghana: Issues, Challenges and the Way Forward

Authors: Samuel Pimpong

Abstract:

In most liberal and constitutional democracies, the media serves as a dominant power in the construction of the fundamental building blocks for the consolidation of democratic governance. However, the extent to which the media can enhance democratic consolidation in a country depends to a large extent on the independence of the media, the robustness of legislative frameworks and the safety of journalists in discharging their duties without fear or favor. This study sought to examine pertinent issues, practices and challenges facing the media in Ghana’s Fourth Republic and attempts to make recommendations regarding the way forward. The work adopted a qualitative study approach. A total of sixteen (16) participants were purposively selected for face-to-face interviews. The study hinges on the democratic participant media theory and the development media theory. Primary data was analyzed via thematic analysis procedure. The study revealed that although Ghana has repealed its criminal libel laws, nonetheless other statutory Acts, such as the Electronic Communications Act 2008 (ACT 775) and the Criminal and other offences Act 1960 (Act 29), among others continue to stifle freedom of expression. On the other hand, press freedom is being abused by the use of fake content publication. Further, the study revealed that the absence of a comprehensive regulatory structure impedes the activities carried out by the media. Consequently, the study recommends a regulatory structure to oversee media activities and content, as the National Media Commission (NMC) lacks the authority to do so. In this direction, the study recommends a limitation on the role of the National Communications Authority (NCA) to administer broadcasting signals and transfer its licensing and sanctioning powers to the NMC in order to create one sole and completely independent media regulatory authority that deals with all media related issues.

Keywords: media, constitutional democracy, democratic consolidation, fourth republic

Procedia PDF Downloads 72
762 The Effectiveness of Cash Flow Management by SMEs in the Mafikeng Local Municipality of South Africa

Authors: Ateba Benedict Belobo, Faan Pelser, Ambe Marcus

Abstract:

Aims: This study arise from repeated complaints from both electronic mails about the underperformance of Mafikeng Small and Medium-Size enterprises after the global financial crisis. The authors were on the view that, this poor performance experienced could be as a result of the negative effects on the cash flow of these businesses due to volatilities in the business environment in general prior to the global crisis. Thus, the paper was mainly aimed at determining the shortcomings experienced by these SMEs with regards to cash flow management. It was also aimed at suggesting possible measures to improve cash flow management of these SMEs in this tough time. Methods: A case study was conducted on 3 beverage suppliers, 27 bottle stores, 3 largest fast consumer goods super markets and 7 automobiles enterprises in the Mafikeng local municipality. A mixed method research design was employed and a purposive sampling was used in selecting SMEs that participated. Views and experiences of participants of the paper were captured through in-depth interviews. Data from the empirical investigation were interpreted using open coding and a simple percentage formula. Results: Findings from the empirical research reflected that majority of Mafikeng SMEs suffer poor operational performance prior to the global financial crisis primarily as a result of poor cash flow management. However, the empirical outcome also indicted other secondary factors contributing to this poor operational performance. Conclusion: Finally, the authorsproposed possible measures that could be used to improve cash flow management and to solve other factors affecting operational performance of SMEs in the Mafikeng local municipality in other to achieve a better business performance.

Keywords: cash flow, business performance, global financial crisis, SMEs

Procedia PDF Downloads 439
761 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0

Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini

Abstract:

Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.

Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling

Procedia PDF Downloads 94
760 A Study on the Effects of a Mindfulness Training on Managers: The Case of the Malian Company for the Development of Textile

Authors: Aboubacar Garba Konte, Wei Jun, Li Xiaohui

Abstract:

Nowadays companies are facing increasing pressure. The market environment changes more frequently than ever. Therefore, managers have to develop their agility, their performance and their capacity for innovation. Most companies look for managerial innovations to develop in their employees qualities such as motivation, commitment, creativity, autonomy or even the ability to adapt to change and manage intensive pressure. On a more collective level, companies are looking for teams that are able to organize, communicate and develop a form of collective intelligence based on cooperation and solidarity. Among the many managerial innovations that are currently developing, mindfulness (or mindfulness) is drawing the attention of a growing number of companies (Google, Apple, Sony, ING ...), These companies have implemented programs based on mindfulness. Although the concept of mindfulness and its effects have been the subject of in-depth research in the psychological field, research on mindfulness in the field of management is still in its infancy and it is necessary to evaluate its contribution to organizations. The purpose of this research is to evaluate the effects of a mindfulness training among the managers of a Malian textile company (CMDT). We conducted a case study on their experience and their managerial practices. In addition, we discuss the innovative nature of mindfulness in terms of managerial practice The results show significant positive effects on two major skills identified by managers that raise significant difficulties in their daily lives: their ability to supervise a team of employees with all that this implies in terms of interpersonal skills and their ability to organize and prioritize their activities. In addition, the research methodology sheds light on the innovative nature of mindfulness in a favorable organizational environment.

Keywords: mindfulness, manager, managerial innovation, relational skills, organization and prioritization

Procedia PDF Downloads 101
759 Solving a Micromouse Maze Using an Ant-Inspired Algorithm

Authors: Rolando Barradas, Salviano Soares, António Valente, José Alberto Lencastre, Paulo Oliveira

Abstract:

This article reviews the Ant Colony Optimization, a nature-inspired algorithm, and its implementation in the Scratch/m-Block programming environment. The Ant Colony Optimization is a part of Swarm Intelligence-based algorithms and is a subset of biological-inspired algorithms. Starting with a problem in which one has a maze and needs to find its path to the center and return to the starting position. This is similar to an ant looking for a path to a food source and returning to its nest. Starting with the implementation of a simple wall follower simulator, the proposed solution uses a dynamic graphical interface that allows young students to observe the ants’ movement while the algorithm optimizes the routes to the maze’s center. Things like interface usability, Data structures, and the conversion of algorithmic language to Scratch syntax were some of the details addressed during this implementation. This gives young students an easier way to understand the computational concepts of sequences, loops, parallelism, data, events, and conditionals, as they are used through all the implemented algorithms. Future work includes the simulation results with real contest mazes and two different pheromone update methods and the comparison with the optimized results of the winners of each one of the editions of the contest. It will also include the creation of a Digital Twin relating the virtual simulator with a real micromouse in a full-size maze. The first test results show that the algorithm found the same optimized solutions that were found by the winners of each one of the editions of the Micromouse contest making this a good solution for maze pathfinding.

Keywords: nature inspired algorithms, scratch, micromouse, problem-solving, computational thinking

Procedia PDF Downloads 126
758 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 80