Search results for: electrical impedance of skin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3420

Search results for: electrical impedance of skin

930 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ

Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati

Abstract:

This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.

Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse

Procedia PDF Downloads 442
929 Effect of Monsoon on Ground Water Quality and Contamination: A Case Study of Narsapur-Mogalthur Mandals, West Godavari District, Andhra Pradesh, India

Authors: M. S. V. K. V. Prasad, G. Siva Praveena, P. V. V. Prasada Rao

Abstract:

It is known that the groundwater quality is very important parameter because it is the main factor determining its suitability for drinking, agricultural and industrial purposes. Water Quality Index (WQI) has been calculated for ground water samples taken from Narsapur-Mogalthur mandals, West Godavari district, Andhra Pradesh, India, from 10 different locations in the pre-monsoon season as well as post monsoon. The water samples were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), major cations like calcium, magnesium, sodium, potassium and anions like chloride, nitrate and sulphate in the laboratory using the standard methods given by the American Public Health Association (APHA). The overall quality of water in the study area is somewhat good for all constituents. Drinking water at almost all the locations was found to be slightly contaminated, except a few locations during the year 2014. It was found that some effective measures are urgently required for water quality management in this region.

Keywords: Water Quality Index, Physico-chemical parameters, Quality rating, monsoon

Procedia PDF Downloads 333
928 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)

Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze

Abstract:

Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.

Keywords: groundwater, vulnerability, DRASTIC model, pollution

Procedia PDF Downloads 207
927 Seal and Heal Miracle Ointment: Effects of Cryopreserved and Lyophilized Amniotic Membrane on Experimentally Induced Diabetic Balb/C Mice

Authors: Elizalde D. Bana

Abstract:

Healing restores continuity and form through cell replication; hence, conserving structural integrity. In response to the worldwide pressing problem of chronic wounds in the healthcare delivery system, the researcher aims to provide effective intervention to preserve the structural integrity of the person. The wound healing effects of cryopreserved and lyophilized amniotic membrane (AM) of a term fetus embedded into two (2) concentrations (1.5 % and 1.0 %) of absorption-based ointment has been evaluated in vivo using the excision wound healing model 1x1 cm size. The total protein concentration in full term fetus was determined by the Biuret and Bradford methods, which are based on UV-visible spectroscopy. The percentages of protein presence in 9.5 mg (Mass total sample) of Amniotic membrane ranges between 14.77 – 14.46 % in Bradford method, while slightly lower to 13.78 – 13.80 % concentration in Biuret method, respectively. Bradford method evidently showed higher sensitivity for proteins than Biuret test. Overall, the amniotic membrane is composed principally of proteins in which a copious amount of literature substantially proved its healing abilities. After which, an area of 1 cm by 1 cm skin tissue was excised to its full thickness from the dorsolateral aspect of the isogenic mice and was applied twice a day with the ointment formulation having two (2) concentrations for the diabetic group and non-diabetic group. The wounds of each animal were left undressed and its area was measured every other day by a standard measurement formula from day 2,4,6,8,10,12 and 14. By the 14th day, the ointment containing 1.5 % of AM in absorption-based ointment applied to non-diabetic and diabetic group showed 100 % healing. The wound areas in the animals treated with the standard antibiotic, Mupirocin Ointment (Brand X) showed a 100% healing by the 14th day but with traces of scars, indicating that AM prepared from cryopreservation and lyophilization, at that given concentration, had a better wound healing property than the standard antibiotic. Four (4) multivariate tests were used which showed a significant interaction between days and treatments, meaning that the ointments prepared in two differing concentrations and induced in different groups of the mice had a significant effect on the percent of contraction over time. Furthermore, the evaluations of its effectiveness to wound healing were all significant although in differing degrees. It is observed that the higher the concentrations of amniotic membrane, the more effective are the results.

Keywords: wounds, healing, amniotic membrane ointments, biomedical, stem cell

Procedia PDF Downloads 302
926 Jarcho-Levin Syndrome: A Case Report

Authors: Atitallah Sofien, Bouyahia Olfa, Romdhani Meriam, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir

Abstract:

Introduction: Spondylothoracic dysostosis, also known as Jarcho-Levin syndrome, is defined by a shortened neck and thorax, a protruding abdomen, inguinal and umbilical hernias, atypical spinal structure and rib fusion, leading to restricted chest movement or difficulty in breathing, along with urinary tract abnormalities and, potentially severe scoliosis. Aim: This is the case of a patient diagnosed with Jarcho-Levin syndrome, aiming to detail the range of abnormalities observed in this syndrome, the observed complications, and the therapeutic approaches employed. Results: A three-month-old male infant, born of a consanguineous marriage, delivered at full term by cesarean section, was admitted to the pediatric department for severe acute bronchiolitis. In his prenatal history, morphological ultrasound revealed macrosomia, a shortened spine, irregular vertebrae with thickened skin, normal fetal cardiac ultrasound, and the absence of the right kidney. His perinatal history included respiratory distress, requiring ventilatory support for five days. Upon physical examination, he had stunted growth, scoliosis, a short neck and trunk, longer upper limbs compared to lower limbs, varus equinus in the right foot, a neural tube defect, a low hairline, and low-set ears. Spondylothoracic dysostosis was suspected, leading to further investigations, including a normal transfontaneous ultrasound, a spinal cord ultrasound revealing a lipomyelocele-type closed dysraphism with a low-attached cord, an abdominal ultrasound indicating a single left kidney, and a cardiac ultrasound identifying Kommerell syndrome. Due to a lack of resources, genetic testing could not be performed, and the diagnosis was based on clinical criteria. Conclusion: Jarcho-Levin syndrome can result in a mortality rate of about 50%, primarily due to respiratory complications associated with thoracic insufficiency syndrome. Other complications, like heart and neural tube defects, can also lead to premature mortality. Therefore, early diagnosis and comprehensive treatment involving various specialists are essential.

Keywords: Jarcho-Levin syndrome, congenital disorder, scoliosis, spondylothoracic dysostosis, neural tube defect

Procedia PDF Downloads 57
925 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

Authors: M. Salmanpour, O. Nourani Zonouz

Abstract:

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation

Procedia PDF Downloads 471
924 Numerical Investigation Including Mobility Model for the Performances of Piezoresistive Sensors

Authors: Abdelaziz Beddiaf

Abstract:

In this work, we present an analysis based on the study of mobility which is a very important electrical parameter of a piezoresistor and which is directly bound to the piezoresistivity effect in piezoresistive pressure sensors. We determine how the temperature affects mobility when the electric potential is applied. For this, a theoretical approach based on mobility in a p-type Silicon piezoresistor with that of a finite difference model for self-heating is developed. So, the evolution of mobility has been established versus time for different doping levels and with temperature rise provoked by self-heating using a numerical model combined with that of mobility. Furthermore, it has been calculated for some geometrical parameters of the sensor, such as membrane side length and thickness. Also, it is computed as a function of bias voltage. It was observed that mobility is strongly affected by the temperature rise induced by the applied potential when the sensor is actuated for a prolonged time as a consequence of drifting in the output response of the sensor. Finally, this work makes it possible to predict their temperature behavior due to self-heating and to improve this effect by optimizing the geometric properties of the device and by reducing the voltage source applied to the bridge.

Keywords: Sensors, Piezoresistivity, Mobility, Bias voltage

Procedia PDF Downloads 92
923 Computer-Based Model for Design Selection of Lightning Arrester for 132/33kV Substation

Authors: Uma U. Uma, Uzoechi Laz

Abstract:

Protection of equipment insulation against lightning over voltages and selection of lightning arrester that will discharge at lower voltage level than the voltage required to breakdown the electrical equipment insulation is examined. The objectives of this paper are to design a computer based model using standard equations for the selection of appropriate lightning arrester with the lowest rated surge arrester that will provide adequate protection of equipment insulation and equally have a satisfactory service life when connected to a specified line voltage in power system network. The effectiveness and non-effectiveness of the earthing system of substation determine arrester properties. MATLAB program with GUI (graphic user interphase) its subprogram is used in the development of the model for the determination of required parameters like voltage rating, impulse spark over voltage, power frequency spark over voltage, discharge current, current rating and protection level of lightning arrester of a specified voltage level of a particular line.

Keywords: lightning arrester, GUIs, MatLab program, computer based model

Procedia PDF Downloads 418
922 Energy Audit: A Case Study of a Hot Rolling Mill in Steel Industry

Authors: Arvind Dhingra, Tejinder Singh Saggu

Abstract:

As the energy demands rise and the pollution levels grow, it becomes imperative for us to save energy in all the fields in which it is used. The industrial sector is the major commercial energy consuming sector in India, where electrical energy is the most common and widely used type of energy. As the demand and price of energy are increasing day by day, therefore, the subject of energy conservation is a concern for most energy users particularly industry. Judicious use of energy becomes imperative for third world developing country being presence of energy crisis. This paper provides some measure for energy saving that can be commonly recommended for a rolling unit of steel industry. A case of hot rolling unit in JSL Stainless Ltd., Hisar for energy conservation is given. Overall improvement in energy consumption in light of the stated recommendation is illustrated along with the proposed utilization of the techniques and their applications. Energy conservation in conventional motor with replacement or use of star delta star converter, reduction in cable losses, replacement of filament of LED lamps, replacement of conventional transformer with cast resin dry type transformer and provision of energy management system for energy conservation and per unit production cost reduction are elaborated in this paper.

Keywords: energy audit, energy conservation, energy efficient motors

Procedia PDF Downloads 532
921 Optimal Planning of Transmission Line Charging Mode During Black Start of a Hydroelectric Unit

Authors: Mohammad Reza Esmaili

Abstract:

After the occurrence of blackouts, the most important subject is how fast the electric service is restored. Power system restoration is an immensely complex issue and there should be a plan to be executed within the shortest time period. This plan has three main stages of black start, network reconfiguration and load restoration. In the black start stage, operators and experts may face several problems, for instance, the unsuccessful connection of the long high-voltage transmission line connected to the electrical source. In this situation, the generator may be tripped because of the unsuitable setting of its line charging mode or high absorbed reactive power. In order to solve this problem, the line charging process is defined as a nonlinear programming problem, and it is optimized by using GAMS software in this paper. The optimized process is performed on a grid that includes a 250 MW hydroelectric unit and a 400 KV transmission system. Simulations and field test results show the effectiveness of optimal planning.

Keywords: power system restoration, black start, line charging mode, nonlinear programming

Procedia PDF Downloads 80
920 Exploitation behind the Development of Home Batik Industry in Lawean, Solo, Central Java

Authors: Mukhammad Fatkhullah, Ayla Karina Budita, Cut Rizka Al Usrah, Kanita Khoirun Nisa, Muhammad Alhada Fuadilah Habib, Siti Muslihatul Mukaromah

Abstract:

Batik industry has become one of the leading industries in the economy of Indonesia. Since the recognition of batik as one of cultural wealth and national identity of Indonesia by UNESCO, batik production keeps increasing as a result of increasing demands for batik, whether from domestically or abroad. One of the rapid development batik industries in Indonesia is batik industry in Lawean Village, Solo, Central Java, Indonesia. This batik industry generally uses putting-out system where batik workers work in their own houses. With the implementation of this system, therefore employers don’t have to prepare Environmental Impact Analysis (EIA), social security for workers, overtime payment, space for working, and equipment for working. The implementation of putting-out system causes many problems, starting from environmental pollution, the loss of social rights of workers, and even exploitation of workers by batik entrepreneurs. The data used to describe this reality is the primary data from qualitative research with in-depth interview data collection technique. Informants were determined purposively. The theory used to perform data interpretation is the phenomenology of Alfred Schutz. Both qualitative and phenomenology are used in this study to describe batik workers exploitation in terms of the implementation of putting-out system on home batik industry in Lawean. The research result showed that workers in batik industry sector in Lawean were exploited with the implementation of putting-out system. The workers were strictly employed by the entrepreneurs, so that their job cannot be called 'part-time' job anymore. In terms of labor and time, the workers often work more than 12 hours per day and they often work overtime without receiving any overtime payment. In terms of work safety, the workers often have contact with chemical substances contained in batik making materials without using any protection, such as clothes work, which is worsened by the lack of standard or procedure in work that can cause physical damage, such as burnt and peeled off skin. Moreover, exposure and contamination of chemical materials make the workers and their families vulnerable to various diseases. Meanwhile, batik entrepreneurs did not give any social security (including health cost aid). Besides that, the researchers found that batik industry in home industry sector is not environmentally friendly, even damaging ecosystem because industrial waste disposed without EIA.

Keywords: exploitation, home batik industry, occupational health and safety, putting-out system

Procedia PDF Downloads 317
919 Study of Polyphenol Profile and Antioxidant Capacity in Italian Ancient Apple Varieties by Liquid Chromatography

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Safeguarding, studying and enhancing biodiversity play an important and indispensable role in re-launching agriculture. The ancient local varieties are therefore a precious resource for genetic and health improvement. In order to protect biodiversity through the recovery and valorization of autochthonous varieties, in this study we analyzed 12 samples of four ancient apple cultivars representative of Friuli Venezia Giulia, selected by local farmers who work on a project for the recovery of ancient apple cultivars. The aim of this study is to evaluate the polyphenolic profile and the antioxidant capacity that characterize the organoleptic and functional qualities of this fruit species, besides having beneficial properties for health. In particular, for each variety, the following compounds were analyzed, both in the skins and in the pulp: gallic acid, catechin, chlorogenic acid, epicatechin, caffeic acid, coumaric acid, ferulic acid, rutin, phlorizin, phloretin and quercetin to highlight any differences in the edible parts of the apple. The analysis of individual phenolic compounds was performed by High Performance Liquid Chromatography (HPLC) coupled with a diode array UV detector (DAD), the antioxidant capacity was estimated using an in vitro essay based on a Free Radical Scavenging Method and the total phenolic compounds was determined using the Folin-Ciocalteau method. From the results, it is evident that the catechins are the most present polyphenols, reaching a value of 140-200 μg/g in the pulp and of 400-500 μg/g in the skin, with the prevalence of epicatechin. Catechins and phlorizin, a dihydrohalcone typical of apples, are always contained in larger quantities in the peel. Total phenolic compounds content was positively correlated with antioxidant activity in apple pulp (r2 = 0,850) and peel (r2 = 0,820). Comparing the results, differences between the varieties analyzed and between the edible parts (pulp and peel) of the apple were highlighted. In particular, apple peel is richer in polyphenolic compounds than pulp and flavonols are exclusively present in the peel. In conclusion, polyphenols, being antioxidant substances, have confirmed the benefits of fruit in the diet, especially as a prevention and treatment for degenerative diseases. They demonstrated to be also a good marker for the characterization of different apple cultivars. The importance of protecting biodiversity in agriculture was also highlighted through the exploitation of native products and ancient varieties of apples now forgotten.

Keywords: apple, biodiversity, polyphenols, antioxidant activity, HPLC-DAD, characterization

Procedia PDF Downloads 136
918 High Gain Broadband Plasmonic Slot Nano-Antenna

Authors: H. S. Haroyan, V. R. Tadevosyan

Abstract:

High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on FEM method has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.

Keywords: broadband antenna, high gain, slot nano-antenna, plasmonics.

Procedia PDF Downloads 370
917 Investigation on Single Nucleotide Polymorphism in Candidate Genes and Their Association with Occurrence of Mycobacterium avium Subspecies Paratuberculosis Infection in Cattle

Authors: Ran Vir Singh, Anuj Chauhan, Subhodh Kumar, Rajesh Rathore, Satish Kumar, B Gopi, Sushil Kumar, Tarun Kumar, Ramji Yadav, Donna Phangchopi, Shoor Vir Singh

Abstract:

Paratuberculosis caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a chronic granulomatous enteritis affecting ruminants. It is responsible for significant economic losses in livestock industry worldwide. This organism is also of public health concern due to an unconfirmed link to Crohn’s disease. Susceptibility to paratuberculosis has been suggested to have genetic component with low to moderate heritability. Number of SNPs in various candidates genes have been observed to be affecting the susceptibility toward paratuberculosis. The objective of this study was to explore the association of various SNPs in the candidate genes and QTL region with MAP. A total of 117 SNPs from SLC11A1, IFNG, CARD15, TLR2, TLR4, CLEC7A, CD209, SP110, ANKARA2, PGLYRP1 and one QTL were selected for study. A total of 1222 cattle from various organized herds, gauhsalas and farmer herds were screened for MAP infection by Johnin intradermal skin test, AGID, serum ELISA, fecal microscopy, fecal culture and IS900 blood PCR. Based on the results of these tests, a case and control population of 200 and 183 respectively was established for study. A total of 117 SNPs from 10 candidate genes and one QTL were selected and validated/tested in our case and control population by PCR-RFLP technique. Data was analyzed using SAS 9.3 software. Statistical analysis revealed that, 107 out of 117 SNPs were not significantly associated with occurrence of MAP. Only SNP rs55617172 of TLR2, rs8193046 and rs8193060 of TLR4, rs110353594 and rs41654445 of CLEC7A, rs208814257of CD209, rs41933863 of ANKRA2, two loci {SLC11A1(53C/G)} and {IFNG (185 G/r) } and SNP rs41945014 in QTL region was significantly associated with MAP. Six SNP from 10 significant SNPs viz., rs110353594 and rs41654445 from CLEC7A, rs8193046 and rs8193060 from TLR4, rs109453173 from SLC11A1 rs208814257 from CD209 were validated in new case and control population. Out of these only one SNP rs8193046 of TLR4 gene was found significantly associated with occurrence of MAP in cattle. ODD ratio indicates that animals with AG genotype were more susceptible to MAP and this finding is in accordance with the earlier report. Hence it reaffirms that AG genotype can serve as a reliable genetic marker for indentifying more susceptible cattle in future selection against MAP infection in cattle.

Keywords: SNP, candidate genes, paratuberculosis, cattle

Procedia PDF Downloads 358
916 InAs/GaSb Superlattice Photodiode Array ns-Response

Authors: Utpal Das, Sona Das

Abstract:

InAs/GaSb type-II superlattice (T2SL) Mid-wave infrared (MWIR) focal plane arrays (FPAs) have recently seen rapid development. However, in small pixel size large format FPAs, the occurrence of high mesa sidewall surface leakage current is a major constraint necessitating proper surface passivation. A simple pixel isolation technique in InAs/GaSb T2SL detector arrays without the conventional mesa etching has been proposed to isolate the pixels by forming a more resistive higher band gap material from the SL, in the inter-pixel region. Here, a single step femtosecond (fs) laser anneal of the T2SL structure of the inter-pixel T2SL regions, have been used to increase the band gap between the pixels by QW-intermixing and hence increase isolation between the pixels. The p-i-n photodiode structure used here consists of a 506nm, (10 monolayer {ML}) InAs:Si (1x10¹⁸cm⁻³)/(10ML) GaSb SL as the bottom n-contact layer grown on an n-type GaSb substrate. The undoped absorber layer consists of 1.3µm, (10ML)InAs/(10ML)GaSb SL. The top p-contact layer is a 63nm, (10ML)InAs:Be(1x10¹⁸cm⁻³)/(10ML)GaSb T2SL. In order to improve the carrier transport, a 126nm of graded doped (10ML)InAs/(10ML)GaSb SL layer was added between the absorber and each contact layers. A 775nm 150fs-laser at a fluence of ~6mJ/cm² is used to expose the array where the pixel regions are masked by a Ti(200nm)-Au(300nm) cap. Here, in the inter-pixel regions, the p+ layer have been reactive ion etched (RIE) using CH₄+H₂ chemistry and removed before fs-laser exposure. The fs-laser anneal isolation improvement in 200-400μm pixels due to spatially selective quantum well intermixing for a blue shift of ~70meV in the inter-pixel regions is confirmed by FTIR measurements. Dark currents are measured between two adjacent pixels with the Ti(200nm)-Au(300nm) caps used as contacts. The T2SL quality in the active photodiode regions masked by the Ti-Au cap is hardly affected and retains the original quality of the detector. Although, fs-laser anneal of p+ only etched p-i-n T2SL diodes show a reduction in the reverse dark current, no significant improvement in the full RIE-etched mesa structures is noticeable. Hence for a 128x128 array fabrication of 8μm square pixels and 10µm pitch, SU8 polymer isolation after RIE pixel delineation has been used. X-n+ row contacts and Y-p+ column contacts have been used to measure the optical response of the individual pixels. The photo-response of these 8μm and other 200μm pixels under a 2ns optical pulse excitation from an Optical-Parametric-Oscillator (OPO), shows a peak responsivity of ~0.03A/W and 0.2mA/W, respectively, at λ~3.7μm. Temporal response of this detector array is seen to have a fast response ~10ns followed typical slow decay with ringing, attributed to impedance mismatch of the connecting co-axial cables. In conclusion, response times of a few ns have been measured in 8µm pixels of a 128x128 array. Although fs-laser anneal has been found to be useful in increasing the inter-pixel isolation in InAs/GaSb T2SL arrays by QW inter-mixing, it has not been found to be suitable for passivation of full RIE etched mesa structures with vertical walls on InAs/GaSb T2SL.

Keywords: band-gap blue-shift, fs-laser-anneal, InAs/GaSb T2SL, Inter-pixel isolation, ns-Response, photodiode array

Procedia PDF Downloads 152
915 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles

Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake

Abstract:

Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.

Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM

Procedia PDF Downloads 423
914 Nano-Sensors: Search for New Features

Authors: I. Filikhin, B. Vlahovic

Abstract:

We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications.

Keywords: double quantum dots, single electron levels, tunneling, electron localizations

Procedia PDF Downloads 506
913 Effects of Probiotic Pseudomonas fluorescens on the Growth Performance, Immune Modulation, and Histopathology of African Catfish (Clarias gariepinus)

Authors: Nelson R. Osungbemiro, O. A. Bello-Olusoji, M. Oladipupo

Abstract:

This study was carried out to determine the effects of probiotics Pseudomonas fluorescens on the growth performance, histology examination and immune modulation of African Catfish, (Clarias gariepinus) challenged with Clostridium botulinum. P. fluorescens, and C. botulinum isolates were removed from the gut, gill and skin organs of procured adult samples of Clarias gariepinus from commercial fish farms in Akure, Ondo State, Nigeria. The physical and biochemical tests were performed on the bacterial isolates using standard microbiological techniques for their identification. Antibacterial activity tests on P. fluorescens showed inhibition zone with mean value of 3.7 mm which indicates high level of antagonism. The experimental diets were prepared at different probiotics bacterial concentration comprises of five treatments of different bacterial suspension, including the control (T1), T2 (10³), T3 (10⁵), T4 (10⁷) and T5 (10⁹). Three replicates for each treatment type were prepared. Growth performance and nutrients utilization indices were calculated. The proximate analysis of fish carcass and experimental diet was carried out using standard methods. After feeding for 70 days, haematological values and histological test were done following standard methods; also a subgroup from each experimental treatment was challenged by inoculating Intraperitonieally (I/P) with different concentration of pathogenic C. botulinum. Statistically, there were significant differences (P < 0.05) in the growth performance and nutrient utilization of C. gariepinus. Best weight gain and feed conversion ratio were recorded in fish fed T4 (10⁷) and poorest value obtained in the control. Haematological analyses of C. gariepinus fed the experimental diets indicated that all the fish fed diets with P. fluorescens had marked significantly (p < 0.05) higher White Blood Cell than the control diet. The results of the challenge test showed that fish fed the control diet had the highest mortality rate. Histological examination of the gill, intestine, and liver of fish in this study showed several histopathological alterations in fish fed the control diets compared with those fed the P. fluorescens diets. The study indicated that the optimum level of P. fluorescens required for C. gariepinus growth and white blood cells formation is 10⁷ CFU g⁻¹, while carcass protein deposition required 10⁵ CFU g⁻¹ of P. fluorescens concentration. The study also confirmed P. fluorescens as efficient probiotics that is capable of improving the immune response of C. gariepinus against the attack of a virulent fish pathogen, C. botulinum.

Keywords: Clarias gariepinus, Clostridium botulinum, probiotics, Pseudomonas fluorescens

Procedia PDF Downloads 163
912 Totally Implantable Venous Access Device for Long Term Parenteral Nutrition in a Patient with High Output Enterocutaneous Fistula Due to Advanced Malignancy

Authors: Puneet Goyal, Aarti Agarwal

Abstract:

Background and Objective: Nutritional support is an integral part of palliative care of advanced non-resectable abdominal malignancy patients, though is frequently neglected aspect. Non-Healing high output Entero-cutaneous fistulas sometimes require long term parenteral nutrition, to take care of catabolism and replacement of nutrients. We present a case of inoperable pancreatic malignancy with high output entero-cutaneous fistula, which was provided parenteral nutritional support with the use of Totally Implantable Venous Access Device (TIVAD). Method and Results: 55 year old man diagnosed with carcinoma pancreas had developed high entero-cutaneous fistula. His tumor was found to be inoperable and was on total parenteral nutrition through routine central line. This line was difficult to maintain as he required it for a long term TPN. He was planned to undergo Totally Implantable Venous Access Device (TIVAD) implantation. 8Fr single lumen catheter with Groshong non-return Valve (Bard Access Systems, Inc. USA) was inserted through right internal jugular vein, under fluoroscopic guidance. The catheter was tunneled subcutaneously and brought towards infraclavicular pocket, cut at appropriate length and connected to port and locked. Port was sutured in floor of pocket. Free flow of blood aspirated, flushed with heparinized saline. There was no kink observed in entire length of catheter under fluoroscopy. Skin over infraclavicular pocket was sutured. Long term catheter care and associated risks were explained to patient and relatives. Patient continued to receive total parenteral nutrition as well as other supportive therapy though TIVAD for next 6 weeks, till his demise. Conclusion: TIVADs are standard of care for long term venous access solutions in cancer patients requiring chemotherapy. In this case, we extended its use for providing parenteral nutrition and other supportive therapy. TIVADs can be implanted in advanced cancer patients for providing venous access solution required for various palliative treatments and medications. This will help in improving quality of life and satisfaction amongst terminally ill cancer patients.

Keywords: parenteral nutrition, totally implantable venous access device, long term venous access, interventions in anesthesiology

Procedia PDF Downloads 247
911 Monte Carlo Simulation Study on Improving the Flatting Filter-Free Radiotherapy Beam Quality Using Filters from Low- z Material

Authors: H. M. Alfrihidi, H.A. Albarakaty

Abstract:

Flattening filter-free (FFF) photon beam radiotherapy has increased in the last decade, which is enabled by advancements in treatment planning systems and radiation delivery techniques like multi-leave collimators. FFF beams have higher dose rates, which reduces treatment time. On the other hand, FFF beams have a higher surface dose, which is due to the loss of beam hardening effect caused by the presence of the flatting filter (FF). The possibility of improving FFF beam quality using filters from low-z materials such as steel and aluminium (Al) was investigated using Monte Carlo (MC) simulations. The attenuation coefficient of low-z materials for low-energy photons is higher than that of high-energy photons, which leads to the hardening of the FFF beam and, consequently, a reduction in the surface dose. BEAMnrc user code, based on Electron Gamma Shower (EGSnrc) MC code, is used to simulate the beam of a 6 MV True-Beam linac. A phase-space (phosphor) file provided by Varian Medical Systems was used as a radiation source in the simulation. This phosphor file was scored just above the jaws at 27.88 cm from the target. The linac from the jaw downward was constructed, and radiation passing was simulated and scored at 100 cm from the target. To study the effect of low-z filters, steel and Al filters with a thickness of 1 cm were added below the jaws, and the phosphor file was scored at 100 cm from the target. For comparison, the FF beam was simulated using a similar setup. (BEAM Data Processor (BEAMdp) is used to analyse the energy spectrum in the phosphorus files. Then, the dose distribution resulting from these beams was simulated in a homogeneous water phantom using DOSXYZnrc. The dose profile was evaluated according to the surface dose, the lateral dose distribution, and the percentage depth dose (PDD). The energy spectra of the beams show that the FFF beam is softer than the FF beam. The energy peaks for the FFF and FF beams are 0.525 MeV and 1.52 MeV, respectively. The FFF beam's energy peak becomes 1.1 MeV using a steel filter, while the Al filter does not affect the peak position. Steel and Al's filters reduced the surface dose by 5% and 1.7%, respectively. The dose at a depth of 10 cm (D10) rises by around 2% and 0.5% due to using a steel and Al filter, respectively. On the other hand, steel and Al filters reduce the dose rate of the FFF beam by 34% and 14%, respectively. However, their effect on the dose rate is less than that of the tungsten FF, which reduces the dose rate by about 60%. In conclusion, filters from low-z material decrease the surface dose and increase the D10 dose, allowing for a high-dose delivery to deep tumors with a low skin dose. Although using these filters affects the dose rate, this effect is much lower than the effect of the FF.

Keywords: flattening filter free, monte carlo, radiotherapy, surface dose

Procedia PDF Downloads 73
910 Study of Fire Propagation and Soot Flow in a Pantry Car of Railway Locomotive

Authors: Juhi Kaushik, Abhishek Agarwal, Manoj Sarda, Vatsal Sanjay, Arup Kumar Das

Abstract:

Fire accidents in trains bring huge disaster to human life and property. Evacuation becomes a major challenge in such incidents owing to confined spaces, large passenger density and trains moving at high speeds. The pantry car in Indian Railways trains carry inflammable materials like cooking fuel and LPG and electrical fittings. The pantry car is therefore highly susceptible to fire accidents. Numerical simulations have been done in a pantry car of Indian locomotive train using computational fluid dynamics based software. Different scenarios of a fire outbreak have been explored by varying Heat Release Rate per Unit Area (HRRPUA) of the fire source, introduction of exhaust in the cooking area, and taking a case of an air conditioned pantry car. Temporal statures of flame and soot have been obtained for each scenario and differences have been studied and reported. Inputs from this study can be used to assess casualties in fire accidents in locomotive trains and development of smoke control/detection systems in Indian trains.

Keywords: fire propagation, flame contour, pantry fire, soot flow

Procedia PDF Downloads 339
909 Delineation of the Geoelectric and Geovelocity Parameters in the Basement Complex of Northwestern Nigeria

Authors: M. D. Dogara, G. C. Afuwai, O. O. Esther, A. M. Dawai

Abstract:

The geology of Northern Nigeria is under intense investigation particularly that of the northwest believed to be of the basement complex. The variability of the lithology is consistently inconsistent. Hence, the need for a close range study, it is, in view of the above that, two geophysical techniques, the vertical electrical sounding employing the Schlumberger array and seismic refraction methods, were used to delineate the geoelectric and geovelocity parameters of the basement complex of northwestern Nigeria. A total area of 400,000 m² was covered with sixty geoelectric stations established and sixty sets of seismic refraction data collected using the forward and reverse method. From the interpretation of the resistivity data, it is suggestive that the area is underlain by not more than five geoelectric layers of varying thicknesses and resistivities when a maximum half electrode spread of 100m was used. The result of the interpreted seismic data revealed two geovelocity layers, with velocities ranging between 478m/s to 1666m/s for the first layer and 1166m/s to 7141m/s for the second layer. The results of the two techniques, suggests that the area of study has an undulating bedrock topography with geoeletric and geovelocity layers composed of weathered rock materials.

Keywords: basement complex, delineation, geoelectric, geovelocity, Nigeria

Procedia PDF Downloads 151
908 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering

Procedia PDF Downloads 397
907 Analysis of Vertical Hall Effect Device Using Current-Mode

Authors: Kim Jin Sup

Abstract:

This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology

Procedia PDF Downloads 292
906 Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow

Authors: Suwimon Saneewong Na Ayuttaya, Chainarong Chaktranond, Phadungsak Rattanadecho

Abstract:

This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180°. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60°C, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60°, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement.

Keywords: swirling flow, heat transfer, electrohydrodynamic, numerical analysis

Procedia PDF Downloads 292
905 Investigation of Clusters of MRSA Cases in a Hospital in Western Kenya

Authors: Lillian Musila, Valerie Oundo, Daniel Erwin, Willie Sang

Abstract:

Staphylococcus aureus infections are a major cause of nosocomial infections in Kenya. Methicillin resistant S. aureus (MRSA) infections are a significant burden to public health and are associated with considerable morbidity and mortality. At a hospital in Western Kenya two clusters of MRSA cases emerged within short periods of time. In this study we explored whether these clusters represented a nosocomial outbreak by characterizing the isolates using phenotypic and molecular assays and examining epidemiological data to identify possible transmission patterns. Specimens from the site of infection of the subjects were collected, cultured and S. aureus isolates identified phenotypically and confirmed by APIStaph™. MRSA were identified by cefoxitin disk screening per CLSI guidelines. MRSA were further characterized based on their antibiotic susceptibility patterns and spa gene typing. Characteristics of cases with MRSA isolates were compared with those with MSSA isolated around the same time period. Two cases of MRSA infection were identified in the two week period between 21 April and 4 May 2015. A further 2 MRSA isolates were identified on the same day on 7 September 2015. The antibiotic resistance patterns of the two MRSA isolates in the 1st cluster of cases were different suggesting that these were distinct isolates. One isolate had spa type t2029 and the other had a novel spa type. The 2 isolates were obtained from urine and an open skin wound. In the 2nd cluster of MRSA isolates, the antibiotic susceptibility patterns were similar but isolates had different spa types: one was t037 and the other a novel spa type different from the novel MRSA spa type in the first cluster. Both cases in the second cluster were admitted into the hospital but one infection was community- and the other hospital-acquired. Only one of the four MRSA cases was classified as an HAI from an infection acquired post-operatively. When compared to other S. aureus strains isolated within the same time period from the same hospital only one spa type t2029 was found in both MRSA and non-MRSA strains. None of the cases infected with MRSA in the two clusters shared any common epidemiological characteristic such as age, sex or known risk factors for MRSA such as prolonged hospitalization or institutionalization. These data suggest that the observed MRSA clusters were multi strain clusters and not an outbreak of a single strain. There was no clear relationship between the isolates by spa type suggesting that no transmission was occurring within the hospital between these cluster cases but rather that the majority of the MRSA strains were circulating in the community. There was high diversity of spa types among the MRSA strains with none of the isolates sharing spa types. Identification of disease clusters in space and time is critical for immediate infection control action and patient management. Spa gene typing is a rapid way of confirming or ruling out MRSA outbreaks so that costly interventions are applied only when necessary.

Keywords: cluster, Kenya, MRSA, spa typing

Procedia PDF Downloads 330
904 The Effects of pH on the Electrochromism in Nickel Oxide Films

Authors: T. Taşköprü, M. Zor, E. Turan

Abstract:

The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor.

Keywords: nickel oxide, XRD, SEM, cyclic voltammetry

Procedia PDF Downloads 306
903 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves

Authors: Satya Narayan

Abstract:

India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.

Keywords: geothermal resources, geophysical methods, exploration, exploitation

Procedia PDF Downloads 86
902 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 106
901 Chemical Hazards Impact on Efficiency of Energy Storage Battery and its Possible Mitigation's

Authors: Abirham Simeneh Ayalew, Seada Hussen Adem, Frie Ayalew Yimam

Abstract:

Battery energy storage has a great role on storing energy harnessed from different alternative resources and greatly benefit the power sector by supply energy back to the system during outage and regular operation in power sectors. Most of the study shows that there is an exponential increase in the quantity of lithium - ion battery energy storage system due to their power density, economical aspects and its performance. But this lithium ion battery failures resulted in fire and explosion due to its having flammable electrolytes (chemicals) which can create those hazards. Hazards happen in these energy storage system lead to minimize battery life spans or efficiency. Identifying the real cause of these hazards and its mitigation techniques can be the solution to improve the efficiency of battery technologies and the electrode materials should have high electrical conductivity, large surface area, stable structure and low resistance. This paper asses the real causes of chemical hazards, its impact on efficiency, proposed solution for mitigating those hazards associated with efficiency improvement and summery of researchers new finding related to the field.

Keywords: battery energy storage, battery energy storage efficiency, chemical hazards, lithium ion battery

Procedia PDF Downloads 80