Search results for: thin liquid sheet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3341

Search results for: thin liquid sheet

881 A Study of Heavy Hydrocarbons Upgrading by Microwave Pyrolysis

Authors: Thanida Sritangthong, Suksun Amornraksa

Abstract:

By-product upgrading is crucial in hydrocarbon industries as it can increase overall profit margin of the business. Microwave-assisted pyrolysis is relatively new technique which induces heat directly to raw materials. This results in a more energy saving and more energy-efficient process. It is also a promising method to enhance and accelerate chemical reactions, thus reducing the pyrolysis reaction time and increasing the quality of value-added products from different kinds of feedstocks. In this study, upgrading opportunity of fuel oil by-product from an olefins plant is investigated by means of microwave pyrolysis. The experiment was conducted in a lab-scale quartz reactor placed inside a 1,100 watts household microwave oven. Operating temperature was varied from 500 to 900C to observe the consequence on the quality of pyrolysis products. Several microwave receptors i.e. activated carbon, silicon carbide (SiC) and copper oxide (CuO) were used as a material to enhance the heating and reaction in the reactor. The effect of residence time was determined by adjusting flow rate of N2 carrier gas. The chemical composition and product yield were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The results showed that hydrogen, methane, ethylene, and ethane were obtained as the main gaseous products from all operating temperatures while the main liquid products were alkane, cycloalkane and polycyclic aromatic groups. The results indicated that microwave pyrolysis has a potential to upgrade low value hydrocarbons to high value products.

Keywords: fuel oil, heavy hydrocarbons, microwave pyrolysis, pyrolysis

Procedia PDF Downloads 297
880 Well Water Pollution Caused by Central Batik Industry in Kliwonan, Sragen, Central Java, Indonesia in Ecofeminism Perspective

Authors: Intan Purnama Sari, Fitri Damayanti, Nabiila Yumna Ghina

Abstract:

Kliwonan, Sragen is a famous central batik industry village. In the process of the industry, women are placed into the central role but marginalized in economic mode. Women have the double burden on domestic sector and public sector (work as craftsmen batik). The existence of the batik industry bring on issues related to the pollution of water resources as a result of waste water with the marginalized of women. This research aims to examine the relevance of the pollution of the water from the well in Kliwonan with women as the biggest role holders through ecofeminism perspective. To examine these aspects then made observations, documentation, and interview against women batik craftsmen. The results of the study showed that the wells as sources of water to the inhabitants of contaminated because the liquid waste water batik industry. The impact of women must buy clean water each month to meet the needs of the household water with the reward that is obtained from the result of labor as much as Rp 12,000 per day. It proves the marginalized women on economic mode. Based on the results of research done, it can be concluded that the required environmental planning to promote how women do the rescue environment. The implementation requires kelor (Moringa oleifera seeds) as such as natural coagulants of sources of water-saving and easy to use.

Keywords: well water pollution, ecofeminism, environmental planning, Moringa oleifera

Procedia PDF Downloads 258
879 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides

Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami

Abstract:

Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.

Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane

Procedia PDF Downloads 415
878 Characterization of Shear and Extensional Rheology of Fibre Suspensions Prior to Atomization

Authors: Siti N. M. Rozali, A. H. J. Paterson, J. P. Hindmarsh

Abstract:

Spray drying of fruit juices from liquid to powder is desirable as the powders are easier to handle, especially for storage and transportation. In this project, pomace fibres will be used as a drying aid during spray drying, replacing the commonly used maltodextrins. The main attraction of this drying aid is that the pomace fibres are originally derived from the fruit itself. However, the addition of micro-sized fibres to fruit juices is expected to affect the rheology and subsequent atomization behaviour during the spray drying process. This study focuses on the determination and characterization of the rheology of juice-fibre suspensions specifically inside a spray dryer nozzle. Results show that the juice-fibre suspensions exhibit shear thinning behaviour with a significant extensional viscosity. The shear and extensional viscosities depend on several factors which include fibre fraction, shape, size and aspect ratio. A commercial capillary rheometer is used to characterize the shear behaviour while a portable extensional rheometer has been designed and built to study the extensional behaviour. Methods and equipment will be presented along with the rheology results. Rheology or behaviour of the juice-fibre suspensions provides an insight into the limitations that will be faced during atomization, and in the future, this finding will assist in choosing the best nozzle design that can overcome the limitations introduced by the fibre particles thus resulting in successful spray drying of juice-fibre suspensions.

Keywords: extensional rheology, fibre suspensions, portable extensional rheometer, shear rheology

Procedia PDF Downloads 187
877 Arsenic Speciation in Cicer arietinum: A Terrestrial Legume That Contains Organoarsenic Species

Authors: Anjana Sagar

Abstract:

Arsenic poisoned ground water is a major concern in South Asia. The arsenic enters the food chain not only through drinking but also by using arsenic polluted water for irrigation. Arsenic is highly toxic in its inorganic forms; however, organic forms of arsenic are comparatively less toxic. In terrestrial plants, inorganic form of arsenic is predominantly found; however, we found that significant proportion of organic arsenic was present in root and shoot of a staple legume, chickpea (Cicer arientinum L) plants. Chickpea plants were raised in pot culture on soils spiked with arsenic ranging from 0-70 mg arsenate per Kg soil. Total arsenic concentrations of chickpea shoots and roots were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) ranging from 0.76 to 20.26, and 2.09 to 16.43 µg g⁻¹ dry weight, respectively. Information on arsenic species was acquired by methanol/water extraction method, with arsenic species being analyzed by high-performance liquid chromatography (HPLC) coupled with ICP-MS. Dimethylarsinic acid (DMA) was the only organic arsenic species found in amount from 0.02 to 3.16 % of total arsenic shoot concentration and 0 to 6.93 % of total arsenic root concentration, respectively. To investigate the source of the organic arsenic in chickpea plants, arsenic species in the rhizosphere of soils of plants were also examined. The absence of organic arsenic in soils would suggest the possibility of formation of DMA in plants. The present investigation provides useful information for better understanding of distribution of arsenic species in terrestrial legume plants.

Keywords: arsenic, arsenic speciation, dimethylarsinic acid, organoarsenic

Procedia PDF Downloads 114
876 Concentrations of Some Metallic Trace Elements in Twelve Sludge Incineration Ashes

Authors: Lotfi Khiari, Antoine Karam, Claude-Alla Joseph, Marc Hébert

Abstract:

The main objective of incineration of sludge generated from municipal or agri-food waste treatment plant is to reduce the volume of sludge to be disposed of as a solid or liquid waste, whilst concentrating or destroying potentially harmful volatile substances. In some cities in Canada and United States of America (USA), a large amount of sludge is incinerated, which entails a loss of organic matter and water leading to phosphorus, potassium and some metallic trace element (MTE) accumulation in ashes. The purpose of this study was to evaluate the concentration of potentially hazardous MTE such as cadmium (Cd), lead (Pb) and mercury (Hg) in twelve sludge incineration ash samples obtained from municipal wastewater and other food processing waste treatments from Canada and USA. The average, maximum, and minimum values of MTE in ashes were calculated for each city individually and all together. The trace metal concentration values were compared to the literature reported values. The concentrations of MTE in ashes vary widely depending on the sludge origins and treatment options. The concentrations of MTE in ashes were found the range of 0.1-6.4 mg/kg for Cd; 13-286 mg/kg for Pb and 0.1-0.5 mg/kg for Hg. On average, the following order of metal concentration in ashes was observed: Pb > Cd > Hg. Results show that metal contents in most ashes were similar to MTE levels in synthetic inorganic fertilizers and many fertilizing residual materials. Consequently, the environmental effects of MTE content of these ashes would be low.

Keywords: biosolids, heavy metals, recycling, sewage sludge

Procedia PDF Downloads 357
875 Finite Element Molecular Modeling: A Structural Method for Large Deformations

Authors: A. Rezaei, M. Huisman, W. Van Paepegem

Abstract:

Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.

Keywords: finite element, large deformation, molecular mechanics, structural method

Procedia PDF Downloads 133
874 Organic Pollution of Waters and Sediments in the Middle and Lower Valley of the Medjerda, Tunisia

Authors: Samia Khadhar, Anis Chekirbene, Nouha Khiari, Amira Mabrouki

Abstract:

The persistent organic pollutants (POPs) in aquatic environments are one of the most worrying problems for environmental sustainability and human health because of their carcinogenic and toxic characteristics. Human anthropogenic actions (wastewater discharges, agricultural and industrial activities) without prior treatment are the main cause of this organic pollution. Oued Madjerda is considered the most important river in Tunisia, hence the importance of assessing the level of organic pollution of water and sediments, taking into account the anthropogenic stress exerted on this river. Water and sediment samples were taken from the middle and lower valley of the Medjerda to determine the state of contamination by 7PCBs, priority 15PAHs, and pesticides. The analysis was performed by gas chromatography (GC) and liquid phase coupled to HPLC MS-MS mass spectroscopy. The results showed that for the waters, the total PAH and PCB contents vary respectively from 0.0023 to 7.72 mg/l and from 0.0001 to 0.179 mg/l. In surface sediments 0 to 15 cm, 7PCB levels vary from 1,112 to 110,062 µg/kg-1. In this study, we tried to determine the concentration of 96 pesticides in surface sediments; analyzes showed the presence of Buprofezin, propamocarb-HCl, hexaconazole, flutriafol, quinalphos, and tebufenpyrad with concentrations varying from 1.06 to 2.388 µg/kg-1. The pace of the spatial variation confirms the impact of wastewater discharged on the quality of water and sediments despite the perennial aspect of the river.

Keywords: Wadi Madjerda, organic pollution, water and sediments surface, anthropics stress

Procedia PDF Downloads 107
873 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals

Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao

Abstract:

Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).

Keywords: nanocomposites, polymers, EMI shielding, thermal imaging

Procedia PDF Downloads 81
872 The Universal Theory: Role of Imaginary Pressure on Different Relative Motions

Authors: Sahib Dino Naseerani

Abstract:

The presented scientific text discusses the concept of imaginary pressure and its role in different relative motions. It explores how imaginary pressure, which is the combined effect of external atmospheric pressure and real pressure, affects various substances and their physical properties. The study aims to understand the impact of imaginary pressure and its potential applications in different contexts, such as spaceflight. The main objective of this study is to investigate the role of imaginary pressure on different relative motions. Specifically, the researchers aim to examine how imaginary pressure affects the contraction and mass variation of a body when it is in motion at the speed of light. The study seeks to provide insights into the behavior and consequences of imaginary pressure in various scenarios. The data was collected using three research papers. This research contributes to a better understanding of the theoretical implications of imaginary pressure. It elucidates how imaginary pressure is responsible for the contraction and mass variation of a body in motion, particularly at the speed of light. The findings shed light on the behavior of substances under the influence of imaginary pressure, providing valuable insights for future scientific studies. The study addresses the question of how imaginary pressure influences various relative motions and their associated physical properties. It aims to understand the role of imaginary pressure in the contraction and mass variation of a body, particularly at high speeds. By examining different substances in liquid and solid forms, the research explores the consequences of imaginary pressure on their volume, length, and mass.

Keywords: imaginary pressure, contraction, variation, relative motion

Procedia PDF Downloads 80
871 Staying When Everybody Else Is Leaving: Coping with High Out-Migration in Rural Areas of Serbia

Authors: Anne Allmrodt

Abstract:

Regions of South-East Europe are characterised by high out-migration for decades. The reasons for leaving range from the hope of a better work situation to a better health care system and beyond. In Serbia, this high out-migration hits the rural areas in particular so that the population number is in the red repeatedly. It might not be hard to guess that this negative population growth has the potential to create different challenges for those who stay in rural areas. So how are they coping with the – statistically proven – high out-migration? Having this in mind, the study is investigating the people‘s individual awareness of the social phenomenon high out-migration and their daily life strategies in rural areas. Furthermore, the study seeks to find out the people’s resilient skills in that context. Is the condition of high out-migration conducive for resilience? The methodology combines a quantitative and a qualitative approach (mixed methods). For the quantitative part, a standardised questionnaire has been developed, including a multiple choice section and a choice experiment. The questionnaire was handed out to people living in rural areas of Serbia only (n = 100). The sheet included questions about people’s awareness of high out-migration, their own daily life strategies or challenges and their social network situation (data about the social network was necessary here since it is supposed to be an influencing variable for resilience). Furthermore, test persons were asked to make different choices of coping with high out-migration in a self-designed choice experiment. Additionally, the study included qualitative interviews asking citizens from rural areas of Serbia. The topics asked during the interview focused on their awareness of high out-migration, their daily life strategies, and challenges as well as their social network situation. Results have shown the following major findings. The awareness of high out-migration is not the same with all test persons. Some declare it as something positive for their own life, others as negative or not effecting at all. The way of coping generally depended – maybe not surprising – on the people’s social network. However – and this might be the most important finding - not everybody with a certain number of contacts had better coping strategies and was, therefore, more resilient. Here the results show that especially people with high affiliation and proximity inside their network were able to cope better and shew higher resilience skills. The study took one step forward in terms of knowledge about societal resilience as well as coping strategies of societies in rural areas. It has shown part of the other side of nowadays migration‘s coin and gives a hint for a more sustainable rural development and community empowerment.

Keywords: coping, out-migration, resilience, rural development, social networks, south-east Europe

Procedia PDF Downloads 110
870 Degradation of Neonicotinoid Insecticides (Acetamiprid and Imidacloprid) Using Biochar of Rice Husk and Fruit Peels

Authors: Mateen Abbas, Abdul Muqeet Khan, Sadia Bashir, Muhammad Awais Khalid, Aamir Ghafoor, Zara Hussain, Mashal Shahid

Abstract:

The irrational use of insecticides in everyday life has drawn attention worldwide towards its harmful effects. To mitigate the toxic effects of insecticides to humans, present study was planned on the degradation/detoxification of the neonicotinoid insecticides including imidacloprid and acetamiprid. Biocarbon of fruit peels (Banana & Watermelon) and biochar (activated or non-activated) of rice husk was utilized as adsorbents for degradation of selected pesticides. Both activated and non-activated biochar were prepared for treatment and then applied in different concentrations (0.5 to 2.0 ppm) and dosage (1.0 to 2.5g) to insecticides (Acetamiprid & Imidacloprid) as well as studied at different times (30-120 minutes). Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) coupled with Photodiode array detector was used to quantify the insecticides. Results depicted that activated biochar of rice husk minimized the 73% concentrations of both insecticides however, watermelon activated biocarbon degraded 72% of imidacloprid and 56% of acetamiprid. Results proved the efficiency of the method employed and it was also inferred that high concentration of biocarbon resulted in larger percentage of degradation. The applied method is cheaper, easy and accessible that can be used to minimize the pesticide residues in animal feed. Degradation using biochar proved significant degradation, eco-friendly and economic method to reduce toxicity of insecticides.

Keywords: insecticides, acetamiprid, imidacloprid, biochar, HPLC

Procedia PDF Downloads 129
869 Bacteriological Culture Methods and its Uses in Clinical Pathology

Authors: Prachi Choudhary, Jai Gopal Sharma

Abstract:

Microbial cultures determine the type of organism, its abundance in the tested sample, or both. It is one of the primary diagnostic methods of microbiology. It is used to determine the cause of infectious disease by letting the agent multiply in a predetermined medium. Different bacteria produce colonies that may be very distinct from the bacterial species that produced them. To culture any pathogen or microorganism, we should first know about the types of media used in microbiology for culturing. Sometimes sub culturing is also done in various microorganisms if some mixed growth is seen in culture. Nearly 3 types of culture media based on consistency – solid, semi-solid, and liquid (broth) media; are further explained in the report. Then, The Five I's approach is a method for locating, growing, observing, and characterizing microorganisms, including inoculation and incubation. Isolation, inspection, and identification. For identification of bacteria, we have to culture the sample like urine, sputum, blood, etc., on suitable media; there are different methods of culturing the bacteria or microbe like pour plate method, streak plate method, swabbing by needle, pipetting, inoculation by loop, spreading by spreader, etc. After this, we see the bacterial growth after incubation of 24 hours, then according to the growth of bacteria antibiotics susceptibility test is conducted; this is done for sensitive antibiotics or resistance to that bacteria, and also for knowing the name of bacteria. Various methods like the dilution method, disk diffusion method, E test, etc., do antibiotics susceptibility tests. After that, various medicines are provided to the patients according to antibiotic sensitivity and resistance.

Keywords: inoculation, incubation, isolation, antibiotics suspectibility test, characterizing

Procedia PDF Downloads 60
868 Enhancing the CO2 Photoreduction of SnFe2O4 by Surface Modification Through Acid Treatment and Au Deposition

Authors: Najmul Hasan, Shiping Li, Chunli Liu

Abstract:

The synergy effect of surface modifications using the acid treatment and noble metal (Au) deposition on the efficiency of SnFe2O4 (SFO) nano-octahedron photocatalyst has been investigated. Inorganic acids (H2SO4 and HNO3) were employed to compare the effects of different acids. It has been found that after corrosion treatment using H2SO4 and deposition of Au nanoparticles, SnFe2O4 nano-octahedron (Au-S-SFO) showed significantly enhanced photocatalytic activity under simulated light irradiation. Au-S-SFO was characterized by XRD, XPS, EDS, FTIR, Uv-vis-DRS, SEM, PL, and EIS analysis. The mechanism for CO2 reduction was investigated by scavenger tests. The stability of Au-S-SFO was confirmed by continuously repeated tests followed by XRD analysis. The surface corrosion treatment of SFO octahedron with H2SO4 could produce hydroxyl group (-OH) and sulfonic acid group (-SO3H) as reaction sites. These active sites not only enhanced the Au nanoparticles deposition to the acid treated SFO surface but also acted as the Brønsted acid sites that enhance the water adsorption and provide protons for CTC degradation and CO2 reduction. These effects improved the carrier separation and transfer efficiency. In addition, the photocatalytic efficiency was further enhanced by the surface plasmon resonance (SPR) effect of Au nanoparticles deposited on the surface of acid-treated SFO. As a result of the synergy of both acid treatment and SPR effect from the Au NPs, Au-S-SFO exhibited the highest CO2 reduction activity with 2.81, 1.92, and 2.69 times higher evolution rates for CO, CH4, and H2, respectively than that of pure SFO.

Keywords: surface modification, CO2 reduction, Au deposition, Gas-liquid interfacial plasma

Procedia PDF Downloads 66
867 Thiosulfate Leaching of the Auriferous Ore from Castromil Deposit: A Case Study

Authors: Rui Sousa, Aurora Futuro, António Fiúza

Abstract:

The exploitation of gold ore deposits is highly dependent on efficient mineral processing methods, although actual perspectives based on life-cycle assessment introduce difficulties that were unforeseen in a very recent past. Cyanidation is the most applied gold processing method, but the potential environmental problems derived from the usage of cyanide as leaching reagent led to a demand for alternative methods. Ammoniacal thiosulfate leaching is one of the most important alternatives to cyanidation. In this article, some experimental studies carried out in order to assess the feasibility of thiosulfate as a leaching agent for the ore from the unexploited Portuguese gold mine of Castromil. It became clear that the process depends on the concentrations of ammonia, thiosulfate and copper. Based on this fact, a few leaching tests were performed in order to assess the best reagent prescription, and also the effects of different combination of these concentrations. Higher thiosulfate concentrations cause the decrease of gold dissolution. Lower concentrations of ammonia require higher thiosulfate concentrations, and higher ammonia concentrations require lower thiosulfate concentrations. The addition of copper increases the gold dissolution ratio. Subsequently, some alternative operatory conditions were tested such as variations in temperature and in the solid/liquid ratio as well as the application of a pre-treatment before the leaching stage. Finally, thiosulfate leaching was compared to cyanidation. Thiosulfate leaching showed to be an important alternative, although a pre-treatment is required to increase the yield of the gold dissolution.

Keywords: gold, leaching, pre-treatment, thiosulfate

Procedia PDF Downloads 293
866 Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations.

Keywords: heat transfer, magnetically assisted reactor, dynamical analysis, transient function

Procedia PDF Downloads 157
865 Risk Assessment of Oil Spill Pollution by Integration of Gnome, Aloha and Gis in Bandar Abbas Coast, Iran

Authors: Mehrnaz Farzingohar, Mehran Yasemi, Ahmad Savari

Abstract:

The oil products are imported and exported via Rajaee’s tanker terminal. Within loading and discharging in several cases the oil is released into the berths and made oil spills. The spills are distributed within short time and seriously affected Rajaee port’s environment and even extended areas. The trajectory and fate of oil spills investigated by modeling and parted by three risk levels base on the modeling results. First GNOME (General NOAA Operational Modeling Environment) applied to trajectory the liquid oil. Second, ALOHA (Areal Location Of Hazardous Atmosphere) air quality model, is integrated to predict the oil evaporation path within the air. Base on the identified zones the high risk areas are signed by colored dots which their densities calculated and clarified on a map which displayed the harm places. Wind and water circulation moved the pollution to the East of Rajaee Port that accumulated about 12 km of coastline. Approximately 20 km of north east of Qeshm Island shore is covered by the three levels of risky areas. Since the main wind direction is SSW the pollution pushed to the east and the highest risk zones formed on the crests edges hence the low risk appeared on the concavities. This assessment help the management and emergency systems to monitor the exposure places base on the priority factors and find the best approaches to protect the environment.

Keywords: oil spill, modeling, pollution, risk assessment

Procedia PDF Downloads 364
864 Study of Lamination Quality of Semi-Flexible Solar Modules with Special Textile Materials

Authors: K. Drabczyk, Z. Starowicz, S. Maleczek, P. Zieba

Abstract:

The army, police and fire brigade commonly use dedicated equipment based on special textile materials. The properties of these textiles should ensure human life and health protection. Equally important is the ability to use electronic equipment and this requires access to the source of electricity. Photovoltaic cells integrated with such textiles can be solution for this problem in the most of outdoor circumstances. One idea may be to laminate the cells to textile without changing their properties. The main goal of this work was analyzed lamination quality of special designed semi-flexible solar module with special textile materials as a backsheet. In the first step of investigation, the quality of lamination was determined using device equipped with dynamometer. In this work, the crystalline silicon solar cells 50 x 50 mm and thin chemical tempered glass - 62 x 62 mm and 0.8 mm thick - were used. The obtained results showed the correlation between breaking force and type of textile weave and fiber. The breaking force was in the ranges: 4.5-5.5 N, 15-20 N and 30-33 N depending on the type of wave and fiber type. To verify these observations the microscopic and FTIR analysis of fibers was performed. The studies showed the special textile can be used as a backsheet of semi-flexible solar modules. This work presents a new composition of solar module with special textile layer which, to our best knowledge, has not been published so far. Moreover, the work presents original investigations on adhesion of EVA (ethylene-vinyl acetate) polymer to textile with respect to fiber structure of laminated substrate. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management.

Keywords: flexible solar modules, lamination process, solar cells, textile for photovoltaics

Procedia PDF Downloads 343
863 Geometrical Fluid Model for Blood Rheology and Pulsatile Flow in Stenosed Arteries

Authors: Karan Kamboj, Vikramjeet Singh, Vinod Kumar

Abstract:

Considering blood to be a non-Newtonian Carreau liquid, this indirect numerical model investigates the pulsatile blood flow in a constricted restricted conduit that has numerous gentle stenosis inside the view of an increasing body speed. Asymptotic answers are obtained for the flow rate, pressure inclination, speed profile, sheer divider pressure, and longitudinal impedance to stream after the use of the twofold irritation approach to the problem of the succeeding non-straight limit esteem. It has been observed that the speed of the blood increases when there is an increase in the point of tightening of the conduit, the body speed increase, and the power regulation file. However, this rheological manner of behaving changes to one of longitudinal impedance to stream and divider sheer pressure when each of the previously mentioned boundaries increases. It has also been seen that the sheer divider pressure in the bloodstream greatly increases when there is an increase in the maximum depth of the stenosis but that it significantly decreases when there is an increase in the pulsatile Reynolds number. This is an interesting phenomenon. The assessments of the amount of growth in the longitudinal resistance to flow increase overall with the increment of the maximum depth of the stenosis and the Weissenberg number. Additionally, it is noted that the average speed of blood increases noticeably with the growth of the point of tightening of the corridor, and body speed increases border. This is something that can be observed.

Keywords: geometry of artery, pulsatile blood flow, numerous stenosis

Procedia PDF Downloads 83
862 Polyethylene Terephthalate Plastic Degradation by Fungus Rasamsonia Emersonii

Authors: Naveen Kumar

Abstract:

Microplastics, tiny plastic particles less than 5 mm in size formed by the disposal and breakdown of industrial and consumer products, have become a primary environmental concern due to their ubiquitous presence and application in the environment and their potential to cause harm to the ecosystem, wildlife and human health. In this, we study the ability of the fungus Rasamsonia emersonii IMI 393752 to degrade the rigid microplastics of Coke bottles. Microplastics were extracted from Coke bottles and incubated with Rasamsonia emersonii in Sabouraud dextrose agar media. Microplastics were pre-sterilized without altering the chemistry of microplastic. Preliminary analysis was performed by observing radial growth assessment of microplastic-containing media enriched with fungi vs. control. The assay confirmed no impedance or change in the fungi's growth pattern and rate by introducing microplastics. The degradation of the microplastics was monitored over time using microscopy and FTIR, and biodegradation/deterioration on the plastic surface was observed. Furthermore, the liquid assay was performed. HPLC and GCMS will be conducted to check the biodegradation and presence of enzyme release by fungi to counteract the presence of microplastics. These findings have important implications for managing plastic waste, as they suggest that fungi such as Rasamsonia emersonii can potentially degrade microplastics safely and effectively. However, further research to optimise the conditions for microplastic degradation by Rasamsonia emersonii and to develop strategies for scaling up the process for industrial applications will be beneficial.

Keywords: bioremediation, mycoremediation, plastic degradtion, polyethylene terephthalate

Procedia PDF Downloads 77
861 Effects of Process Parameters on the Yield of Oil from Coconut Fruit

Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude

Abstract:

Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash, and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35, and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P˂0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05 Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26 mgKOH-1 g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2 hrs, leaching temperature of 50 oC and solute/solvent ratio of 0.05 g/ml.

Keywords: coconut, oil-extraction, optimization, physicochemical, proximate

Procedia PDF Downloads 332
860 Study of Engine Performance and Exhaust Emissions on Multi-Cylinder Turbo-Charged Diesel Engine Operated with B5 Biodiesel Blend

Authors: Pradip Lingfa, L. M. Das, S. N. Naik

Abstract:

In the last three decades the world has been confronting an energy crisis caused by the decreased of fossil resources, and increased of environmental problems. This situation resulted in a search for an alternative fuel. Non-edible vegetable oils are promising sources for producing liquid fuels. In the present experimental investigation, the engine tests were carried out for performance and exhaust emissions on 2.5 L Turbo-charged diesel engine fuelled with 5% biodiesel blend obtained from non-edible vegetable oils such as Jatropha, Karanja, and Castor Seeds. The engine tests were carried out at full throttle position with various engine speeds of 1500, 1750, 2000, 2250, 2750 and 3000 rpm respectively. After test, it was observed that 5% Jatropha biodiesel blend have highest brake power of 46.65 kW and less brake specific fuel consumptions of 225.8 kg/kW-hr compared to other two biodiesel blends of brake power of 45.99 kW, 45.81 kW and brake specific fuel consumption of 234.34, 236.55 kg/kW-hr respectively. The brake specific fuel consumption of biodiesel blends increase at increasing speeds for all biodiesel blends. NOx emissions for biodiesel blends were observed to be higher compared to diesel fuel during the entire range of engine operations. The emission characteristics like CO, HC and smoke were lowered at all engine speed conditions compared to diesel fuel.

Keywords: biodiesel blend, brake power, brake specific fuel consumption, emission, performance

Procedia PDF Downloads 158
859 Social Skills as a Significant Aspect of a Successful Start of Compulsory Education

Authors: Eva Šmelová, Alena Berčíková

Abstract:

The issue of school maturity and readiness of a child for a successful start of compulsory education is one of the long-term monitored areas, especially in the context of education and psychology. In the context of the curricular reform in the Czech Republic, the issue has recently gained importance. Analyses of research in this area suggest a lack of a broader overview of indicators informing about the current level of children’s school maturity and school readiness. Instead, various studies address partial issues. Between 2009 and 2013 a research study was performed at the Faculty of Education, Palacký University Olomouc (Czech Republic) focusing on children’s maturity and readiness for compulsory education. In this study, social skills were of marginal interest; the main focus was on the mental area. This previous research is smoothly linked with the present study, the objective of which is to identify the level of school maturity and school readiness in selected characteristics of social skills as part of the adaptation process after enrolment in compulsory education. In this context, the following research question has been formulated: During the process of adaptation to the school environment, which social skills are weakened? The method applied was observation, for the purposes of which the authors developed a research tool – record sheet with 11 items – social skills that a child should have by the end of preschool education. The items were assessed by first-grade teachers at the beginning of the school year. The degree of achievement and intensity of the skills were assessed for each child using an assessment scale. In the research, the authors monitored a total of three independent variables (gender, postponement of school attendance, participation in inclusive education). The effect of these independent variables was monitored using 11 dependent variables. These variables are represented by the results achieved in selected social skills. Statistical data processing was assisted by the Computer Centre of Palacký University Olomouc. Statistical calculations were performed using SPSS v. 12.0 for Windows and STATISTICA: StatSoft STATISTICA CR, Cz (software system for data analysis). The research sample comprised 115 children. In their paper, the authors present the results of the research and at the same time point to possible areas of further investigation. They also highlight possible risks associated with weakened social skills.

Keywords: compulsory education, curricular reform, educational diagnostics, pupil, school curriculum, school maturity, school readiness, social skills

Procedia PDF Downloads 232
858 Development and Validation of HPLC Method on Determination of Acesulfame-K in Jelly Drink Product

Authors: Candra Irawan, David Yudianto, Ahsanu Nadiyya, Dewi Anna Br Sitepu, Hanafi, Erna Styani

Abstract:

Jelly drink was produced from a combination of both natural and synthetic materials, such as acesulfame potassium (acesulfame-K) as synthetic sweetener material. Acesulfame-K content in jelly drink could be determined by High-Performance Liquid Chromatography (HPLC), but this method needed validation due to having a change on the reagent addition step which skips the carrez addition and comparison of mix mobile phase (potassium dihydrogen phosphate and acetonitrile) with ratio from 75:25 to 90:10 to be more efficient and cheap. This study was conducted to evaluate the performance of determination method for acesulfame-K content in the jelly drink by HPLC. The method referred to Deutsches Institut fur Normung European Standard International Organization for Standardization (DIN EN ISO):12856 (1999) about Foodstuffs, Determination of acesulfame-K, aspartame and saccharin. The result of the correlation coefficient value (r) on the linearity test was 0.9987 at concentration range 5-100 mg/L. Detection limit value was 0.9153 ppm, while the quantitation limit value was 1.1932 ppm. The recovery (%) value on accuracy test for sample concentration by spiking 100 mg/L was 102-105%. Relative Standard Deviation (RSD) value for precision and homogenization tests were 2.815% and 4.978%, respectively. Meanwhile, the comparative and stability tests were tstat (0.136) < ttable (2.101) and |µ1-µ2| (1.502) ≤ 0.3×CV Horwitz. Obstinacy test value was tstat < ttable. It can be concluded that the HPLC  method for the determination of acesulfame-K in jelly drink product by HPLC has been valid and can be used for analysis with good performance.

Keywords: acesulfame-K, jelly drink, HPLC, validation

Procedia PDF Downloads 110
857 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 373
856 Numerical Investigation of the Performance of a Vorsyl Separator Using a Euler-Lagrange Approach

Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu, Jie Dong

Abstract:

This paper presents a Euler-Lagrange model of the water-particles multiphase flows in a Vorsyl separator where particles with different densities are separated. A series of particles with their densities ranging from 760 kg/m3 to 1380 kg/m3 were fed into the Vorsyl separator with water by means of tangential inlet. The simulation showed that the feed materials acquired centrifugal force which allows most portion of the particles with a density less than water to move to the center of the separator, enter the vortex finder and leave the separator through the bottom outlet. While the particles heavier than water move to the wall, reach the throat area and leave the separator through the side outlet. The particles were thus separated and particles collected at the bottom outlet are pure and clean. The influence of particle density on separation efficiency was investigated which demonstrated a positive correlation of the separation efficiency with increasing density difference between medium liquid and the particle. In addition, the influence of the split ratio on the performance was studied which showed that the separation efficiency of the Vorsyl separator can be improved by the increase of split ratio. The simulation also suggested that the Vorsyl separator may not function when the feeding velocity is smaller than a certain critical feeding in velocity. In addition, an increasing feeding velocity gives rise to increased pressure drop, however does not necessarily increase the separation efficiency.

Keywords: Vorsyl separator, separation efficiency, CFD, split ratio

Procedia PDF Downloads 321
855 Optimization of Hot Metal Charging Circuit in a Steel Melting Shop Using Industrial Engineering Techniques for Achieving Manufacturing Excellence

Authors: N. Singh, A. Khullar, R. Shrivastava, I. Singh, A. S. Kumar

Abstract:

Steel forms the basis of any modern society and is essential to economic growth. India’s annual crude steel production has seen a consistent increase over the past years and is poised to grow to 300 million tons per annum by 2030-31 from current level of 110-120 million tons per annum. Steel industry is highly capital-intensive industry and to remain competitive, it is imperative that it invests in operational excellence. Due to inherent nature of the industry, there is large amount of variability in its supply chain both internally and externally. Production and productivity of a steel plant is greatly affected by the bottlenecks present in material flow logistics. The internal logistics constituting of transport of liquid metal within a steel melting shop (SMS) presents an opportunity in increasing the throughput with marginal capital investment. The study was carried out at one of the SMS of an integrated steel plant located in the eastern part of India. The plant has three SMS’s and the study was carried out at one of them. The objective of this study was to identify means to optimize SMS hot metal logistics through application of industrial engineering techniques. The study also covered the identification of non-value-added activities and proposed methods to eliminate the delays and improve the throughput of the SMS.

Keywords: optimization, steel making, supply chain, throughput enhancement, workforce productivity

Procedia PDF Downloads 101
854 Evaluation of the Microscopic-Observation Drug-Susceptibility Assay Drugs Concentration for Detection of Multidrug-Resistant Tuberculosis

Authors: Anita, Sari Septiani Tangke, Rusdina Bte Ladju, Nasrum Massi

Abstract:

New diagnostic tools are urgently needed to interrupt the transmission of tuberculosis and multidrug-resistant tuberculosis. The microscopic-observation drug-susceptibility (MODS) assay is a rapid, accurate and simple liquid culture method to detect multidrug-resistant tuberculosis (MDR-TB). MODS were evaluated to determine a lower and same concentration of isoniazid and rifampin for detection of MDR-TB. Direct drug-susceptibility testing was performed with the use of the MODS assay. Drug-sensitive control strains were tested daily. The drug concentrations that used for both isoniazid and rifampin were at the same concentration: 0.16, 0.08 and 0.04μg per milliliter. We tested 56 M. tuberculosis clinical isolates and the control strains M. tuberculosis H37RV. All concentration showed same result. Of 53 M. tuberculosis clinical isolates, 14 were MDR-TB, 38 were susceptible with isoniazid and rifampin, 1 was resistant with isoniazid only. Drug-susceptibility testing was performed with the use of the proportion method using Mycobacteria Growth Indicator Tube (MGIT) system as reference. The result of MODS assay using lower concentration was significance (P<0.001) compare with the reference methods. A lower and same concentration of isoniazid and rifampin can be used to detect MDR-TB. Operational cost and application can be more efficient and easier in resource-limited environments. However, additional studies evaluating the MODS using lower and same concentration of isoniazid and rifampin must be conducted with a larger number of clinical isolates.

Keywords: isoniazid, MODS assay, MDR-TB, rifampin

Procedia PDF Downloads 299
853 Evaluation of Ficus racemosa (Moraceae) as a Potential Source for Drug Formulation Against Coccidiosis

Authors: Naveeda Akhtar Qureshi, Wajiha

Abstract:

Coccidiosis is a protozoan parasitic disease of genus Eimeria. It is an avian infection causing a great economic loss of 3 billion USD per year globally. A number of anticoccidial drugs are in use however many of them have side effects and cost effective. With increase in poultry demand throughout the world there is a need of more drugs and vaccines against coccidiosis. The present study is based upon the use of F. racemosa a medicinal plant to be a potential source of anticoccidial agents. The methanolic leaves extract was fractionated by column and thin layer chromatography and got nineteen fractions. Each fraction different concentrations was evaluated for its anticoccidial properties in an invitro experiment against E. tenella, E. necatrix and E. mitis. The anticoccidial active fractions were further characterized by spectroscopy (UV-Vis, FTIR) and GC-MS analysis. The in silico molecular docking of active fractions identified compounds were carried out. Among all fractions significantly maximum sporulation inhibition efficacy was shown by F-19 (67.11±2.18) followed by F-15 (65.21±1.34) at concentration of 30mg/ml against E. tenella. The significantly highest sporozoites viability inhibition was shown by F-19 (69.23±2.11) followed by F-15 (67.14±1.52) against E. necatrix at concentration 30mg/ml. Anticoccidial active fractions 15 and 19 showed peak spectrum at 207 and 202nm respectively by UV analysis. Their FTIR analysis confirmed the presence of carboxylic acid, amines, phenols, etc. Anticoccidial active compounds like Cyclododecane methanol, oleic acid, Octadecanoic acid, etc were identified by GC-MS analysis. Identified compounds in silico molecular docking study showed that cyclododecane methanol of F-19 and oleic acid of F-15 showed highest binding affinity with target S-Adenosylmethionine synthase. Hence for further authentication in vivo anticoccidial studies are recommended.

Keywords: ficus racemosa, cluster fig, column chromatography, anticoccidial fractions, GC-MS, molecular docking., s-adenosylmethionine synthase

Procedia PDF Downloads 50
852 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube

Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan

Abstract:

Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.

Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity

Procedia PDF Downloads 127