Search results for: oil-water stratified flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5070

Search results for: oil-water stratified flow

2610 Traditional and Commercially Prepared Medicine: Factors That Affect Preferences among Elderly Adults in Indigenous Community

Authors: Rhaetian Bern D. Azaula

Abstract:

The Philippines' indigenous population, estimated to be 10%-20%, is protected by the Indigenous Peoples Rights Act (IPRA), passed in 1997. However, due to their isolation and limited access to basic services such as health education or needs for health assistance, the law's implementation remains a challenge. As traditional medicine continues to play a significant role in society as the prevention and treatment of some illnesses, it is still customary and widely used to use plants in both traditional and modern ways; however, commercially prepared drugs are progressively advanced as time goes by. Therefore, the purpose of this quantitative study is to investigate the indigenous community at Barangay Magsikap General Nakar, Quezon, and analyze the factors that affect the respondent’s preferences in an indigenous community and reasons for patronizing traditional and commercially prepared medicines and proposes updated health education strategies and instructional materials. Slovin's formula was utilized to reduce the total population representation, followed by stratified sampling for proportional allocation of respondents. The study selects respondents (1) from an Indigenous Community in Barangay Magsikap, General Nakar, Quezon, (2) aged 60 and above, and (3) who are willing to participate. The researcher utilized a checklist-based questionnaire with a Tagalog version, and a Likert Scale was utilized to assess the respondent's choices on selected items. The researcher obtained informed consent from the indigenous community's regional and local office, the chieftain of the tribe, and the respondents, ensuring confidentiality in the collection and retrieval of data. The study revealed that respondents aged 60-69, males with no formal education, are unemployed and have no income source. They prefer traditional medicines due to their affordability, availability, and cultural practices but lack safe preparation, dosages, and contraindications of used medicines. Commercially prepared medications are acknowledged, but respondents are not fully aware of proper administration instructions and dosage labels. Recommendations include disseminating approved herbal medicines and ensuring proper preparation, indications, and contraindications.

Keywords: traditional medicine, commercially prepared medicine, indigenous community, elderly adult

Procedia PDF Downloads 63
2609 Educational System in Developing Countries and E-learning Evaluation in the Face of COVID Pandemic

Authors: Timothy Wale Olaosebikan

Abstract:

The adverse effect of the Covid-19 outbreak and lock-downs on the world economy has coursed a major disrupt in mostly all sectors. The educational sector is not exempted from this disruption as it is one of the most affected sectors in the world. Similarly, most developing countries are still struggling to adopt/ adapt with the 21st-century advancement of technology, which includes e-learning/ e-education. Furthermore, one is left to wonder of the possibility of these countries surviving this disruption on their various educational systems that may no longer be business as usual after the Covid Pandemic era. This study evaluates the e-learning process of educational systems, especially in developing countries. The collection of data for the study was effected through the use of questionnaires with sampling drawn by stratified random sampling. The data was analyzed using descriptive and inferential statistics. The findings of the study show that about 30% of developing countries have fully adopted the e-learning system, about 45% of these countries are still struggling to upgrade while about 25% of these countries are yet to adopt the e-learning system of education. The study concludes that the sudden closure of educational institutions around the world during the Covid Pandemic period should facilitate a teaching pedagogy of e-learning and virtual delivery of courses and programmes in these developing countries. If this approach can be fully adopted, schools might have to grapple with the initial teething problems, given the sudden transition just in order to preserve the welfare of students. While progress should be made to transit as the case may be, lectures and seminars can be delivered through the web conferencing site-zoom. Interestingly, this can be done on a mobile phone. The demands of this approach would equally allow lecturers to make major changes to their work habits, uploading their teaching materials online, and get to grips with what online lecturing entails. Consequently, the study recommends that leaders of developing countries, regulatory authorities, and heads of educational institutions must adopt e-learning into their educational system. Also, e-learning should be adopted into the educational curriculum of students, especially from elementary school up to tertiary level. Total compliance to the e-learning system must be ensured on the part of both the institutions, stake holders, lecturers, tutors, and students. Finally, collaborations with developed countries and effective funding for e-learning integration must form the heart of their cardinal mission.

Keywords: Covid pandemic, developing countries, educational system, e-learning

Procedia PDF Downloads 89
2608 Parenting Practices, Challenges and Prospectus of Working Mothers in Arsi University: Oromia Regional State, Ethiopia

Authors: Endalew Fufa Kufi

Abstract:

Every married person aspires to be a parent regardless of the situation in which s/he lives. Such aspiration meets with reality when the destined parent is able to give adequate supports and services to his/her children, whether the latter are got by birth or through adoption. The adequacy of services parents provide their children is both enriched and tempted by the work on which they involve. On the one hand, parents need to work and earn a living in order to support their family. On the other hand, they must spend most of their time outside home to do the work, which shortens the time and might they spare to care for their children. Where the sufficiency of services parents owe their children could be ascertained by in terms of life skills, physical care and related provisions, the role of working fathers and mothers in providing such supports could be diverse across cultures and work traditions. Hence, this research deals with the investigation of working mothers’ parental practices, challenges they face in providing parental services and the implication for the future progress of the parents and their children. Target of the study will be Arsi University in Oromia Regional State of Ethiopia. Descriptive survey design in holding the research, and data for the research will be collected in the form of experiential self-report from 150 working mothers selected from the entire working women population of Colleges of Agriculture and Environmental Studies and College of Health Sciences through stratified random-sampling. Instruments of data collection will be closed and open-ended questionnaire. Complementary data will also be collected from purposively selected samples through semi-structured interview. Data for the research will be collected through questionnaire first and then through interview. Data analysis will also follow the same procedure. The collected data will systematically be organized and statistically and thematically analyzed in order to come up with indicative findings. The overarching thesis is that, working mothers in the study area bear a lot of responsibilities both at home and at work place which leave them very little time for parenting services. Unless due attention is given to the way they can spare time for their children, they are more likely to be tense between work-life and family care services, which tempt them in different directions.

Keywords: challenges, mothers, practices, university, working

Procedia PDF Downloads 279
2607 Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems

Authors: Chao-Yang Huang, Rwey-Hua Cherng, Chung-Lin Fu, Yuan-Lung Lo

Abstract:

Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code.

Keywords: aerodynamic force coefficient, ground-mounted, roof-mounted, wind tunnel test, photovoltaic

Procedia PDF Downloads 126
2606 Analytical Method Development and Validation of Stability Indicating Rp - Hplc Method for Detrmination of Atorvastatin and Methylcobalamine

Authors: Alkaben Patel

Abstract:

The proposed RP-HPLC method is easy, rapid, economical, precise and accurate stability indicating RP-HPLC method for simultaneous estimation of Astorvastatin and Methylcobalamine in their combined dosage form has been developed.The separation was achieved by LC-20 AT C18(250mm*4.6mm*2.6mm)Colum and water (pH 3.5): methanol 70:30 as mobile phase, at a flow rate of 1ml/min. wavelength of this dosage form is 215nm.The drug is related to stress condition of hydrolysis, oxidation, photolysis and thermal degradation.

Keywords: RP- HPLC, atorvastatin, methylcobalamine, method, development, validation

Procedia PDF Downloads 314
2605 Imaging Features of Hepatobiliary Histiocytosis

Authors: Ayda Youssef, Tarek Rafaat, Iman zaky

Abstract:

Purpose: Langerhans’ cell histiocytosis (LCH) is not uncommon pathology that implies aberrant proliferation of a specific dendritic (Langerhans) cell. These atypical but mature cells of monoclonal origin can infiltrate many sites of the body and may occur as localized lesions or as widespread systemic disease. Liver is one of the uncommon sites of affection. The twofold objective of this study is to illustrate the radiological presentation of this disease, and to compare these results with previously reported series. Methods and Materials: Between 2007 and 2012, 150 patients with biopsy-proven LCH were treated in our hospital, a paediatric cancer tertiary care center. A retrospective review of radiographic images and reports was performed. There were 33 patients with liver affection are stratified. All patients underwent imaging studies, mostly US and CT. A chart review was performed to obtain demographic, clinical and radiological data. They were analyzed and compared to other published series. Results: Retrospective assessment of 150 patients with LCH was performed, among them 33 patients were identified who had liver involvement. All these patients developed multisystemic disease; They were 12 females and 21 males with (n= 32), seven of them had marked hepatomegaly. Diffuse hypodense liver parenchyma was encountered in five cases, the periportal location has a certain predilection in cases of focal affection where three cases has a hypodense periportal soft tissue sheets, one of them associated with dilated biliary radicals, only one case has multiple focal lesions unrelated to portal tracts. On follow up of the patients, two cases show abnormal morphology of liver with bossy outline. Conclusion: LCH is a not infrequent disease. A high-index suspicion should be raised in the context of diagnosis of liver affection. A biopsy is recommended in the presence of radiological suspicion. Chemotherapy is the preferred therapeutic modality. Liver histiocytosis are not disease specific features but should be interpreted in conjunction with the clinical history and the results of biopsy. Clinical Relevance/Application: Radiologist should be aware of different patterns of hepatobiliary histiocytosis, Thus early diagnosis and proper management of patient can be conducted.

Keywords: langerhans’ cell histiocytosis, liver, medical and health sciences, radiology

Procedia PDF Downloads 267
2604 Increased Energy Efficiency and Improved Product Quality in Processing of Lithium Bearing Ores by Applying Fluidized-Bed Calcination Systems

Authors: Edgar Gasafi, Robert Pardemann, Linus Perander

Abstract:

For the production of lithium carbonate or hydroxide out of lithium bearing ores, a thermal activation (calcination/decrepitation) is required for the phase transition in the mineral to enable an acid respectively soda leaching in the downstream hydrometallurgical section. In this paper, traditional processing in Lithium industry is reviewed, and opportunities to reduce energy consumption and improve product quality and recovery rate will be discussed. The conventional process approach is still based on rotary kiln calcination, a technology in use since the early days of lithium ore processing, albeit not significantly further developed since. A new technology, at least for the Lithium industry, is fluidized bed calcination. Decrepitation of lithium ore was investigated at Outotec’s Frankfurt Research Centre. Focusing on fluidized bed technology, a study of major process parameters (temperature and residence time) was performed at laboratory and larger bench scale aiming for optimal product quality for subsequent processing. The technical feasibility was confirmed for optimal process conditions on pilot scale (400 kg/h feed input) providing the basis for industrial process design. Based on experimental results, a comprehensive Aspen Plus flow sheet simulation was developed to quantify mass and energy flow for the rotary kiln and fluidized bed system. Results show a significant reduction in energy consumption and improved process performance in terms of temperature profile, product quality and plant footprint. The major conclusion is that a substantial reduction of energy consumption can be achieved in processing Lithium bearing ores by using fluidized bed based systems. At the same time and different from rotary kiln process, an accurate temperature and residence time control is ensured in fluidized-bed systems leading to a homogenous temperature profile in the reactor which prevents overheating and sintering of the solids and results in uniform product quality.

Keywords: calcination, decrepitation, fluidized bed, lithium, spodumene

Procedia PDF Downloads 215
2603 The Effect of an Occupational Therapy Programme on Sewing Machine Operators

Authors: N. Dunleavy, E. Lovemore, K. Siljeur, D. Jackson, M. Hendricks, M. Hoosain, N. Plastow, S. Marais

Abstract:

Background: The work requirements of sewing machine operators cause physical and emotional strain. Past ergonomic interventions have been provided to alleviate physical concerns; however, a holistic, multimodal intervention was needed to improve these factors. Aim: The study aimed to examine the effect of an occupational therapy programme on sewing machine operators’ pain, mental health, and productivity within a factory in the South African context. Methods: A pilot randomised control trial was conducted with 22 sewing machine operators within a single factory. Stratified randomisation was used to determine the experimental (EG) and control groups (CG), using measures for pain intensity, level of depression (mental health), and productivity rates as stratification variables. The EG received the multimodal intervention, incorporating education, seating adaptations, and mental health intervention. In three months, the CG will receive the same intervention. Pre- and post-intervention testing have occurred with upcoming three- and six-month follow-ups. Results: Immediate results indicate a statistically significant decrease in pain in both experimental and control groups; no change in productivity scores and depression between the two groups. This may be attributed to external factors. The values for depression further showed no statistical significance between the two groups and within pre-and post-test results. The Statistical Program for Social Sciences (SPSS) version-24 was used as the data analysis testing, where all the tests will be evaluated at a 5% significance level. Contribution of research: The research adds to the body of knowledge informing the Occupational Therapy role in work settings, providing evidence on the effectiveness of workplace-based multimodal interventions. Conclusion: The study provides initial data on the effectiveness of a pilot randomised control trial on pain and mental health in South Africa. Results indicated no quantitative change between the experimental and control groups; however, qualitative data suggest a clinical significance of the findings.

Keywords: ergonomics programme, occupational therapy, sewing machine operators, workplace-based multimodal interventions

Procedia PDF Downloads 70
2602 Stratafix Barbed Suture Versus Polydioxanone Suture on the Rate of Pancreatic Fistula After Pancreaticoduodenectomy

Authors: Saniya Ablatt, Matthew Jacobsson, Jamie Whisler, Austin Forbes

Abstract:

Postoperative pancreatic fistula (POPF) is a complication that occurs in up to 41% of patients after pancreaticoduodenectomy. Although certain characteristics such as individual patient anatomy are known risk factors for POPF, the effect of barbed suture techniques remains underexplored. This study examines whether the use of Stratafix barbed suture versus PDS impacts the risk of developing POPF. After obtaining IRB exemption, a retrospective chart review was initiated involving patients who underwent pancreaticoduodenectomy for the treatment of malignant or premalignant lesions of the pancreas at our institution between April 1st 2020 and April 30th 2022. Patients were stratified into 2 groups respective to the technique used to suture the pancreatico-jejunal anastomosis: Group 1 was composed to patients in which 4.0 Stratafix® suture was used n=41. Group 1 was composed to patients in which 4.0 PDS suture was used n=42. Data regarding patient age, sex, BMI, presence or absence of biochemical leak, presence or absence of grade B & C postoperative pancreatic fistulas, rate and type of in hospital complication, rate of reoperation, 30 day readmission rate, 90 day mortality, and total mortality were compared between groups. 83 patients were included in our study with 42 receiving Stratafix and 41 receiving PDS (50.6% vs 49.4%). Stratafix patients had less biochemical leaks (0.0% vs 4.8%, p=0.19) and higher rates of POPF but this was not statistically significant (7.2% vs 2.4%, p=0.26). Additionally, there was no difference between the use of stratafix versus PDS on the risk of clinically relevant grade B or C POPF (p=0.26, OR=3.25 [CI= 0.74-16.43]). Of the independent variables including age, race, sex, BMI, and ASA class, BMI greater than 25 increased the risk of clinically relevant POPF by 7.7 times compared to patients with BMI less than 25 (p=0.03, OR=7.79 [1.04-88.51]). Despite no significant difference in primary outcomes, the Stratafix group had lower rates of secondary outcomes including 90-day mortality; bleeding, cardiac, and infectious complications; reoperation; and 30-day readmission. On statistical analysis, Stratafix decreased the risk of 30-day readmission (p=0.04, OR=0.21, CI=0.04-0.97) and had a marginally significant effect on the risk of reoperation (p=0.08, OR=0.24, CI=0.04-1.26). There was no difference between the use of Stratafix versus PDS on the risk of POPF (p=0.26). However, Stratafix decreased the risk of 30-day readmission (p=0.04) and BMI greater than 25 increased the risk of clinically relevant POPF (p=0.03).

Keywords: pancreas, hepatobiliary surgery, hepatobiliary, pancreatic leak, biochemical leak, fistula, pancreatic fistula

Procedia PDF Downloads 103
2601 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 40
2600 Modeling and Prediction of Hot Deformation Behavior of IN718

Authors: M. Azarbarmas, J. M. Cabrera, J. Calvo, M. Aghaie-Khafri

Abstract:

The modeling of hot deformation behavior for unseen conditions is important in metal-forming. In this study, the hot deformation of IN718 has been characterized in the temperature range 950-1100 and strain rate range 0.001-0.1 s-1 using hot compression tests. All stress-strain curves showed the occurrence of dynamic recrystallization. These curves were implemented quantitatively in mathematics, and then constitutive equation indicating the relationship between the flow stress and hot deformation parameters was obtained successfully.

Keywords: compression test, constitutive equation, dynamic recrystallization, hot working

Procedia PDF Downloads 408
2599 Microstructures of Si Surfaces Fabricated by Electrochemical Anodic Oxidation with Agarose Stamps

Authors: Hang Zhou, Limin Zhu

Abstract:

This paper investigates the fabrication of microstructures on Si surfaces by using electrochemical anodic oxidation with agarose stamps. The fabricating process is based on a selective anodic oxidation reaction that occurs in the contact area between a stamp and a Si substrate. The stamp which is soaked in electrolyte previously acts as a current flow channel. After forming the oxide patterns as an etching mask, a KOH aqueous is used for the wet etching of Si. A complicated microstructure array of 1 cm2 was fabricated by the method with high accuracy.

Keywords: microstructures, anodic oxidation, silicon, agarose stamps

Procedia PDF Downloads 287
2598 Effect of Discharge Pressure Conditions on Flow Characteristics in Axial Piston Pump

Authors: Jonghyuk Yoon, Jongil Yoon, Seong-Gyo Chung

Abstract:

In many kinds of industries which usually need a large amount of power, an axial piston pump has been widely used as a main power source of a hydraulic system. The axial piston pump is a type of positive displacement pump that has several pistons in a circular array within a cylinder block. As the cylinder block and pistons start to rotate, since the exposed ends of the pistons are constrained to follow the surface of the swashed plate, the pistons are driven to reciprocate axially and then a hydraulic power is produced. In the present study, a numerical simulation which has three dimensional full model of the axial piston pump was carried out using a commercial CFD code (Ansys CFX 14.5). In order to take into consideration motion of compression and extension by the reciprocating pistons, the moving boundary conditions were applied as a function of the rotation angle to that region. In addition, this pump using hydraulic oil as working fluid is intentionally designed as a small amount of oil leaks out in order to lubricate moving parts. Since leakage could directly affect the pump efficiency, evaluation of effect of oil-leakage is very important. In order to predict the effect of the oil leakage on the pump efficiency, we considered the leakage between piston-shoe and swash-plate by modeling cylindrical shaped-feature at the end of the cylinder. In order to validate the numerical method used in this study, the numerical results of the flow rate at the discharge port are compared with the experimental data, and good agreement between them was shown. Using the validated numerical method, the effect of the discharge pressure was also investigated. The result of the present study can be useful information of small axial piston pump used in many different manufacturing industries. Acknowledgement: This research was financially supported by the “Next-generation construction machinery component specialization complex development program” through the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT).

Keywords: axial piston pump, CFD, discharge pressure, hydraulic system, moving boundary condition, oil leaks

Procedia PDF Downloads 233
2597 Carbonaceous Monolithic Multi-Channel Denuders as a Gas-Particle Partitioning Tool for the Occupational Sampling of Aerosols from Semi-Volatile Organic Compounds

Authors: Vesta Kohlmeier, George C. Dragan, Juergen Orasche, Juergen Schnelle-Kreis, Dietmar Breuer, Ralf Zimmermann

Abstract:

Aerosols from hazardous semi-volatile organic compounds (SVOC) may occur in workplace air and can simultaneously be found as particle and gas phase. For health risk assessment, it is necessary to collect particles and gases separately. This can be achieved by using a denuder for the gas phase collection, combined with a filter and an adsorber for particle collection. The study focused on the suitability of carbonaceous monolithic multi-channel denuders, so-called Novacarb™-Denuders (MastCarbon International Ltd., Guilford, UK), to achieve gas-particle separation. Particle transmission efficiency experiments were performed with polystyrene latex (PSL) particles (size range 0.51-3 µm), while the time dependent gas phase collection efficiency was analysed for polar and nonpolar SVOC (mass concentrations 7-10 mg/m3) over 2 h at 5 or 10 l/min. The experimental gas phase collection efficiency was also compared with theoretical predictions. For n-hexadecane (C16), the gas phase collection efficiency was max. 91 % for one denuder and max. 98 % for two denuders, while for diethylene glycol (DEG), a maximal gas phase collection efficiency of 93 % for one denuder and 97 % for two denuders was observed. At 5 l/min higher gas phase collection efficiencies were achieved than at 10 l/min. The deviations between the theoretical and experimental gas phase collection efficiencies were up to 5 % for C16 and 23 % for DEG. Since the theoretical efficiency depends on the geometric shape and length of the denuder, flow rate and diffusion coefficients of the tested substances, the obtained values define an upper limit which could be reached. Regarding the particle transmission through the denuders, the use of one denuder showed transmission efficiencies around 98 % for 1-3 µm particle diameters. The use of three denuders resulted in transmission efficiencies from 93-97 % for the same particle sizes. In summary, NovaCarb™-Denuders are well applicable for sampling aerosols of polar/nonpolar substances with particle diameters ≤3 µm and flow rates of 5 l/min or lower. These properties and their compact size make them suitable for use in personal aerosol samplers. This work is supported by the German Social Accident Insurance (DGUV), research contract FP371.

Keywords: gas phase collection efficiency, particle transmission, personal aerosol sampler, SVOC

Procedia PDF Downloads 159
2596 Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin

Authors: Sayani Chatterjee, Kusum Lata Pangtey, Sarita Singh, Harvir Singh

Abstract:

Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well.

Keywords: asphaltene, biomarkers, correlation, mild oxidation, occluded hydrocarbon

Procedia PDF Downloads 148
2595 Surgical Treatment of Glaucoma – Literature and Video Review of Blebs, Tubes, and Micro-Invasive Glaucoma Surgeries (MIGS)

Authors: Ana Miguel

Abstract:

Purpose: Glaucoma is the second cause of worldwide blindness and the first cause of irreversible blindness. Trabeculectomy, the standard glaucoma surgery, has a success rate between 36.0% and 98.0% at three years and a high complication rate, leading to the development of different surgeries, micro-invasive glaucoma surgeries (MIGS). MIGS devices are diverse and have various indications, risks, and effectiveness. We intended to review MIGS’ surgical techniques, indications, contra-indications, and IOP effect. Methods: We performed a literature review of MIGS to differentiate the devices and their reported effectiveness compared to traditional surgery (tubes and blebs). We also conducted a video review of the last 1000 glaucoma surgeries of the author (including MIGS, but also trabeculectomy, deep sclerectomy, and tubes of Ahmed and Baerveldt) performed at glaucoma and advanced anterior segment fellowship in Canada and France, to describe preferred surgical techniques for each. Results: We present the videos with surgical techniques and pearls for each surgery. Glaucoma surgeries included: 1- bleb surgery (namely trabeculectomy, with releasable sutures or with slip knots, deep sclerectomy, Ahmed valve, Baerveldt tube), 2- MIGS with bleb, also known as MIBS (including XEN 45, XEN 63, and Preserflo), 3- MIGS increasing supra-choroidal flow (iStar), 4-MIGS increasing trabecular flow (iStent, gonioscopy-assisted transluminal trabeculotomy - GATT, goniotomy, excimer laser trabeculostomy -ELT), and 5-MIGS decreasing aqueous humor production (endocyclophotocoagulation, ECP). There was also needling (ab interno and ab externo) performed at the operating room and irido-zonulo-hyaloïdectomy (IZHV). Each technique had different indications and contra-indications. Conclusion: MIGS are valuable in glaucoma surgery, such as traditional surgery with trabeculectomy and tubes. All glaucoma surgery can be combined with phacoemulsification (there may be a synergistic effect on MIGS + cataract surgery). In addition, some MIGS may be combined for further intraocular pressure lowering effect (for example, iStents with goniotomy and ECP). A good surgical technique and postoperative management are fundamental to increasing success and good practice in all glaucoma surgery.

Keywords: glaucoma, migs, surgery, video, review

Procedia PDF Downloads 67
2594 Investigation of Riprap Stability on Roughness Bridge Pier in River Bend

Authors: A. Alireza Masjedi, B. Amir Taeedi

Abstract:

In this research, by placing the two cylindrical piers without roughness and with roughness with riprap around its, they proceeded to a series of tests. Experiments were done by three relative diameters of riprap with density 2.1 and one rate of discharge 27 lit/s under pure water condition. In each experiment, flow depth measured in terms of failure threshold then stability number calculated by using data obtained. The results of the research showed that the riprap stability in pier with roughness is more pier without roughness because of the pier with roughness is sharp-pointed and reduced horseshoe vortex.

Keywords: riprap stability, roughness, river bend, froude number

Procedia PDF Downloads 327
2593 Effect of Riprap Stability on Roughness Bridge Pier in River Bend

Authors: Alireza Masjedi, Amir Taeedi

Abstract:

In this research, by placing the two cylindrical piers without roughness and with roughness with riprap around its, they proceeded to a series of tests. Experiments were done by three relative diameters of riprap with density 2.1 and one rate of discharge 27 lit/s under pure water condition. In each experiment, flow depth measured in terms of failure threshold then stability number calculated by using data obtained. The results of the research showed that the riprap stability in pier with roughness is more pier without roughness because of the pier with roughness is sharp-pointed and reduced horseshoe vortex.

Keywords: riprap stability, roughness, river bend, froude number

Procedia PDF Downloads 332
2592 Energy Reclamation in Micro Cavitating Flow

Authors: Morteza Ghorbani, Reza Ghorbani

Abstract:

Cavitation phenomenon has attracted much attention in the mechanical and biomedical technologies. Despite the simplicity and mostly low cost of the devices generating cavitation bubbles, the physics behind the generation and collapse of these bubbles particularly in micro/nano scale has still not well understood. In the chemical industry, micro/nano bubble generation is expected to be applicable to the development of porous materials such as microcellular plastic foams. Moreover, it was demonstrated that the presence of micro/nano bubbles on a surface reduced the adsorption of proteins. Thus, the micro/nano bubbles could act as antifouling agents. Micro and nano bubbles were also employed in water purification, froth floatation, even in sonofusion, which was not completely validated. Small bubbles could also be generated using micro scale hydrodynamic cavitation. In this study, compared to the studies available in the literature, we are proposing a novel approach in micro scale utilizing the energy produced during the interaction of the spray affected by the hydrodynamic cavitating flow and a thin aluminum plate. With a decrease in the size, cavitation effects become significant. It is clearly shown that with the aid of hydrodynamic cavitation generated inside the micro/mini-channels in addition to the optimization of the distance between the tip of the microchannel configuration and the solid surface, surface temperatures can be increased up to 50C under the conditions of this study. The temperature rise on the surfaces near the collapsing small bubbles was exploited for energy harvesting in small scale, in such a way that miniature, cost-effective, and environmentally friendly energy-harvesting devices can be developed. Such devices will not require any external power and moving parts in contrast to common energy-harvesting devices, such as those involving piezoelectric materials and micro engine. Energy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. We are proposing a cost effective and environmentally friendly solution for the growing individual energy needs thanks to the energy application of cavitating flows. The necessary power for consumer devices, such as cell phones and laptops, can be provided using this approach. Thus, this approach has the potential for solving personal energy needs in an inexpensive and environmentally friendly manner and can trigger a shift of paradigm in energy harvesting.

Keywords: cavitation, energy, harvesting, micro scale

Procedia PDF Downloads 179
2591 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts

Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu

Abstract:

Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.

Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria

Procedia PDF Downloads 61
2590 Happiness of Thai People: An Analysis by Socioeconomic Factors

Authors: Kalayanee Senasu

Abstract:

This research investigates Thai people’s happiness based on socioeconomic factors, i.e. region, municipality, gender, age, and occupation. The research data were collected from survey data using interviewed questionnaires. The primary data were from stratified multi-stage sampling in each region, province, district, and enumeration area; and simple random sampling in each enumeration area. These data were collected in 13 provinces: Bangkok and three provinces in each of all four regions. The data were collected over two consecutive years. There were 3,217 usable responses from the 2017 sampling, and 3,280 usable responses from the 2018 sampling. The Senasu’s Thai Happiness Index (THaI) was used to calculate the happiness level of Thai people in 2017 and 2018. This Thai Happiness Index comprises five dimensions: subjective well-being, quality of life, philosophy of living, governance, and standard of living. The result reveals that the 2017 happiness value is 0.506, while Thai people are happier in 2018 (THaI = 0.556). For 2017 happiness, people in the Central region have the highest happiness (THaI = 0.532), which is followed closely by people in the Bangkok Metropolitan Area (THaI = 0.530). People in the North have the lowest happiness (THaI = 0.476) which is close to the level for people in the Northeast (THaI = 0.479). Comparing age groups, it is found that people in the age range 25-29 years old are the happiest (THaI = 0.529), followed by people in the age range 55-59 and 35-39 years old (THaI = 0.526 and 0.523, respectively). Additionally, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.533 vs. 0.475). Males are happier than females (THaI = 0.530 vs. 0.482), and retired people, entrepreneurs, and government employees are all in the high happiness groups (THaI =0.614, 0.608, and 0.593, respectively). For 2018 happiness, people in the Northern region have the highest happiness (THaI = 0.590), which is followed closely by people in the South and Bangkok Metropolitan Area (THaI = 0.578 and 0.577, respectively). People in the Central have the lowest happiness (THaI = 0.530), which is close to the level for people in the Northeast (THaI = 0.533). Comparing age groups, it is found that people in the age range 35-39 years old are the happiest (THaI = 0.572), followed by people in the age range 40-44 and 60-64 years old (THaI = 0.569 and 0.568, respectively). Similar to 2017 happiness, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.567 vs. 0. 552). However, males and females are happy at about the same levels (THaI = 0.561 vs. 0.560), and government employees, retired people, and state enterprise employees are all in the high happiness groups (THaI =0.667, 0.639, and 0.661, respectively).

Keywords: happiness, quality of life, Thai happiness index, socio-economic factors

Procedia PDF Downloads 101
2589 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria

Authors: O. O. Aiyelokun, O. A. Agbede

Abstract:

Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.

Keywords: boundary condition, goodness of fit, groundwater, satellite-based data

Procedia PDF Downloads 112
2588 Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts

Authors: Ola Jon Mork, Lars Andre Giske, Emil Bjørlykhaug

Abstract:

Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes.

Keywords: simulation, lean, stabilization, welding process

Procedia PDF Downloads 309
2587 3D Multimedia Model for Educational Design Engineering

Authors: Mohanaad Talal Shakir

Abstract:

This paper tries to propose educational design by using multimedia technology for Engineering of computer Technology, Alma'ref University College in Iraq. This paper evaluates the acceptance, cognition, and interactiveness of the proposed model by students by using the statistical relationship to determine the stage of the model. Objectives of proposed education design are to develop a user-friendly software for education purposes using multimedia technology and to develop animation for 3D model to simulate assembling and disassembling process of high-speed flow.

Keywords: CAL, multimedia, shock tunnel, interactivity, engineering education

Procedia PDF Downloads 610
2586 Computational Fluid Dynamics Simulation of Turbulent Convective Heat Transfer in Rectangular Mini-Channels for Rocket Cooling Applications

Authors: O. Anwar Beg, Armghan Zubair, Sireetorn Kuharat, Meisam Babaie

Abstract:

In this work, motivated by rocket channel cooling applications, we describe recent CFD simulations of turbulent convective heat transfer in mini-channels at different aspect ratios. ANSYS FLUENT software has been employed with a mean average error of 5.97% relative to Forrest’s MIT cooling channel study (2014) at a Reynolds number of 50,443 with a Prandtl number of 3.01. This suggests that the simulation model created for turbulent flow was suitable to set as a foundation for the study of different aspect ratios in the channel. Multiple aspect ratios were also considered to understand the influence of high aspect ratios to analyse the best performing cooling channel, which was determined to be the highest aspect ratio channels. Hence, the approximate 28:1 aspect ratio provided the best characteristics to ensure effective cooling. A mesh convergence study was performed to assess the optimum mesh density to collect accurate results. Hence, for this study an element size of 0.05mm was used to generate 579,120 for proper turbulent flow simulation. Deploying a greater bias factor would increase the mesh density to the furthest edges of the channel which would prove to be useful if the focus of the study was just on a single side of the wall. Since a bulk temperature is involved with the calculations, it is essential to ensure a suitable bias factor is used to ensure the reliability of the results. Hence, in this study we have opted to use a bias factor of 5 to allow greater mesh density at both edges of the channel. However, the limitations on mesh density and hardware have curtailed the sophistication achievable for the turbulence characteristics. Also only linear rectangular channels were considered, i.e. curvature was ignored. Furthermore, we only considered conventional water coolant. From this CFD study the variation of aspect ratio provided a deeper appreciation of the effect of small to high aspect ratios with regard to cooling channels. Hence, when considering an application for the channel, the geometry of the aspect ratio must play a crucial role in optimizing cooling performance.

Keywords: rocket channel cooling, ANSYS FLUENT CFD, turbulence, convection heat transfer

Procedia PDF Downloads 137
2585 Sponge Urbanism as a Resilient City Design to Overcome Urban Flood Risk, for the Case of Aluva, Kerala, India

Authors: Gayathri Pramod, Sheeja K. P.

Abstract:

Urban flooding has been seen rising in cities for the past few years. This rise in urban flooding is the result of increasing urbanization and increasing climate change. A resilient city design focuses on 'living with water'. This means that the city is capable of accommodating the floodwaters without having to risk any loss of lives or properties. The resilient city design incorporates green infrastructure, river edge treatment, open space design, etc. to form a city that functions as a whole for resilience. Sponge urbanism is a recent method for building resilient cities and is founded by China in 2014. Sponge urbanism is the apt method for resilience building for a tropical town like Aluva of Kerala. Aluva is a tropical town that experiences rainfall of about 783 mm per month during the rainy season. Aluva is an urbanized town which faces the risk of urban flooding and riverine every year due to the presence of Periyar River in the town. Impervious surfaces and hard construction and developments contribute towards flood risk by posing as interference for a natural flow and natural filtration of water into the ground. This type of development is seen in Aluva also. Aluva is designed in this research as a town that have resilient strategies of sponge city and which focusses on natural methods of construction. The flood susceptibility of Aluva is taken into account to design the spaces for sponge urbanism and in turn, reduce the flood susceptibility for the town. Aluva is analyzed, and high-risk zones for development are identified through studies. These zones are designed to withstand the risk of flooding. Various catchment areas are identified according to the natural flow of water, and then these catchment areas are designed to act as a public open space and as detention ponds in case of heavy rainfall. Various development guidelines, according to land use, is also prescribed, which help in increasing the green cover of the town. Aluva is then designed to be a completely flood-adapted city or sponge city according to the guidelines and interventions.

Keywords: climate change, flooding, resilient city, sponge city, sponge urbanism, urbanization

Procedia PDF Downloads 139
2584 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers

Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang

Abstract:

In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.

Keywords: centrality, patent coupling network, patent influence, social network analysis

Procedia PDF Downloads 40
2583 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops

Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann

Abstract:

The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.

Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule

Procedia PDF Downloads 135
2582 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 222
2581 Non–Geometric Sensitivities Using the Adjoint Method

Authors: Marcelo Hayashi, João Lima, Bruno Chieregatti, Ernani Volpe

Abstract:

The adjoint method has been used as a successful tool to obtain sensitivity gradients in aerodynamic design and optimisation for many years. This work presents an alternative approach to the continuous adjoint formulation that enables one to compute gradients of a given measure of merit with respect to control parameters other than those pertaining to geometry. The procedure is then applied to the steady 2–D compressible Euler and incompressible Navier–Stokes flow equations. Finally, the results are compared with sensitivities obtained by finite differences and theoretical values for validation.

Keywords: adjoint method, aerodynamics, sensitivity theory, non-geometric sensitivities

Procedia PDF Downloads 527