Search results for: multiple variations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6220

Search results for: multiple variations

3760 Analyzing the Changing Pattern of Nigerian Vegetation Zones and Its Ecological and Socio-Economic Implications Using Spot-Vegetation Sensor

Authors: B. L. Gadiga

Abstract:

This study assesses the major ecological zones in Nigeria with the view to understanding the spatial pattern of vegetation zones and the implications on conservation within the period of sixteen (16) years. Satellite images used for this study were acquired from the SPOT-VEGETATION between 1998 and 2013. The annual NDVI images selected for this study were derived from SPOT-4 sensor and were acquired within the same season (November) in order to reduce differences in spectral reflectance due to seasonal variations. The images were sliced into five classes based on literatures and knowledge of the area (i.e. <0.16 Non-Vegetated areas; 0.16-0.22 Sahel Savannah; 0.22-0.40 Sudan Savannah, 0.40-0.47 Guinea Savannah and >0.47 Forest Zone). Classification of the 1998 and 2013 images into forested and non forested areas showed that forested area decrease from 511,691 km2 in 1998 to 478,360 km2 in 2013. Differencing change detection method was performed on 1998 and 2013 NDVI images to identify areas of ecological concern. The result shows that areas undergoing vegetation degradation covers an area of 73,062 km2 while areas witnessing some form restoration cover an area of 86,315 km2. The result also shows that there is a weak correlation between rainfall and the vegetation zones. The non-vegetated areas have a correlation coefficient (r) of 0.0088, Sahel Savannah belt 0.1988, Sudan Savannah belt -0.3343, Guinea Savannah belt 0.0328 and Forest belt 0.2635. The low correlation can be associated with the encroachment of the Sudan Savannah belt into the forest belt of South-eastern part of the country as revealed by the image analysis. The degradation of the forest vegetation is therefore responsible for the serious erosion problems witnessed in the South-east. The study recommends constant monitoring of vegetation and strict enforcement of environmental laws in the country.

Keywords: vegetation, NDVI, SPOT-vegetation, ecology, degradation

Procedia PDF Downloads 224
3759 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders

Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga

Abstract:

In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.

Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory

Procedia PDF Downloads 612
3758 On the Performance of Improvised Generalized M-Estimator in the Presence of High Leverage Collinearity Enhancing Observations

Authors: Habshah Midi, Mohammed A. Mohammed, Sohel Rana

Abstract:

Multicollinearity occurs when two or more independent variables in a multiple linear regression model are highly correlated. The ridge regression is the commonly used method to rectify this problem. However, the ridge regression cannot handle the problem of multicollinearity which is caused by high leverage collinearity enhancing observation (HLCEO). Since high leverage points (HLPs) are responsible for inducing multicollinearity, the effect of HLPs needs to be reduced by using Generalized M estimator. The existing GM6 estimator is based on the Minimum Volume Ellipsoid (MVE) which tends to swamp some low leverage points. Hence an improvised GM (MGM) estimator is presented to improve the precision of the GM6 estimator. Numerical example and simulation study are presented to show how HLPs can cause multicollinearity. The numerical results show that our MGM estimator is the most efficient method compared to some existing methods.

Keywords: identification, high leverage points, multicollinearity, GM-estimator, DRGP, DFFITS

Procedia PDF Downloads 265
3757 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 158
3756 A Comprehensive Study on CO₂ Capture and Storage: Advances in Technology and Environmental Impact Mitigation

Authors: Oussama Fertaq

Abstract:

This paper investigates the latest advancements in CO₂ capture and storage (CCS) technologies, which are vital for addressing the growing challenge of climate change. The study focuses on multiple techniques for CO₂ capture, including chemical absorption, membrane separation, and adsorption, analyzing their efficiency, scalability, and environmental impact. The research further explores geological storage options such as deep saline aquifers and depleted oil fields, providing insights into the challenges and opportunities presented by each method. This paper emphasizes the importance of integrating CCS with existing industrial processes to reduce greenhouse gas emissions effectively. It also discusses the economic and policy frameworks required to promote wider adoption of CCS technologies. The findings of this study offer a comprehensive view of the potential of CCS in achieving global climate goals, particularly in hard-to-abate sectors such as energy and manufacturing.

Keywords: CO₂ capture, carbon storage, climate change mitigation, carbon sequestration, environmental sustainability

Procedia PDF Downloads 20
3755 The Changing Importance of Technology Skills for Accountants in the Context of Artificial intelligence

Authors: Yangchun Xiong

Abstract:

The goal of this study is to demonstrate the impact of the changing importance of technology skill under the evolution of artificial intelligence on the job requirements for accountants. The analysis is based on data from the Chinese employment market from 2012 to 2022 under different educational backgrounds. The research objectives are achieved through multiple regression and relative importance analysis. The analysis indicates that the changing importance of technology skills have significant effects on the job requirements of accountants. Trends show that from 2012 to 2022, the relative importance of technology skills decreased. However, this trend was reversed in 2020. Differences exist in both overall characteristics and trend features for job seekers with different educational backgrounds. The research findings provide insights for recommendations on how job seekers and educational institutions should take actions in the context of AI to promote employment and personal development.

Keywords: Artificial intelligence, Accountant, Educational background, Technology skills, Job requirements

Procedia PDF Downloads 5
3754 Land Subsidence Monitoring in Semarang and Demak Coastal Area Using Persistent Scatterer Interferometric Synthetic Aperture Radar

Authors: Reyhan Azeriansyah, Yudo Prasetyo, Bambang Darmo Yuwono

Abstract:

Land subsidence is one of the problems that occur in the coastal areas of Java Island, one of which is the Semarang and Demak areas located in the northern region of Central Java. The impact of sea erosion, rising sea levels, soil structure vulnerable and economic development activities led to both these areas often occurs on land subsidence. To know how much land subsidence that occurred in the region needs to do the monitoring carried out by remote sensing methods such as PS-InSAR method. PS-InSAR is a remote sensing technique that is the development of the DInSAR method that can monitor the movement of the ground surface that allows users to perform regular measurements and monitoring of fixed objects on the surface of the earth. PS InSAR processing is done using Standford Method of Persistent Scatterers (StaMPS). Same as the recent analysis technique, Persistent Scatterer (PS) InSAR addresses both the decorrelation and atmospheric problems of conventional InSAR. StaMPS identify and extract the deformation signal even in the absence of bright scatterers. StaMPS is also applicable in areas undergoing non-steady deformation, with no prior knowledge of the variations in deformation rate. In addition, this method can also cover a large area so that the decline in the face of the land can cover all coastal areas of Semarang and Demak. From the PS-InSAR method can be known the impact on the existing area in Semarang and Demak region per year. The PS-InSAR results will also be compared with the GPS monitoring data to determine the difference in land decline that occurs between the two methods. By utilizing remote sensing methods such as PS-InSAR method, it is hoped that the PS-InSAR method can be utilized in monitoring the land subsidence and can assist other survey methods such as GPS surveys and the results can be used in policy determination in the affected coastal areas of Semarang and Demak.

Keywords: coastal area, Demak, land subsidence, PS-InSAR, Semarang, StaMPS

Procedia PDF Downloads 273
3753 Tracing Ethnic Identity through Prehistoric Paintings and Tribal Art in Central India

Authors: Indrani Chattopadhyaya

Abstract:

This paper seeks to examine how identity – a cultural self-image of a group of people develops – how they live, they think, they celebrate and express their world view through language, gesture, symbols, and rituals. 'Culture' is a way of life and 'identity' is assertion of that cultural self-image practiced by the group. The way in which peoples live varies from time to time and from place to place. This variation is important for their identity. Archaeologists have classified these patterns of spacial variations as 'archaeological culture.' These cultures are identified 'self-consciously' with a particular social group indicating ethnicity. The ethnic identity as archaeological cultures also legitimizes the claims of modern groups to territory. In prehistoric research problems of ethnicity and multiculturalism, stylistic attributes significantly reflect both group membership and individuality. In India, anthropologists feel that though tribes have suffered relative isolation through history, they have remained an integral part of Indian civilization. The term 'tribe' calls for substitution with a more meaningful name with an indigenous flavour 'Adivasi' (original inhabitants of the land).While studying prehistoric rock paintings from central India - Sonbhadra (Uttar Pradesh) and Bhimbetka (Madhya Pradesh), one is struck by the similarity between stylistic attributes of painted motifs in the prehistoric rock shelters and the present day indigenous art of Kol and Bhil tribes in the area, who have not seen these prehistoric rock paintings, yet are carrying on with the tradition of painting and decorating their houses in the same way. They worship concretionary sandstone blocks with triangular laminae as Goddess, Devi, Shakti. This practice is going on since Upper Palaeolithic period confirmed by archaeological excavation. The past is legitimizing the role of the present groups by allowing them to trace their roots from earlier times.

Keywords: ethnic identity, hermeneutics, semiotics, Adivasi

Procedia PDF Downloads 315
3752 Virtual Computing Lab for Phonics Development among Deaf Students

Authors: Ankita R. Bansal, Naren S. Burade

Abstract:

Idea is to create a cloud based virtual lab for Deaf Students, “A language acquisition program using Visual Phonics and Cued Speech” using VMware Virtual Lab. This lab will demonstrate students the sounds of letters associated with the Language, building letter blocks, making words, etc Virtual labs are used for demos, training, for the Lingual development of children in their vernacular language. The main potential benefits are reduced labour and hardware costs, faster response times to users. Virtual Computing Labs allows any of the software as a service solutions, virtualization solutions, and terminal services solutions available today to offer as a service on demand, where a single instance of the software runs on the cloud and services multiple end users. VMWare, XEN, MS Virtual Server, Virtuoso, and Citrix are typical examples.

Keywords: visual phonics, language acquisition, vernacular language, cued speech, virtual lab

Procedia PDF Downloads 599
3751 Impact of Risk Management Practices on Company Performance

Authors: Syed Atif Ali, Farzan Yahya

Abstract:

This research paper covers the issue of risk management impact on the company performance. Degree of financial leverage (DFL), degree of operating leverage (DOL) and the working capital ratio (WCR) are taken as independent variables which are the representative of risk and the earning price per share (EPS), return on assets (ROA), return on equity (ROE), Sales and Net profits which are the representative of performance. Last 10 years (2004-2013) of Cement sector of Pakistan data is chosen as sample for analyze their relations by multiple regression technique. Through analyses, it is found that WCR impact adequately on the company performance because if company has enough liquidity than it perform its operations smoothly and enhance its performance very well. DFL should be control moderately because enough DFL leads performance of company downward. On the other hand, the DOL should be less because it causes the less profitability for a company from its operations.

Keywords: degree of financial leverage (DFL), degree of operating leverage (DOL), working capital ratio (WCR), earning per share (EPS), return on equity (ROE), return on assets (ROA)

Procedia PDF Downloads 456
3750 The Application on Interactivity of Light in New Media Art

Authors: Yansong Chen

Abstract:

In the age of media convergence, new media technology is constantly impacting, changing, and even reshaping the limits of Art. From the technological ontology of the new media art, the concept of interaction design has always been dominated by I/O (Input/Output) systems through the ages, which ignores the content of systems and kills the aura of art. Light, as a fusion media, basically comes from the extension of some human feelings and can be the content of the input or the effect of output. In this paper, firstly, on the basis of literature review, the interaction characteristics research was conducted on light. Secondly, starting from discourse patterns of people and machines, people and people, people, and imagining things, we propose three light modes: object-oriented interaction, Immersion interaction, Tele-Presence interaction. Finally, this paper explains how to regain the aura of art through light elements in new media art and understand multiple levels of 'Interaction design'. In addition, the new media art, especially the light-based interaction art, enriches the language patterns and motivates emerging art forms to be more widespread and popular, which achieves its aesthetics growth.

Keywords: new media art, interaction design, light art, immersion

Procedia PDF Downloads 242
3749 Passive Attenuation with Multiple Resonator Rings for Musical Instruments Equalization

Authors: Lorenzo Bonoldi, Gianluca Memoli, Abdelhalim Azbaid El Ouahabi

Abstract:

In this paper, a series of ring-shaped attenuators utilizing Helmholtz and quarter wavelength resonators in variable, fixed, and combined configurations have been manufactured using a 3D printer. We illustrate possible uses by incorporating such devices into musical instruments (e.g. in acoustic guitar sound holes) and audio speakers with a view to controlling such devices tonal emissions without electronic equalization systems. Numerical investigations into the transmission loss values of these ring-shaped attenuators using finite element method simulations (COMSOL Multiphysics) have been presented in the frequency range of 100– 1000 Hz. We compare such results for each attenuator model with experimental measurements using different driving sources such as white noise, a maximum-length sequence (MLS), square and sine sweep pulses, and point scans in the frequency domain. Finally, we present a preliminary discussion on the comparison of numerical and experimental results.

Keywords: equaliser, metamaterials, musical, instruments

Procedia PDF Downloads 181
3748 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 253
3747 Harmful Algal Blooming Micro-Algae in Kenya’s Coastal Waters

Authors: Nancy Awuor Oduor, Nils Moosdorf

Abstract:

Harmful Algal Blooms (HABs) are a threat to coastal water quality, marine biodiversity, and human health. The attention on HABs and associated phycotoxins is still very low in tropical coastal developing countries despite the high dependence of local communities on coastal and marine resources for food and livelihoods and the growing evidence of the global increase in HABs frequency, toxicity, and geographical expansion. Lack of HABs monitoring thus creates a high risk of exposure due to uncertainty. This study assessed the spatial and temporal variability and effects of potential HAB-forming species in Kenya’s coastal waters. The preliminary results from 463 sampled collected over a series of 10 coastal surveys conducted over 267 Km of Kenya’s coastline between August 2021 and July 2022 revealed the presence of 87 potential algal blooming species belonging to 47 genera dominated by species capable of producing toxins, causing physical harm and high biomass at 41, 31 and 21 % respectively. The taxonomic composition was also dominated by dinoflagellates at 47%, followed by diatoms, cyanobacteria, and silicoflagellates at 39, 12, and 2%, respectively. About 92 % of the toxin-producing species were established in the creek waters. However, there were no significant variations established in species richness between the dry and wet seasons. Paralytic Shellfish Poisoning (PSP) toxin-producing dinoflagellates Alexandrium spp., Aphanizomenon spp., Gonyaulax spp., Gymnodinium spp., and Brachydinium capitatum, and Amnesic Shellfish Poisoning (ASP) Toxin producing diatoms Amphora spp., Nitzschia spp. and Pseudo-nitzschia spp. Frequented the area in low cell densities ranging between 5 and 1500 cells/L. However, no domoic acid (DA) and saxitoxins (SXTs) were detected during the July surveys. This does not mean that the toxins are absent in the area, and longer studies are recommended.

Keywords: harmful algal blooms, phycotoxins, saxitoxin, domoic acid, Kenya

Procedia PDF Downloads 67
3746 Determination of Frequency Relay Setting during Distributed Generators Islanding

Authors: Tarek Kandil, Ameen Ali

Abstract:

Distributed generation (DG) has recently gained a lot of momentum in power industry due to market deregulation and environmental concerns. One of the most technical challenges facing DGs is islanding of distributed generators. The current industry practice is to disconnect all distributed generators immediately after the occurrence of islands within 200 to 350 ms after loss of main supply. To achieve such goal, each DG must be equipped with an islanding detection device. Frequency relays are one of the most commonly used loss of mains detection method. However, distribution utilities may be faced with concerns related to false operation of these frequency relays due to improper settings. The commercially available frequency relays are considering standard tight setting. This paper investigates some factors related to relays internal algorithm that contribute to their different operating responses. Further, the relay operation in the presence of multiple distributed at the same network is analyzed. Finally, the relay setting can be accurately determined based on these investigation and analysis.

Keywords: frequency relay, distributed generation, islanding detection, relay setting

Procedia PDF Downloads 536
3745 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 85
3744 Analysis of Risk-Based Disaster Planning in Local Communities

Authors: R. A. Temah, L. A. Nkengla-Asi

Abstract:

Planning for future disasters sets the stage for a variety of activities that may trigger multiple recurring operations and expose the community to opportunities to minimize risks. Local communities are increasingly embracing the necessity for planning based on local risks, but are also significantly challenged to effectively plan and response to disasters. This research examines basic risk-based disaster planning model and compares it with advanced risk-based planning that introduces the identification and alignment of varieties of local capabilities within and out of the local community that can be pivotal to facilitate the management of local risks and cascading effects prior to a disaster. A critical review shows that the identification and alignment of capabilities can potentially enhance risk-based disaster planning. A tailored holistic approach to risk based disaster planning is pivotal to enhance collective action and a reduction in disaster collective cost.

Keywords: capabilities, disaster planning, hazards, local community, risk-based

Procedia PDF Downloads 211
3743 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 26
3742 Online Learning Management System for Teaching

Authors: Somchai Buaroong

Abstract:

This research aims to investigating strong points and challenges in application of an online learning management system to an English course. Data were collected from observation, learners’ oral and written reports, and the teacher’s journals. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The findings show that the system was an additional channel to enhance English language learning through written class assignments that were digitally accessible by any group members, and through communication between the teacher and learners and among learners themselves. Thus, the learning management system could be a promising tool for foreign language teachers. Also revealed in the study were difficulties in its use. The article ends with discussions of findings of the system for foreign language classes in association to pedagogy are also included and in the level of signification.

Keywords: english course, foreign language system, online learning management system, teacher’s journals

Procedia PDF Downloads 286
3741 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 133
3740 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 157
3739 Incorporating Information Gain in Regular Expressions Based Classifiers

Authors: Rosa L. Figueroa, Christopher A. Flores, Qing Zeng-Treitler

Abstract:

A regular expression consists of sequence characters which allow describing a text path. Usually, in clinical research, regular expressions are manually created by programmers together with domain experts. Lately, there have been several efforts to investigate how to generate them automatically. This article presents a text classification algorithm based on regexes. The algorithm named REX was designed, and then, implemented as a simplified method to create regexes to classify Spanish text automatically. In order to classify ambiguous cases, such as, when multiple labels are assigned to a testing example, REX includes an information gain method Two sets of data were used to evaluate the algorithm’s effectiveness in clinical text classification tasks. The results indicate that the regular expression based classifier proposed in this work performs statically better regarding accuracy and F-measure than Support Vector Machine and Naïve Bayes for both datasets.

Keywords: information gain, regular expressions, smith-waterman algorithm, text classification

Procedia PDF Downloads 325
3738 The Advantages of Using DNA-Barcoding for Determining the Fraud in Seafood

Authors: Elif Tugce Aksun Tumerkan

Abstract:

Although seafood is an important part of human diet and categorized highly traded food industry internationally, it is remain overlooked generally in the global food security aspect. Food product authentication is the main interest in the aim of both avoids commercial fraud and to consider the risks that might be harmful to human health safety. In recent years, with increasing consumer demand for regarding food content and it's transparency, there are some instrumental analyses emerging for determining food fraud depend on some analytical methodologies such as proteomic and metabolomics. While, fish and seafood consumed as fresh previously, within advanced technology, processed or packaged seafood consumption have increased. After processing or packaging seafood, morphological identification is impossible when some of the external features have been removed. The main fish and seafood quality-related issues are the authentications of seafood contents such as mislabelling products which may be contaminated and replacement partly or completely, by lower quality or cheaper ones. For all mentioned reasons, truthful consistent and easily applicable analytical methods are needed for assurance the correct labelling and verifying of seafood products. DNA-barcoding methods become popular robust that used in taxonomic research for endangered or cryptic species in recent years; they are used for determining food traceability also. In this review, when comparing the other proteomic and metabolic analysis, DNA-based methods are allowing a chance to identification all type of food even as raw, spiced and processed products. This privilege caused by DNA is a comparatively stable molecule than protein and other molecules. Furthermore showing variations in sequence based on different species and founding in all organisms, make DNA-based analysis more preferable. This review was performed to clarify the main advantages of using DNA-barcoding for determining seafood fraud among other techniques.

Keywords: DNA-barcoding, genetic analysis, food fraud, mislabelling, packaged seafood

Procedia PDF Downloads 172
3737 Estimation of Radon (²²²Rn) Activity Concentration Levels and Associated Effective Dose in Bottled Drinking Water from South Africa

Authors: Samuel Odumu Ogana John, Stephen Friday Olukotun, Manny Mathuthu

Abstract:

Radon-222 (²²²Rn), a naturally occurring radioactive gas, poses potential health risks due to its inhalation and ingestion, especially through drinking water. This study investigates the activity concentration levels of ²²²Rn in 21 brands of bottled water samples collected from the open market in South Africa. The samples were analyzed using a highly sensitive system consisting of the Ionization Chamber AlphaGUARD (PQ 2000), an AquaKIT set, and an AlphaPUMP, ensuring precise measurement of radon activity. The results revealed significant variations in radon concentrations across different brands, with values ranging from 0.062 ± 0.046 Bq/m³ to 0.198 ± 0.286 Bq/mv³, with a mean of 0.118 ± 0.034 Bq/m³. These measurements were then used to estimate the annual effective ingestion dose of radiation for consumers across various age groups based on the guidelines provided by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The mean effective doses were found to be 4.057 × 10⁻⁴ ± 1.188 × 10⁻⁴ mSv/y for infants (1–2 years), 2.428 × 10⁻⁴ ± 7.111 × 10⁻⁵ mSv/y for children (7–12 years), and 2.058 × 10⁻⁴ ± 6.026 × 10⁻⁵ mSv/y for adults, all of which are below the recommended international safety limits and are comparable to other published studies. These findings suggest that bottled drinking water in South Africa is safe for consumption and does not pose a significant health hazard from ²²²Rn radiation. The study underscores the importance of monitoring radon levels in bottled water to assess the associated radiological health risks, particularly in South Africa, where access to safe drinking water is essential. This research provides baseline data for future regulatory frameworks and policy development and can serve as a valuable reference for bottled water producers. Furthermore, it highlights the need for continued investigation into the regulation and mitigation of radon exposure in drinking water sources throughout the country.

Keywords: Radon-222, activity concentration levels, annual effective ingestion dose, bottled drinking water, South Africa

Procedia PDF Downloads 11
3736 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: mutex task generation, data augmentation, meta-learning, text classification.

Procedia PDF Downloads 149
3735 Missing Narratives and Their Potential Impact on Resettlement Strategies

Authors: Natina Roberts, Hanhee Lee

Abstract:

The existing and emerging refugee research reports unfavorable resettlement outcomes in multiple domains. The proposed paper highlights trends in refugee research in which empirical studies investigate resettlement of former refugees from individual and culturally homogeneous perspectives. The proposed paper then aims to examine the reality of the lived experience of resettlement from family and cross-cultural viewpoints. Proponents for this focus include the United Nations High Commissioner for Refugees (UNHCR). The UNHCR is responsible for leading resettlement efforts for refugees through the durable solutions of repatriation, local integration and resettlement. Life experiences with refugee families, and a report of literary findings on former refugee resettlement from various cultural backgrounds – that highlight similarities and differences among various ethnic groups, will be discussed. The proposed paper is expected to frame underrepresented refugee perspectives, and review policy implications in healthcare, education, and public support systems.

Keywords: refugee, cross-cultural, families, resettlement policy

Procedia PDF Downloads 275
3734 Portable Hands-Free Process Assistant for Gas Turbine Maintenance

Authors: Elisabeth Brandenburg, Robert Woll, Rainer Stark

Abstract:

This paper presents how smart glasses and voice commands can be used for improving the maintenance process of industrial gas turbines. It presents the process of inspecting a gas turbine’s combustion chamber and how it is currently performed using a set of paper-based documents. In order to improve this process, a portable hands-free process assistance system has been conceived. In the following, it will be presented how the approach of user-centered design and the method of paper prototyping have been successfully applied in order to design a user interface and a corresponding workflow model that describes the possible interaction patterns between the user and the interface. The presented evaluation of these results suggests that the assistance system could help the user by rendering multiple manual activities obsolete, thus allowing him to work hands-free and to save time for generating protocols.

Keywords: paper prototyping, smart glasses, turbine maintenance, user centered design

Procedia PDF Downloads 326
3733 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model

Authors: Phornpat Chewasoonthorn, Surat Kwanmuang

Abstract:

Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.

Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter

Procedia PDF Downloads 166
3732 Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation

Authors: Salwa Mohamed Salah Eldin, Howida Kamal Ibrahim

Abstract:

Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption.

Keywords: biodegradable polymers, cation-exchange resin, microencapsulation, venlafaxine hcl

Procedia PDF Downloads 400
3731 Connections among Personality, Teacher-Student Relationship, Belief in a Just World for Others and Teacher Bullying

Authors: Hui-Yu Peng, Hsiu-I Hsueh, Li-Ming Chen

Abstract:

Most studies focused on bullying behaviors among students, however few research concerns about teachers’ bullying behaviors against students. In order to have more understandings and reduce teacher bullying, it is important to examine what factors may affect teachers’ bullying behaviors. This study aimed to explore the connections between different psychological variables and teacher bullying. Four variables, neuroticism, extraversion, teacher-student relationship, and belief in a just world for others (BJW-others), were selected in this study. Four hundred and five elementary and secondary school teachers in Taiwan endorsed the self-reported surveys. Multiple regression method was used to analyze data. Results revealed that teachers’ BJW-others and extraversion did not have significant correlations with teacher bullying scores. However, closed teacher-student relationship and neuroticism can negatively and positively predict teachers’ bullying behaviors against students, respectively. Implications for preventing teacher bullying were discussed at the end of this study.

Keywords: belief in a just world for others, big five personality traits, teacher bullying, teacher-student relationship

Procedia PDF Downloads 216