Search results for: fault prediction
308 The Study of the Correlation of Future-Oriented Thinking and Retirement Planning: The Analysis of Two Professions
Authors: Ya-Hui Lee, Ching-Yi Lu, Chien Hung, Hsieh
Abstract:
The purpose of this study is to explore the difference between state-owned-enterprise employees and the civil servants regarding their future-oriented thinking and retirement planning. The researchers investigated 687 middle age and older adults (345 state-owned-enterprise employees and 342 civil servants) through survey research, to understand the relevance between and the prediction of their future-oriented thinking and retirement planning. The findings of this study are: 1.There are significant differences between these two professions regarding future-oriented thinking but not retirement planning. The results of the future-oriented thinking of civil servants are overall higher than that of the state-owned-enterprise employees. 2. There are significant differences both in the aspects of future-oriented thinking and retirement planning among civil servants of different ages. The future-oriented thinking and retirement planning of ages 55 and above are more significant than those of ages 45 or under. For the state-owned-enterprise employees, however, there is no significance found in their future-oriented thinking, but in their retirement planning. Moreover, retirement planning is higher at ages 55 or above than at other ages. 3. With regard to education, there is no correlation to future-oriented thinking or retirement planning for civil servants. For state-owned-enterprise employees, however, their levels of education directly affect their future-oriented thinking. Those with a master degree or above have greater future-oriented thinking than those with other educational degrees. As for retirement planning, there is no correlation. 4. Self-assessment of economic status significantly affects the future-oriented thinking and retirement planning of both civil servants and state-owned-enterprise employees. Those who assess themselves more affluently are more inclined to future-oriented thinking and retirement planning. 5. For civil servants, there are significant differences between their monthly income and retirement planning, but none with future-oriented thinking. As for state-owned-enterprise employees, there are significant differences between their monthly income and retirement planning as well as future-oriented thinking. State-owned-enterprise employees who have significantly higher monthly incomes (1,960 euros and above) have more significant future-oriented thinking and retirement planning than those with lower monthly incomes (1,469 euros and below). 6. The middle age and older adults of both professions have positive correlations with future-oriented thinking and retirement planning. Through stepwise multiple regression analysis, the results indicate that future-oriented thinking and retirement planning have positive predictions. The authors then present the findings of this study for state-owned-enterprises, public authorities, and older adult educational program designs in Taiwan as references.Keywords: state-owned-enterprise employees, civil servants, future-oriented thinking, retirement planning
Procedia PDF Downloads 367307 Downregulation of Epidermal Growth Factor Receptor in Advanced Stage Laryngeal Squamous Cell Carcinoma
Authors: Sarocha Vivatvakin, Thanaporn Ratchataswan, Thiratest Leesutipornchai, Komkrit Ruangritchankul, Somboon Keelawat, Virachai Kerekhanjanarong, Patnarin Mahattanasakul, Saknan Bongsebandhu-Phubhakdi
Abstract:
In this globalization era, much attention has been drawn to various molecular biomarkers, which may have the potential to predict the progression of cancer. Epidermal growth factor receptor (EGFR) is the classic member of the ErbB family of membrane-associated intrinsic tyrosine kinase receptors. EGFR expression was found in several organs throughout the body as its roles involve in the regulation of cell proliferation, survival, and differentiation in normal physiologic conditions. However, anomalous expression, whether over- or under-expression is believed to be the underlying mechanism of pathologic conditions, including carcinogenesis. Even though numerous discussions regarding the EGFR as a prognostic tool in head and neck cancer have been established, the consensus has not yet been met. The aims of the present study are to assess the correlation between the level of EGFR expression and demographic data as well as clinicopathological features and to evaluate the ability of EGFR as a reliable prognostic marker. Furthermore, another aim of this study is to investigate the probable pathophysiology that explains the finding results. This retrospective study included 30 squamous cell laryngeal carcinoma patients treated at King Chulalongkorn Memorial Hospital from January 1, 2000, to December 31, 2004. EGFR expression level was observed to be significantly downregulated with the progression of the laryngeal cancer stage. (one way ANOVA, p = 0.001) A statistically significant lower EGFR expression in the late stage of the disease compared to the early stage was recorded. (unpaired t-test, p = 0.041) EGFR overexpression also showed the tendency to increase recurrence of cancer (unpaired t-test, p = 0.128). A significant downregulation of EGFR expression was documented in advanced stage laryngeal cancer. The results indicated that EGFR level correlates to prognosis in term of stage progression. Thus, EGFR expression might be used as a prevailing biomarker for laryngeal squamous cell carcinoma prognostic prediction.Keywords: downregulation, epidermal growth factor receptor, immunohistochemistry, laryngeal squamous cell carcinoma
Procedia PDF Downloads 111306 Predictive Relationship between Motivation Strategies and Musical Creativity of Secondary School Music Students
Authors: Lucy Lugo Mawang
Abstract:
Educational Psychologists have highlighted the significance of creativity in education. Likewise, a fundamental objective of music education concern the development of students’ musical creativity potential. The purpose of this study was to determine the relationship between motivation strategies and musical creativity, and establish the prediction equation of musical creativity. The study used purposive sampling and census to select 201 fourth-form music students (139 females/ 62 males), mainly from public secondary schools in Kenya. The mean age of participants was 17.24 years (SD = .78). Framed upon self- determination theory and the dichotomous model of achievement motivation, the study adopted an ex post facto research design. A self-report measure, the Achievement Goal Questionnaire-Revised (AGQ-R) was used in data collection for the independent variable. Musical creativity was based on a creative music composition task and measured by the Consensual Musical Creativity Assessment Scale (CMCAS). Data collected in two separate sessions within an interval of one month. The questionnaire was administered in the first session, lasting approximately 20 minutes. The second session was for notation of participants’ creative composition. The results indicated a positive correlation r(199) = .39, p ˂ .01 between musical creativity and intrinsic music motivation. Conversely, negative correlation r(199) = -.19, p < .01 was observed between musical creativity and extrinsic music motivation. The equation for predicting musical creativity from music motivation strategies was significant F(2, 198) = 20.8, p < .01, with R2 = .17. Motivation strategies accounted for approximately (17%) of the variance in participants’ musical creativity. Intrinsic music motivation had the highest significant predictive value (β = .38, p ˂ .01) on musical creativity. In the exploratory analysis, a significant mean difference t(118) = 4.59, p ˂ .01 in musical creativity for intrinsic and extrinsic music motivation was observed in favour of intrinsically motivated participants. Further, a significant gender difference t(93.47) = 4.31, p ˂ .01 in musical creativity was observed, with male participants scoring higher than females. However, there was no significant difference in participants’ musical creativity based on age. The study recommended that music educators should strive to enhance intrinsic music motivation among students. Specifically, schools should create conducive environments and have interventions for the development of intrinsic music motivation since it is the most facilitative motivation strategy in predicting musical creativity.Keywords: extrinsic music motivation, intrinsic music motivation, musical creativity, music composition
Procedia PDF Downloads 155305 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 96304 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia
Authors: Zeinu Ahmed Rabba, Derek D Stretch
Abstract:
Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase
Procedia PDF Downloads 287303 Study on Control Techniques for Adaptive Impact Mitigation
Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty
Abstract:
Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber
Procedia PDF Downloads 91302 Arterial Compliance Measurement Using Split Cylinder Sensor/Actuator
Authors: Swati Swati, Yuhang Chen, Robert Reuben
Abstract:
Coronary stents are devices resembling the shape of a tube which are placed in coronary arteries, to keep the arteries open in the treatment of coronary arterial diseases. Coronary stents are routinely deployed to clear atheromatous plaque. The stent essentially applies an internal pressure to the artery because its structure is cylindrically symmetrical and this may introduce some abnormalities in final arterial shape. The goal of the project is to develop segmented circumferential arterial compliance measuring devices which can be deployed (eventually) in vivo. The segmentation of the device will allow the mechanical asymmetry of any stenosis to be assessed. The purpose will be to assess the quality of arterial tissue for applications in tailored stents and in the assessment of aortic aneurism. Arterial distensibility measurement is of utmost importance to diagnose cardiovascular diseases and for prediction of future cardiac events or coronary artery diseases. In order to arrive at some generic outcomes, a preliminary experimental set-up has been devised to establish the measurement principles for the device at macro-scale. The measurement methodology consists of a strain gauge system monitored by LABVIEW software in a real-time fashion. This virtual instrument employs a balloon within a gelatine model contained in a split cylinder with strain gauges fixed on it. The instrument allows automated measurement of the effect of air-pressure on gelatine and measurement of strain with respect to time and pressure during inflation. Compliance simple creep model has been applied to the results for the purpose of extracting some measures of arterial compliance. The results obtained from the experiments have been used to study the effect of air pressure on strain at varying time intervals. The results clearly demonstrate that with decrease in arterial volume and increase in arterial pressure, arterial strain increases thereby decreasing the arterial compliance. The measurement system could lead to development of portable, inexpensive and small equipment and could prove to be an efficient automated compliance measurement device.Keywords: arterial compliance, atheromatous plaque, mechanical symmetry, strain measurement
Procedia PDF Downloads 279301 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 298300 Bioinformatic Design of a Non-toxic Modified Adjuvant from the Native A1 Structure of Cholera Toxin with Membrane Synthetic Peptide of Naegleria fowleri
Authors: Frida Carrillo Morales, Maria Maricela Carrasco Yépez, Saúl Rojas Hernández
Abstract:
Naegleria fowleri is the causative agent of primary amebic meningoencephalitis, this disease is acute and fulminant that affects humans. It has been reported that despite the existence of therapeutic options against this disease, its mortality rate is 97%. Therefore, the need arises to have vaccines that confer protection against this disease and, in addition to developing adjuvants to enhance the immune response. In this regard, in our work group, we obtained a peptide designed from the membrane protein MP2CL5 of Naegleria fowleri called Smp145 that was shown to be immunogenic; however, it would be of great importance to enhance its immunological response, being able to co-administer it with a non-toxic adjuvant. Therefore, the objective of this work was to carry out the bioinformatic design of a peptide of the Naegleria fowleri membrane protein MP2CL5 conjugated with a non-toxic modified adjuvant from the native A1 structure of Cholera Toxin. For which different bioinformatics tools were used to obtain a model with a modification in amino acid 61 of the A1 subunit of the CT (CTA1), to which the Smp145 peptide was added and both molecules were joined with a 13-glycine linker. As for the results obtained, the modification in CTA1 bound to the peptide produces a reduction in the toxicity of the molecule in in silico experiments, likewise, the prediction in the binding of Smp145 to the receptor of B cells suggests that the molecule is directed in specifically to the BCR receptor, decreasing its native enzymatic activity. The stereochemical evaluation showed that the generated model has a high number of adequately predicted residues. In the ERRAT test, the confidence with which it is possible to reject regions that exceed the error values was evaluated, in the generated model, a high score was obtained, which determines that the model has a good structural resolution. Therefore, the design of the conjugated peptide in this work will allow us to proceed with its chemical synthesis and subsequently be able to use it in the mouse meningitis protection model caused by N. fowleri.Keywords: immunology, vaccines, pathogens, infectious disease
Procedia PDF Downloads 92299 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 264298 Experimental Study of Sand-Silt Mixtures with Torsional and Flexural Resonant Column Tests
Authors: Meghdad Payan, Kostas Senetakis, Arman Khoshghalb, Nasser Khalili
Abstract:
Dynamic properties of soils, especially at the range of very small strains, are of particular interest in geotechnical engineering practice for characterization of the behavior of geo-structures subjected to a variety of stress states. This study reports on the small-strain dynamic properties of sand-silt mixtures with particular emphasis on the effect of non-plastic fines content on the small strain shear modulus (Gmax), Young’s Modulus (Emax), material damping (Ds,min) and Poisson’s Ratio (v). Several clean sands with a wide range of grain size characteristics and particle shape are mixed with variable percentages of a silica non-plastic silt as fines content. Prepared specimens of sand-silt mixtures at different initial void ratios are subjected to sequential torsional and flexural resonant column tests with elastic dynamic properties measured along an isotropic stress path up to 800 kPa. It is shown that while at low percentages of fines content, there is a significant difference between the dynamic properties of the various samples due to the different characteristics of the sand portion of the mixtures, this variance diminishes as the fines content increases and the soil behavior becomes mainly silt-dominant, rendering no significant influence of sand properties on the elastic dynamic parameters. Indeed, beyond a specific portion of fines content, around 20% to 30% typically denoted as threshold fines content, silt is controlling the behavior of the mixture. Using the experimental results, new expressions for the prediction of small-strain dynamic properties of sand-silt mixtures are developed accounting for the percentage of silt and the characteristics of the sand portion. These expressions are general in nature and are capable of evaluating the elastic dynamic properties of sand-silt mixtures with any types of parent sand in the whole range of silt percentage. The inefficiency of skeleton void ratio concept in the estimation of small-strain stiffness of sand-silt mixtures is also illustrated.Keywords: damping ratio, Poisson’s ratio, resonant column, sand-silt mixture, shear modulus, Young’s modulus
Procedia PDF Downloads 250297 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia PDF Downloads 184296 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems
Procedia PDF Downloads 89295 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest
Procedia PDF Downloads 121294 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes
Authors: Siddharth Ahuja, T. M. Muruganandam
Abstract:
An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.Keywords: analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions
Procedia PDF Downloads 218293 Data Analysis for Taxonomy Prediction and Annotation of 16S rRNA Gene Sequences from Metagenome Data
Authors: Suchithra V., Shreedhanya, Kavya Menon, Vidya Niranjan
Abstract:
Skin metagenomics has a wide range of applications with direct relevance to the health of the organism. It gives us insight to the diverse community of microorganisms (the microbiome) harbored on the skin. In the recent years, it has become increasingly apparent that the interaction between skin microbiome and the human body plays a prominent role in immune system development, cancer development, disease pathology, and many other biological implications. Next Generation Sequencing has led to faster and better understanding of environmental organisms and their mutual interactions. This project is studying the human skin microbiome of different individuals having varied skin conditions. Bacterial 16S rRNA data of skin microbiome is downloaded from SRA toolkit provided by NCBI to perform metagenomics analysis. Twelve samples are selected with two controls, and 3 different categories, i.e., sex (male/female), skin type (moist/intermittently moist/sebaceous) and occlusion (occluded/intermittently occluded/exposed). Quality of the data is increased using Cutadapt, and its analysis is done using FastQC. USearch, a tool used to analyze an NGS data, provides a suitable platform to obtain taxonomy classification and abundance of bacteria from the metagenome data. The statistical tool used for analyzing the USearch result is METAGENassist. The results revealed that the top three abundant organisms found were: Prevotella, Corynebacterium, and Anaerococcus. Prevotella is known to be an infectious bacterium found on wound, tooth cavity, etc. Corynebacterium and Anaerococcus are opportunist bacteria responsible for skin odor. This result infers that Prevotella thrives easily in sebaceous skin conditions. Therefore it is better to undergo intermittently occluded treatment such as applying ointments, creams, etc. to treat wound for sebaceous skin type. Exposing the wound should be avoided as it leads to an increase in Prevotella abundance. Moist skin type individuals can opt for occluded or intermittently occluded treatment as they have shown to decrease the abundance of bacteria during treatment.Keywords: bacterial 16S rRNA , next generation sequencing, skin metagenomics, skin microbiome, taxonomy
Procedia PDF Downloads 172292 Replacement of the Distorted Dentition of the Cone Beam Computed Tomography Scan Models for Orthognathic Surgery Planning
Authors: T. Almutairi, K. Naudi, N. Nairn, X. Ju, B. Eng, J. Whitters, A. Ayoub
Abstract:
Purpose: At present Cone Beam Computed Tomography (CBCT) imaging does not record dental morphology accurately due to the scattering produced by metallic restorations and the reported magnification. The aim of this pilot study is the development and validation of a new method for the replacement of the distorted dentition of CBCT scans with the dental image captured by the digital intraoral camera. Materials and Method: Six dried skulls with orthodontics brackets on the teeth were used in this study. Three intra-oral markers made of dental stone were constructed which were attached to orthodontics brackets. The skulls were CBCT scanned, and occlusal surface was captured using TRIOS® 3D intraoral scanner. Marker based and surface based registrations were performed to fuse the digital intra-oral scan(IOS) into the CBCT models. This produced a new composite digital model of the skull and dentition. The skulls were scanned again using the commercially accurate Laser Faro® arm to produce the 'gold standard' model for the assessment of the accuracy of the developed method. The accuracy of the method was assessed by measuring the distance between the occlusal surfaces of the new composite model and the 'gold standard' 3D model of the skull and teeth. The procedure was repeated a week apart to measure the reproducibility of the method. Results: The results showed no statistically significant difference between the measurements on the first and second occasions. The absolute mean distance between the new composite model and the laser model ranged between 0.11 mm to 0.20 mm. Conclusion: The dentition of the CBCT can be accurately replaced with the dental image captured by the intra-oral scanner to create a composite model. This method will improve the accuracy of orthognathic surgical prediction planning, with the final goal of the fabrication of a physical occlusal wafer without to guide orthognathic surgery and eliminate the need for dental impression.Keywords: orthognathic surgery, superimposition, models, cone beam computed tomography
Procedia PDF Downloads 198291 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh
Authors: Zahid Khalil, Saad Ul Haque, Asif Khan
Abstract:
Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).Keywords: Remote sensing, GIS, AHP, RWH
Procedia PDF Downloads 389290 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus
Procedia PDF Downloads 220289 Predicting Child Attachment Style Based on Positive and Safe Parenting Components and Mediating Maternal Attachment Style in Children With ADHD
Authors: Alireza Monzavi Chaleshtari, Maryam Aliakbari
Abstract:
Objective: The aim of this study was to investigate the prediction of child attachment style based on a positive and safe combination parenting method mediated by maternal attachment styles in children with attention deficit hyperactivity disorder. Method: The design of the present study was descriptive of correlation and structural equations and applied in terms of purpose. The population of this study includes all children with attention deficit hyperactivity disorder living in Chaharmahal and Bakhtiari province and their mothers. The sample size of the above study includes 165children with attention deficit hyperactivity disorder in Chaharmahal and Bakhtiari province with their mothers, who were selected by purposive sampling method based on the inclusion criteria. The obtained data were analyzed in two sections of descriptive and inferential statistics. In the descriptive statistics section, statistical indices of mean, standard deviation, frequency distribution table and graph were used. In the inferential section, according to the nature of the hypotheses and objectives of the research, the data were analyzed using Pearson correlation coefficient tests, Bootstrap test and structural equation model. findings:The results of structural equation modeling showed that the research models fit and showed a positive and safe combination parenting style mediated by the mother attachment style has an indirect effect on the child attachment style. Also, a positive and safe combined parenting style has a direct relationship with child attachment style, and She has a mother attachment style. Conclusion:The results and findings of the present study show that there is a significant relationship between positive and safe combination parenting methods and attachment styles of children with attention deficit hyperactivity disorder with maternal attachment style mediation. Therefore, it can be expected that parents using a positive and safe combination232 parenting method can effectively lead to secure attachment in children with attention deficit hyperactivity disorder.Keywords: child attachment style, positive and safe parenting, maternal attachment style, ADHD
Procedia PDF Downloads 66288 Geospatial Multi-Criteria Evaluation to Predict Landslide Hazard Potential in the Catchment of Lake Naivasha, Kenya
Authors: Abdel Rahman Khider Hassan
Abstract:
This paper describes a multi-criteria geospatial model for prediction of landslide hazard zonation (LHZ) for Lake Naivasha catchment (Kenya), based on spatial analysis of integrated datasets of location intrinsic parameters (slope stability factors) and external landslides triggering factors (natural and man-made factors). The intrinsic dataset included: lithology, geometry of slope (slope inclination, aspect, elevation, and curvature) and land use/land cover. The landslides triggering factors included: rainfall as the climatic factor, in addition to the destructive effects reflected by proximity of roads and drainage network to areas that are susceptible to landslides. No published study on landslides has been obtained for this area. Thus, digital datasets of the above spatial parameters were conveniently acquired, stored, manipulated and analyzed in a Geographical Information System (GIS) using a multi-criteria grid overlay technique (in ArcGIS 10.2.2 environment). Deduction of landslide hazard zonation is done by applying weights based on relative contribution of each parameter to the slope instability, and finally, the weighted parameters grids were overlaid together to generate a map of the potential landslide hazard zonation (LHZ) for the lake catchment. From the total surface of 3200 km² of the lake catchment, most of the region (78.7 %; 2518.4 km²) is susceptible to moderate landslide hazards, whilst about 13% (416 km²) is occurring under high hazards. Only 1.0% (32 km²) of the catchment is displaying very high landslide hazards, and the remaining area (7.3 %; 233.6 km²) displays low probability of landslide hazards. This result confirms the importance of steep slope angles, lithology, vegetation land cover and slope orientation (aspect) as the major determining factors of slope failures. The information provided by the produced map of landslide hazard zonation (LHZ) could lay the basis for decision making as well as mitigation and applications in avoiding potential losses caused by landslides in the Lake Naivasha catchment in the Kenya Highlands.Keywords: decision making, geospatial, landslide, multi-criteria, Naivasha
Procedia PDF Downloads 207287 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit
Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek
Abstract:
In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage
Procedia PDF Downloads 269286 Teacher-Student Interactions: Case-Control Studies on Teacher Social Skills and Children’s Behavior
Authors: Alessandra Turini Bolsoni-Silva, Sonia Regina Loureiro
Abstract:
It is important to evaluate such variables simultaneously and differentiating types of behavior problems: internalizing, externalizing and with comorbidity of internalizing and externalizing. The objective was to compare, correlate and predict teacher educational practices (educational social skills and negative practices) and children's behaviors (social skills and behavior problems) of children with internalizing, externalizing and combined internalizing and externalizing problems, controlling variables of child (gender and education). A total of 262 children were eligible to compose the participants, considering preschool age from 3 to 5 years old (n = 109) and school age from 6 to 11 (n = 153) years old, and their teachers who were distributed, in designs case-control, non-clinical, with internalizing, externalizing problems and internalizing and externalizing comorbidity, using the Teacher's Report Form (TRF) as a criterion. The instruments were applied with the teachers, after consent from the parents/guardians: a) Teacher’s Report Form (TRF); b) Educational Social Skills Interview Guide for Teachers (RE-HSE-Pr); (c) Socially Skilled Response Questionnaire – Teachers (QRSH-Pr). The data were treated by univariate and multivariate analyses, proceeding with comparisons, correlations and predictions regarding the outcomes of children with and without behavioral problems, considering the types of problems. As main results stand out: (a) group comparison studies: in the Inter group there is emphasis on behavior problems in affection interactions, which does not happen in the other groups; as for positive practices, they discriminate against groups with externalizing and combined problems and not in internalizing ones, positive educational practices – hse are more frequent in the G-Exter and G-Inter+Exter groups; negative practices differed only in the G-Exter and G-Inter+Exter groups; b) correlation studies: it can be seen that the Inter+Exter group presents a greater number of correlations in the relationship between behavioral problems/complaints and negative practices and between children's social skills and positive practices/contexts; c) prediction studies: children's social skills predict internalizing, externalizing and combined problems; it is also verified that the negative practices are in the multivariate model for the externalizing and combined ones. This investigation collaborates in the identification of risk and protective factors for specific problems, helping in interventions for different problems.Keywords: development, educational practices, social skills, behavior problems, teacher
Procedia PDF Downloads 93285 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 34284 The Contact between a Rigid Substrate and a Thick Elastic Layer
Authors: Nicola Menga, Giuseppe Carbone
Abstract:
Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.Keywords: contact mechanics, adhesion, friction, thick layer
Procedia PDF Downloads 513283 Numerical Investigation of Indoor Environmental Quality in a Room Heated with Impinging Jet Ventilation
Authors: Mathias Cehlin, Arman Ameen, Ulf Larsson, Taghi Karimipanah
Abstract:
The indoor environmental quality (IEQ) is increasingly recognized as a significant factor influencing the overall level of building occupants’ health, comfort and productivity. An air-conditioning and ventilation system is normally used to create and maintain good thermal comfort and indoor air quality. Providing occupant thermal comfort and well-being with minimized use of energy is the main purpose of heating, ventilating and air conditioning system. Among different types of ventilation systems, the most widely known and used ventilation systems are mixing ventilation (MV) and displacement ventilation (DV). Impinging jet ventilation (IJV) is a promising ventilation strategy developed in the beginning of 2000s. IJV has the advantage of supplying air downwards close to the floor with high momentum and thereby delivering fresh air further out in the room compare to DV. Operating in cooling mode, IJV systems can have higher ventilation effectiveness and heat removal effectiveness compared to MV, and therefore a higher energy efficiency. However, how is the performance of IJV when operating in heating mode? This paper presents the function of IJV in a typical office room for winter conditions (heating mode). In this paper, a validated CFD model, which uses the v2-f model is used for the prediction of air flow pattern, thermal comfort and air change effectiveness. The office room under consideration has the dimensions 4.2×3.6×2.5m, which can be designed like a single-person or two-person office. A number of important factors influencing in the room with IJV are studied. The considered parameters are: heating demand, number of occupants and supplied air conditions. A total of 6 simulation cases are carried out to investigate the effects of the considered parameters. Heat load in the room is contributed by occupants, computer and lighting. The model consists of one external wall including a window. The interaction effects of heat sources, supply air flow and down draught from the window result in a complex flow phenomenon. Preliminary results indicate that IJV can be used for heating of a typical office room. The IEQ seems to be suitable in the occupied region for the studied cases.Keywords: computation fluid dynamics, impinging jet ventilation, indoor environmental quality, ventilation strategy
Procedia PDF Downloads 180282 A Computational Fluid Dynamics Simulation of Single Rod Bundles with 54 Fuel Rods without Spacers
Authors: S. K. Verma, S. L. Sinha, D. K. Chandraker
Abstract:
The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube type, heavy water moderated and boiling light water cooled natural circulation based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18 and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passage called subchannels. Single phase flow condition exists in reactor rod bundle during startup condition and up to certain length of rod bundle when it is operating at full power. Prediction of the thermal margin of the reactor during startup condition has necessitated the determination of the turbulent mixing rate of coolant amongst these subchannels. Thus, it is vital to evaluate turbulent mixing between subchannels of AHWR rod bundle. With the remarkable progress in the computer processing power, the computational fluid dynamics (CFD) methodology can be useful for investigating the thermal–hydraulic characteristics phenomena in the nuclear fuel assembly. The present report covers the results of simulation of pressure drop, velocity variation and turbulence intensity on single rod bundle with 54 rods in circular arrays. In this investigation, 54-rod assemblies are simulated with ANSYS Fluent 15 using steady simulations with an ANSYS Workbench meshing. The simulations have been carried out with water for Reynolds number 9861.83. The rod bundle has a mean flow area of 4853.0584 mm2 in the bare region with the hydraulic diameter of 8.105 mm. In present investigation, a benchmark k-ε model has been used as a turbulence model and the symmetry condition is set as boundary conditions. Simulation are carried out to determine the turbulent mixing rate in the simulated subchannels of the reactor. The size of rod and the pitch in the test has been same as that of actual rod bundle in the prototype. Water has been used as the working fluid and the turbulent mixing tests have been carried out at atmospheric condition without heat addition. The mean velocity in the subchannel has been varied from 0-1.2 m/s. The flow conditions are found to be closer to the actual reactor condition.Keywords: AHWR, CFD, single-phase turbulent mixing rate, thermal–hydraulic
Procedia PDF Downloads 320281 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections
Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang
Abstract:
Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling
Procedia PDF Downloads 158280 A Study of Anthropometric Correlation between Upper and Lower Limb Dimensions in Sudanese Population
Authors: Altayeb Abdalla Ahmed
Abstract:
Skeletal phenotype is a product of a balanced interaction between genetics and environmental factors throughout different life stages. Therefore, interlimb proportions are variable between populations. Although interlimb proportion indices have been used in anthropology in assessing the influence of various environmental factors on limbs, an extensive literature review revealed that there is a paucity of published research assessing interlimb part correlations and possibility of reconstruction. Hence, this study aims to assess the relationships between upper and lower limb parts and develop regression formulae to reconstruct the parts from one another. The left upper arm length, ulnar length, wrist breadth, hand length, hand breadth, tibial length, bimalleolar breadth, foot length, and foot breadth of 376 right-handed subjects, comprising 187 males and 189 females (aged 25-35 years), were measured. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then sex-specific simple and multiple linear regression models were used to estimate upper limb parts from lower limb parts and vice-versa. The results of this study indicated significant sexual dimorphism for all variables. The results indicated a significant correlation between the upper and lower limbs parts (p < 0.01). Linear and multiple (stepwise) regression equations were developed to reconstruct the limb parts in the presence of a single or multiple dimension(s) from the other limb. Multiple stepwise regression equations generated better reconstructions than simple equations. These results are significant in forensics as it can aid in identification of multiple isolated limb parts particularly during mass disasters and criminal dismemberment. Although a DNA analysis is the most reliable tool for identification, its usage has multiple limitations in undeveloped countries, e.g., cost, facility availability, and trained personnel. Furthermore, it has important implication in plastic and orthopedic reconstructive surgeries. This study is the only reported study assessing the correlation and prediction capabilities between many of the upper and lower dimensions. The present study demonstrates a significant correlation between the interlimb parts in both sexes, which indicates a possibility to reconstruction using regression equations.Keywords: anthropometry, correlation, limb, Sudanese
Procedia PDF Downloads 295279 Sensorless Machine Parameter-Free Control of Doubly Fed Reluctance Wind Turbine Generator
Authors: Mohammad R. Aghakashkooli, Milutin G. Jovanovic
Abstract:
The brushless doubly-fed reluctance generator (BDFRG) is an emerging, medium-speed alternative to a conventional wound rotor slip-ring doubly-fed induction generator (DFIG) in wind energy conversion systems (WECS). It can provide competitive overall performance and similar low failure rates of a typically 30% rated back-to-back power electronics converter in 2:1 speed ranges but with the following important reliability and cost advantages over DFIG: the maintenance-free operation afforded by its brushless structure, 50% synchronous speed with the same number of rotor poles (allowing the use of a more compact, and more efficient two-stage gearbox instead of a vulnerable three-stage one), and superior grid integration properties including simpler protection for the low voltage ride through compliance of the fractional converter due to the comparatively higher leakage inductances and lower fault currents. Vector controlled pulse-width-modulated converters generally feature a much lower total harmonic distortion relative to hysteresis counterparts with variable switching rates and as such have been a predominant choice for BDFRG (and DFIG) wind turbines. Eliminating a shaft position sensor, which is often required for control implementation in this case, would be desirable to address the associated reliability issues. This fact has largely motivated the recent growing research of sensorless methods and developments of various rotor position and/or speed estimation techniques for this purpose. The main limitation of all the observer-based control approaches for grid-connected wind power applications of the BDFRG reported in the open literature is the requirement for pre-commissioning procedures and prior knowledge of the machine inductances, which are usually difficult to accurately identify by off-line testing. A model reference adaptive system (MRAS) based sensor-less vector control scheme to be presented will overcome this shortcoming. The true machine parameter independence of the proposed field-oriented algorithm, offering robust, inherently decoupled real and reactive power control of the grid-connected winding, is achieved by on-line estimation of the inductance ratio, the underlying rotor angular velocity and position MRAS observer being reliant upon. Such an observer configuration will be more practical to implement and clearly preferable to the existing machine parameter dependent solutions, and especially bearing in mind that with very little modifications it can be adapted for commercial DFIGs with immediately obvious further industrial benefits and prospects of this work. The excellent encoder-less controller performance with maximum power point tracking in the base speed region will be demonstrated by realistic simulation studies using large-scale BDFRG design data and verified by experimental results on a small laboratory prototype of the WECS emulation facility.Keywords: brushless doubly fed reluctance generator, model reference adaptive system, sensorless vector control, wind energy conversion
Procedia PDF Downloads 62