Search results for: degree of operating leverage (DOL)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5295

Search results for: degree of operating leverage (DOL)

2835 Adaptive Nonlinear Control of a Variable Speed Horizontal Axis Wind Turbine: Controller for Optimal Power Capture

Authors: Rana M. Mostafa, Nouby M. Ghazaly, Ahmed S. Ali

Abstract:

This article introduces a solution for increasing the wind energy extracted from turbines to overcome the more electric power required. This objective provides a new science discipline; wind turbine control. This field depends on the development in power electronics to provide new control strategies for turbines. Those strategies should deal with all turbine operating modes. Here there are two control strategies developed for variable speed horizontal axis wind turbine for rated and over rated wind speed regions. These strategies will support wind energy validation, decrease manufacturing overhead cost. Here nonlinear adaptive method was used to design speed controllers to a scheme for ‘Aeolos50 kw’ wind turbine connected to permanent magnet generator via a gear box which was built on MATLAB/Simulink. These controllers apply maximum power point tracking concept to guarantee goal achievement. Procedures were carried to test both controllers efficiency. The results had been shown that the developed controllers are acceptable and this can be easily declared from simulation results.

Keywords: adaptive method, pitch controller, wind energy, nonlinear control

Procedia PDF Downloads 243
2834 Rhetorical Features of Research Article Abstracts of Non-Native English-Speaking Novice Student Researchers

Authors: Rita Darmayanti

Abstract:

This study aims at investigating the discourse pattern and structure of research article abstracts. The characteristics of the language used in abstracts written by non-native English-speaking (NNES) novice researchers are mainly examined in terms of rhetorical moves and the degree of variability of the rhetorical features as indicated by the structure of clauses and the linguistic features of the text. To this end, 20 abstracts written by undergraduate students of the accounting department at the State Polytechnic of Malang in 2018-2019 were employed as the data of this study. Findings showed that the most frequently used pattern of the rhetorical move is I(Introduction)-P(Purpose)-M(Method)-Pr(Product or Result)-C(Conclusion) with the significant use of active sentence and present and past tense. The findings of the study are projected to be utilized for evaluating the quality of students’ abstracts and generating a pedagogical proposal of ESP writing course or at least providing a critical review of current practices in ESP program intended for non-native English students at tertiary level.

Keywords: rhetorical features, rhetorical moves, non-native English-speaking novice researchers, research abstract

Procedia PDF Downloads 131
2833 Factors That Affect the Effectiveness of Enterprise Architecture Implementation Methodology

Authors: Babak Darvish Rouhani, Mohd Nazri Mahrin, Fatemeh Nikpay, Pourya Nikfard, Maryam Khanian Najafabadi

Abstract:

Enterprise Architecture (EA) is a strategy that is employed by enterprises in order to align their business and Information Technology (IT). EA is managed, developed, and maintained through Enterprise Architecture Implementation Methodology (EAIM). The effectiveness of EA implementation is the degree in which EA helps to achieve the collective goals of the organization. This paper analyzes the results of a survey that aims to explore the factors that affect the effectiveness of EAIM and specifically the relationship between factors and effectiveness of the output and functionality of EA project. The exploratory factor analysis highlights a specific set of five factors: alignment, adaptiveness, support, binding, and innovation. The regression analysis shows that there is a statistically significant and positive relationship between each of the five factors and the effectiveness of EAIM. Consistent with theory and practice, the most prominent factor for developing an effective EAIM is innovation. The findings contribute to the measuring the effectiveness of EA implementation project by providing an indication of the measurement implementation approaches which is used by the Enterprise Architects, and developing an effective EAIM.

Keywords: enterprise architecture, enterprise architecture implementation methodology, implementation methodology, factors, EA, effectiveness

Procedia PDF Downloads 432
2832 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery

Procedia PDF Downloads 405
2831 Perception of Hygiene Knowledge among Staff Working in Top Five Famous Restaurants of Male’

Authors: Zulaikha Reesha Rashaad

Abstract:

One of the major factors which can contribute greatly to success of catering businesses is to employ food and beverage staff having sound hygiene knowledge. Individuals having sound knowledge of hygiene has a higher chance of following safe food practices in food production. One of the leading causes of food poisoning and food borne illnesses has been identified as lack of hygiene knowledge among food and beverage staff working in catering establishments and restaurants. This research aims to analyze the hygiene knowledge among food and beverage staff working in top five restaurants of Male’, in relation to their age, educational background, occupation and training. The research uses quantitative and descriptive methods in data collection and in data analysis. Data was obtained through random sampling technique with self-administered survey questionnaires which was completed by 60 respondents working in 5 different restaurants operating at top level in Male’. The respondents of the research were service staff and chefs working in these restaurants. The responses to the questionnaires have been analyzed by using SPSS. The results of the research indicated that age, education level, occupation and training correlated with hygiene knowledge perception scores.

Keywords: food and beverage staff, food poisoning, food production, hygiene knowledge

Procedia PDF Downloads 289
2830 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule

Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu

Abstract:

The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.

Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load

Procedia PDF Downloads 401
2829 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 151
2828 Comparison of the Hydration Products of Commercial and Experimental Calcium Silicate Cement: The Preliminary Observational Study

Authors: Seok Woo Chang

Abstract:

Aim: The objective of this study was to compare and evaluate the hydration products of commercial and experimental calcium silicate cement. Materials and Methods: The commercial calcium silicate cement (ProRoot MTA, Dentsply) and experimental calcium silicate cement (n=10) were mixed with distilled water (water/powder ratio = 20 w/w) and stirred at room temperature for 10 hours. These mixtures were dispersed on wafer and dried for 12 hours at room temperature. Thereafter, the dried specimens were examined with Scanning Electron Microscope (SEM). Electron Dispersive Spectrometry (EDS) was also carried out. Results: The commercial calcium silicate cement (ProRoot MTA) and experimental calcium silicate cement both showed precipitation of rod-like and globule-like crystals. Based on EDS analysis, these precipitates were supposed to be calcium hydroxide or calcium silicate hydrates. The degree of formation of these precipitates was higher in commercial MTA. Conclusions: Based on the results, both commercial and experimental calcium silicate cement had ability to produce calcium hydroxide or calcium silicate hydrate precipitates.

Keywords: calcium silicate cement, ProRoot MTA, precipitation, calcium hydroxide, calcium silicate hydrate

Procedia PDF Downloads 265
2827 The Design and Analysis of a Novel Type High Gain Microstrip Patch Antenna System for the Satellite Communication

Authors: Shahid M. Ali, Zakiullah

Abstract:

An individual feed, smooth and smart, completely new shaped, dual band microstrip patch antenna has been proposed in this manuscript. Right here three triangular shape slots are usually presented in the 3 edges on the patch and along with a small feed line has utilized another edge on the patch to find out the dual band. The antenna carries a condensed framework wherever patch is around about 8.5mm by means of 7.96mm by means of 1.905mm leading to excellent bandwidths covering 13. 15 GHz to 13. 72 GHz in addition to 16.04 GHz to 16.58GHz. The return loss(RL) decrease in -19. 00dB and will be attained in the first resonant frequency at 13. 61 GHz and -28.69dB is at second resonance frequency at 16.33GHz. The stable average peak gain that may be observed along the operating band in lower and higher frequency is actually three. 53dB in addition to 5.562dB correspondingly. The radiation designs usually are omni directional along with moderate gain within equally most of these functioning bands. Accomplishment is proven within double frequencies at 13.62GHz since downlink in addition to 16.33GHz since uplink. This kind of low and simple configuration of the proposed antenna shows simplest fabrication and make it ensure that it is adaptable for your application within instant in satellite and as well as for the wireless communication system.

Keywords: dual band, microstrip patch antenna, HFSS, Ku band, satellite

Procedia PDF Downloads 361
2826 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with Elliptical Pin-Fin Heat Sink

Authors: J. Y Jang, C. Y. Tseng

Abstract:

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Therefore, the effects of convection and radiation heat transfer are considered. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. In addition, the effects of different operating conditions, including various inlet velocities (Vin = 1, 3, 5 m/s) and inlet temperatures (Tgas = 450, 550, 650K) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Keywords: thermoelectric generator, waste heat recovery, pin-fin heat sink, experimental and numerical analysis

Procedia PDF Downloads 382
2825 Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications

Authors: Najib Al-Fadhali, Huda Majid

Abstract:

In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications.

Keywords: ultra-wideband, Q-band, SIW, mm-wave, satellite communications

Procedia PDF Downloads 84
2824 Internal Product Management: The Key to Achieving Digital Maturity and Business Agility for Manufacturing IT Organizations

Authors: Frederick Johnson

Abstract:

Product management has a long and well-established history within the consumer goods industry, despite being one of the most obscure aspects of brand management. Many global manufacturing organizations are now opting for external cloud-based Manufacturing Execution Systems (MES) to replace costly and outdated monolithic MES solutions. Other global manufacturing leaders are restructuring their organizations to support human-centered values, agile methodologies, and fluid operating principles. Still, industry-leading organizations struggle to apply the appropriate framework for managing evolving external MES solutions as internal "digital products." Product management complements these current trends in technology and philosophical thinking in the market. This paper discusses the central problems associated with adopting product management processes by analyzing its traditional theories and characteristics. Considering these ideas, the article then constructs a translated internal digital product management framework by combining new and existing approaches and principles. The report concludes by demonstrating the framework's capabilities and potential effectiveness in achieving digital maturity and business agility within a manufacturing environment.

Keywords: internal product management, digital transformation, manufacturing information technology, manufacturing execution systems

Procedia PDF Downloads 135
2823 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 170
2822 First-Generation College Students and Persistence: A Phenomenological Study of Students’ Experiences in Indonesian Higher Education

Authors: Taufik Mulyadin

Abstract:

The tuition reform for public colleges that the Indonesian government initiated and has implemented since 2013 resulted in the growing number of college students from low-income families, many of whose parents did not attend college. This study sought to examine the experiences of persistence for Indonesian first-generation college students in public universities utilizing social capital as a framework. It is a qualitative study with a phenomenological approach primarily to capture the essence of how Indonesian first-generation college students interpret, process, and experience their persistence during college years. Fifteen Indonesian young college graduates were involved as well as questionnaire and interview were employed for data collection in this study. It revealed certain themes from the experiences that first-generation college students attributed to their persistence: (a) family encouragement, (b) support from friends, (c) guidance from faculty and staff, (d) fund of knowledge they bring with them, (e) financial aid availability, and (f) self-motivation. By examining first-generation college students’ voices, Indonesian public universities can better support, engage, and retain this group of students who were historically struggled to persist in college and complete their degree.

Keywords: first-generation student, Indonesian higher education, persistence, public universities

Procedia PDF Downloads 263
2821 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data

Authors: Murat Yazici

Abstract:

Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.

Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data

Procedia PDF Downloads 54
2820 Artiodactyl Fossil Remains from Middle Miocene Locality of Lava, District Chakwal, Punjab, Pakistan

Authors: Khizar Samiullah, Khurram Faroz, Riffat Yasin, Mehwish Iftekhar, Saleem Akhtar

Abstract:

The fossil site Lava is highly fossiliferous locality in the Chinji Formation, Lower Siwalik Hills of Pakistan. The studied mammalian fossil fauna from this locality consists of Suids, Giraffids and Bovids. The presence of these groups indicates that this Miocene locality has age of approximately 14-11 Ma. Sedimentologically this site is characterized by sandstone and reddish shale which also represents Chinji Formation of the Siwaliks, it consists of shales, siltstones, sandstones and there sediments show large variations in their degree of cementation. Few scientists worked at this locality, as it was first time discovered in 2011. The outcrops of lava locality were selected to explore in detail and comparison with European mammalian assemblages. The main focus was on artiodactyl’s mammalian fauna and four different species have been recovered during field work, in which Giraffokeryx punjabiensis is dominant. Different aspect like biogeographic distribution, evolution and taxonomy of discovered fossils fauna has been discussed in detail in this research work.

Keywords: fossil remains, lava, Chinji Formation, Pakistan

Procedia PDF Downloads 287
2819 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim

Abstract:

In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.

Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite

Procedia PDF Downloads 318
2818 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation

Authors: Amir Jalalian-Khakshour, T. N. Croft

Abstract:

Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.

Keywords: power generation, renewable energy, rotordynamics, wind energy

Procedia PDF Downloads 304
2817 High-Speed LIF-OH Imaging of H2-Air Turbulent Premixed Flames

Authors: Ahmed A. Al-Harbi

Abstract:

This paper presents a comparative study of effects of the repeated solid obstacles on the propagation of H2-Air premixed flames. Pressure, speed of the flame front as well as structure of reaction zones are studied for hydrogen. Two equivalence ratios are examined for different configurations of three baffle plates and two obstacles with a square cross-section having blockage ratios of either 0.24 or 0.5. Hydrogen fuel mixtures with two equivalence ratios of 0.7 and 0.8 are studied and this is limited by the excessive overpressures. The results show that the peak pressure and its rate of change can be increased by increasing the blockage ratio or by decreasing the space between successive baffles. As illustrated by the high speed images of LIF-OH, the degree of wrinkling and contortion in the flame front increase as the blockages increase. The images also show how the flame front relaminarises with increasing distances between obstacles, which accounts for the pressure decrease with increasing separation. It is also found that more than one obstacle is needed to achieve a turbulent flame structure with intense corrugations.

Keywords: premixed propagating flames, flame-obstacle interaction, turbulent premixed flames, overpressure, transient flames

Procedia PDF Downloads 377
2816 Defense Mechanism Maturity and the Severity of Mood Disorder Symptoms

Authors: Maja Pandža, Sanjin Lovrić, Iva Čolak, Josipa Mandarić, Miro Klarić

Abstract:

This study explores the role of symptoms related to mood disorders salience on different types of defense mechanisms (mature, neurotic, immature) predominance. Total of 177 both clinical and non-clinical participants in Mostar, Bosnia & Herzegovina, completed a battery of questionnaires associated with defense mechanisms and self-reported depression and anxiety symptoms. The sample was additionally divided into four groups, given the level of symptoms experienced: 1. minimal, 2. mild, 3. moderate, 4. severe depression/anxiety. Participants with minimal anxiety and depression symptoms use mature defense mechanisms more often than other three groups. Immature mechanisms are most commonly used by the group with severe depression/anxiety levels in comparison with other groups. These differences are discussed on the dynamic level of analysis to have a better understanding of the relationship between defense mechanisms' maturity and degree of mood disorders' symptom severity. Also, results given could serve as an implication for the psychotherapeutic treatment plans.

Keywords: anxiety/depression symptoms, clinical/non-clinical sample, defense mechanism maturity, dynamic approach

Procedia PDF Downloads 457
2815 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 350
2814 Classification Systems of Peat Soils Based on Their Geotechnical, Physical and Chemical Properties

Authors: Mohammad Saberian, Reza Porhoseini, Mohammad Ali Rahgozar

Abstract:

Peat is a partially carbonized vegetable tissue which is formed in wet conditions by decomposition of various plants, mosses and animal remains. This restricted definition, including only materials which are entirely of vegetative origin, conflicts with several established soil classification systems. Peat soils are usually defined as soils having more than 75 percent organic matter. Due to this composition, the structure of peat soil is highly different from the mineral soils such as silt, clay and sand. Peat has high compressibility, high moisture content, low shear strength and low bearing capacity, so it is considered to be in the category of problematic. Since this kind of soil is generally found in many countries and various zones, except for desert and polar zones, recognizing this soil is inevitably significant. The objective of this paper is to review the classification of peats based on various properties of peat soils such as organic contents, water content, color, odor, and decomposition, scholars offer various classification systems which Von Post classification system is one of the most well-known and efficient system.

Keywords: peat soil, degree of decomposition, organic content, water content, Von Post classification

Procedia PDF Downloads 595
2813 A Practical and Efficient Evaluation Function for 3D Model Based Vehicle Matching

Authors: Yuan Zheng

Abstract:

3D model-based vehicle matching provides a new way for vehicle recognition, localization and tracking. Its key is to construct an evaluation function, also called fitness function, to measure the degree of vehicle matching. The existing fitness functions often poorly perform when the clutter and occlusion exist in traffic scenarios. In this paper, we present a practical and efficient fitness function. Unlike the existing evaluation functions, the proposed fitness function is to study the vehicle matching problem from both local and global perspectives, which exploits the pixel gradient information as well as the silhouette information. In view of the discrepancy between 3D vehicle model and real vehicle, a weighting strategy is introduced to differently treat the fitting of the model’s wireframes. Additionally, a normalization operation for the model’s projection is performed to improve the accuracy of the matching. Experimental results on real traffic videos reveal that the proposed fitness function is efficient and robust to the cluttered background and partial occlusion.

Keywords: 3D-2D matching, fitness function, 3D vehicle model, local image gradient, silhouette information

Procedia PDF Downloads 399
2812 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.

Keywords: adaptive estimation, fault detection, GNSS, residual

Procedia PDF Downloads 576
2811 Integrating Lessons in Sustainable Development and Sustainability in Undergraduate Education: The CLASIC Way

Authors: Intan Azura Mokhtar, Yaacob Ibrahim

Abstract:

In recent years, learning about sustainable development and sustainability has become an increasingly significant component in universities’ degree programmes and curricula. As the world comes together and races to fulfil the 17 United Nations’ sustainable development goals (SDGs) by the year 2030, our educational curricula and landscapes simultaneously evolve to integrate lessons and opportunities for sustainable development and sustainability to redefine our university education and set the trajectory for our young people to take the lead in co-creating solutions for a better world. In this paper, initiatives and projects that revolved around themes of sustainable development and sustainability in a young university in Singapore are discussed. These initiatives and projects were curated by a new centre in the university that focuses on community leadership, social innovation, and service learning and was led by the university’s academic staff. The university’s undergraduate students were also involved in these initiatives and projects and played an active role in reaching out to and engaging members of different segments of the community – to better understand their needs and concerns and to co-create with them relevant and sustainable solutions that generate positive social impact.

Keywords: singapore, sustainable development, sustainability, undergraduate education

Procedia PDF Downloads 97
2810 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 80
2809 Action Plans to Prevent Negative Attitudes Towards Gay and Lesbian Parents: A Systemic Analysis of Health-Care Interventions in Belgium

Authors: Therese Scali

Abstract:

Over the years, the European Union has continued to extend its action on lesbian, gay men, bisexual and transgender (LGBT) rights to a range of areas including access to justice, asylum, freedom of expression and assembly, parenting, and mutual recognition of civil status within the EU. The European Parliament has been a driving force behind such action adopting a range of resolutions calling for continued progress in this field. In particular, Belgium has been one of the first countries to legalize same-sex parenting and to create a general framework for action against negative attitudes towards gay and lesbian parents. The present paper aims at highlighting public healthcare workers’ attitudes towards different types of same-sex headed families in Belgium, and the content of their interventions in schools. Results revealed that attitudes can go from supportive to unsupportive, and participants do not show the same degree of support towards the different types of same-sex parenting. This contribution highlights work’s implication for public policy by understanding the resources and challenges that health-care professionals face in their work.

Keywords: attitudes, gay and lesbian parents, health-care workers, homophobia, prevention

Procedia PDF Downloads 150
2808 ESGP-PA’s First-Generation College Student: Challenges to Succeed

Authors: Bernadette F. De La Cruz, Susan Marie R. Dela Cruz, Georgia D. Demavibas

Abstract:

The Expanded Student Grant-in-Aid Program for Poverty Alleviation (ESGP-PA) is a government program that aims to contribute to the National Government’s thrusts in effectively addressing poverty alleviation by increasing the number of graduates in higher education among indigent households and to get these graduates employed in in-demand occupations in order to lift their families out of poverty. Higher education continues to see an influx of these students from poor families that have never previously sent anyone to college. There are many challenges that face college students at all levels, but these are special challenges for first-generation students. Challenges that face these students can include lack of interest in attending school, low aptitude, being not single anymore, factors such as unfamiliarity with college expectations, lack of preparations while in secondary school, and limited support from family members. This research looks at some of the challenges first-generation college students face and examines the impact of these challenges on student’s aspirations for the attainment of a college degree and ultimately a high-paying career.

Keywords: ESGP-PA, first-generation college students, low aptitude, poverty alleviation

Procedia PDF Downloads 326
2807 Non-Equilibrium Synthesis and Structural Characterization of Magnetic FeCoPt Nanocrystalline Alloys

Authors: O. Crisan, A. D. Crisan, I. Mercioniu, R. Nicula, F. Vasiliu

Abstract:

FePt-based systems are currently under scrutiny for their possible use as future materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that are capable to operate at higher temperatures than the classic Nd-Fe-B magnets. Within this work, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. Extended transmission electron microscopy analysis shows the high degree of L10 ordering. X-ray diffraction is used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. Co-existence of hard CoFePt and CoPt L10 phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains of around 5 to 20 nm in size. Magnetic measurements show increased remanence close to the parent L10 FePt phase and not so high coercivity due to the significant presence of the soft magnetic constituent phase. A Curie temperature of about 820K is reported for the FeCoPt alloy.

Keywords: melt-spinning, FeCoPt alloys, high-resolution electron microscopy (HREM), ordered L10 structure

Procedia PDF Downloads 318
2806 An Elasto-Viscoplastic Constitutive Model for Unsaturated Soils: Numerical Implementation and Validation

Authors: Maria Lazari, Lorenzo Sanavia

Abstract:

Mechanics of unsaturated soils has been an active field of research in the last decades. Efficient constitutive models that take into account the partial saturation of soil are necessary to solve a number of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls. A large number of constitutive models can now be found in the literature that considers fundamental issues associated with the unsaturated soil behaviour, like the volume change and shear strength behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse upon wetting depending on the stress level, and it is also possible that a soil might experience a reversal in the volumetric behaviour during wetting. Shear strength of soils also changes dramatically with changes in the degree of saturation, and a related engineering problem is slope failures caused by rainfall. There are several states of the art reviews over the last years for studying the topic, usually providing a thorough discussion of the stress state, the advantages, and disadvantages of specific constitutive models as well as the latest developments in the area of unsaturated soil modelling. However, only a few studies focused on the coupling between partial saturation states and time effects on the behaviour of geomaterials. Rate dependency is experimentally observed in the mechanical response of granular materials, and a viscoplastic constitutive model is capable of reproducing creep and relaxation processes. Therefore, in this work an elasto-viscoplastic constitutive model for unsaturated soils is proposed and validated on the basis of experimental data. The model constitutes an extension of an existing elastoplastic strain-hardening constitutive model capable of capturing the behaviour of variably saturated soils, based on energy conjugated stress variables in the framework of superposed continua. The purpose was to develop a model able to deal with possible mechanical instabilities within a consistent energy framework. The model shares the same conceptual structure of the elastoplastic laws proposed to deal with bonded geomaterials subject to weathering or diagenesis and is capable of modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. The novelty of the proposed formulation is enhanced with the incorporation of density dependent stiffness and hardening coefficients in order to allow the modeling of the pycnotropy behaviour of granular materials with a single set of material constants. The model has been implemented in the commercial FE platform PLAXIS, widely used in Europe for advanced geotechnical design. The algorithmic strategies adopted for the stress-point algorithm had to be revised to take into account the different approach adopted by PLAXIS developers in the solution of the discrete non-linear equilibrium equations. An extensive comparison between models with a series of experimental data reported by different authors is presented to validate the model and illustrate the capability of the newly developed model. After the validation, the effectiveness of the viscoplastic model is displayed by numerical simulations of a partially saturated slope failure of the laboratory scale and the effect of viscosity and degree of saturation on slope’s stability is discussed.

Keywords: PLAXIS software, slope, unsaturated soils, Viscoplasticity

Procedia PDF Downloads 225