Search results for: adaptive estimation
418 Applications of Hyperspectral Remote Sensing: A Commercial Perspective
Authors: Tuba Zahra, Aakash Parekh
Abstract:
Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR
Procedia PDF Downloads 79417 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 51416 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 178415 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production
Authors: Apurva Gupta, Surendra Singh
Abstract:
Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin
Procedia PDF Downloads 168414 A Review of Benefit-Risk Assessment over the Product Lifecycle
Authors: M. Miljkovic, A. Urakpo, M. Simic-Koumoutsaris
Abstract:
Benefit-risk assessment (BRA) is a valuable tool that takes place in multiple stages during a medicine's lifecycle, and this assessment can be conducted in a variety of ways. The aim was to summarize current BRA methods used during approval decisions and in post-approval settings and to see possible future directions. Relevant reviews, recommendations, and guidelines published in medical literature and through regulatory agencies over the past five years have been examined. BRA implies the review of two dimensions: the dimension of benefits (determined mainly by the therapeutic efficacy) and the dimension of risks (comprises the safety profile of a drug). Regulators, industry, and academia have developed various approaches, ranging from descriptive textual (qualitative) to decision-analytic (quantitative) models, to facilitate the BRA of medicines during the product lifecycle (from Phase I trials, to authorization procedure, post-marketing surveillance and health technology assessment for inclusion in public formularies). These approaches can be classified into the following categories: stepwise structured approaches (frameworks); measures for benefits and risks that are usually endpoint specific (metrics), simulation techniques and meta-analysis (estimation techniques), and utility survey techniques to elicit stakeholders’ preferences (utilities). All these approaches share the following two common goals: to assist this analysis and to improve the communication of decisions, but each is subject to its own specific strengths and limitations. Before using any method, its utility, complexity, the extent to which it is established, and the ease of results interpretation should be considered. Despite widespread and long-time use, BRA is subject to debate, suffers from a number of limitations, and currently is still under development. The use of formal, systematic structured approaches to BRA for regulatory decision-making and quantitative methods to support BRA during the product lifecycle is a standard practice in medicine that is subject to continuous improvement and modernization, not only in methodology but also in cooperation between organizations.Keywords: benefit-risk assessment, benefit-risk profile, product lifecycle, quantitative methods, structured approaches
Procedia PDF Downloads 154413 Integrating System-Level Infrastructure Resilience and Sustainability Based on Fractal: Perspectives and Review
Authors: Qiyao Han, Xianhai Meng
Abstract:
Urban infrastructures refer to the fundamental facilities and systems that serve cities. Due to the global climate change and human activities in recent years, many urban areas around the world are facing enormous challenges from natural and man-made disasters, like flood, earthquake and terrorist attack. For this reason, urban resilience to disasters has attracted increasing attention from researchers and practitioners. Given the complexity of infrastructure systems and the uncertainty of disasters, this paper suggests that studies of resilience could focus on urban functional sustainability (in social, economic and environmental dimensions) supported by infrastructure systems under disturbance. It is supposed that urban infrastructure systems with high resilience should be able to reconfigure themselves without significant declines in critical functions (services), such as primary productivity, hydrological cycles, social relations and economic prosperity. Despite that some methods have been developed to integrate the resilience and sustainability of individual infrastructure components, more work is needed to enable system-level integration. This research presents a conceptual analysis framework for integrating resilience and sustainability based on fractal theory. It is believed that the ability of an ecological system to maintain structure and function in face of disturbance and to reorganize following disturbance-driven change is largely dependent on its self-similar and hierarchical fractal structure, in which cross-scale resilience is produced by the replication of ecosystem processes dominating at different levels. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive, are comprised of interconnected components, and exhibit characteristic scaling properties. Therefore, analyzing resilience of ecological system provides a better understanding about the dynamics and interactions of infrastructure systems. This paper discusses fractal characteristics of ecosystem resilience, reviews literature related to system-level infrastructure resilience, identifies resilience criteria associated with sustainability dimensions, and develops a conceptual analysis framework. Exploration of the relevance of identified criteria to fractal characteristics reveals that there is a great potential to analyze infrastructure systems based on fractal. In the conceptual analysis framework, it is proposed that in order to be resilient, urban infrastructure system needs to be capable of “maintaining” and “reorganizing” multi-scale critical functions under disasters. Finally, the paper identifies areas where further research efforts are needed.Keywords: fractal, urban infrastructure, sustainability, system-level resilience
Procedia PDF Downloads 273412 Calibration and Validation of ArcSWAT Model for Estimation of Surface Runoff and Sediment Yield from Dhangaon Watershed
Authors: M. P. Tripathi, Priti Tiwari
Abstract:
Soil and Water Assessment Tool (SWAT) is a distributed parameter continuous time model and was tested on daily and fortnightly basis for a small agricultural watershed (Dhangaon) of Chhattisgarh state in India. The SWAT model recently interfaced with ArcGIS and called as ArcSWAT. The watershed and sub-watershed boundaries, drainage networks, slope and texture maps were generated in the environment of ArcGIS of ArcSWAT. Supervised classification method was used for land use/cover classification from satellite imageries of the years 2009 and 2012. Manning's roughness coefficient 'n' for overland flow and channel flow and Fraction of Field Capacity (FFC) were calibrated for monsoon season of the years 2009 and 2010. The model was validated on a daily basis for the years 2011 and 2012 by using the observed daily rainfall and temperature data. Calibration and validation results revealed that the model was predicting the daily surface runoff and sediment yield satisfactorily. Sensitivity analysis showed that the annual sediment yield was inversely proportional to the overland and channel 'n' values whereas; annual runoff and sediment yields were directly proportional to the FFC. The model was also tested (calibrated and validated) for the fortnightly runoff and sediment yield for the year 2009-10 and 2011-12, respectively. Simulated values of fortnightly runoff and sediment yield for the calibration and validation years compared well with their observed counterparts. The calibration and validation results revealed that the ArcSWAT model could be used for identification of critical sub-watershed and for developing management scenarios for the Dhangaon watershed. Further, the model should be tested for simulating the surface runoff and sediment yield using generated rainfall and temperature before applying it for developing the management scenario for the critical or priority sub-watersheds.Keywords: watershed, hydrologic and water quality, ArcSWAT model, remote sensing, GIS, runoff and sediment yield
Procedia PDF Downloads 379411 Modelling Volatility Spillovers and Cross Hedging among Major Agricultural Commodity Futures
Authors: Roengchai Tansuchat, Woraphon Yamaka, Paravee Maneejuk
Abstract:
From the past recent, the global financial crisis, economic instability, and large fluctuation in agricultural commodity price have led to increased concerns about the volatility transmission among them. The problem is further exacerbated by commodities volatility caused by other commodity price fluctuations, hence the decision on hedging strategy has become both costly and useless. Thus, this paper is conducted to analysis the volatility spillover effect among major agriculture including corn, soybeans, wheat and rice, to help the commodity suppliers hedge their portfolios, and manage the risk and co-volatility of them. We provide a switching regime approach to analyzing the issue of volatility spillovers in different economic conditions, namely upturn and downturn economic. In particular, we investigate relationships and volatility transmissions between these commodities in different economic conditions. We purposed a Copula-based multivariate Markov Switching GARCH model with two regimes that depend on an economic conditions and perform simulation study to check the accuracy of our proposed model. In this study, the correlation term in the cross-hedge ratio is obtained from six copula families – two elliptical copulas (Gaussian and Student-t) and four Archimedean copulas (Clayton, Gumbel, Frank, and Joe). We use one-step maximum likelihood estimation techniques to estimate our models and compare the performance of these copula using Akaike information criterion (AIC) and Bayesian information criteria (BIC). In the application study of agriculture commodities, the weekly data used are conducted from 4 January 2005 to 1 September 2016, covering 612 observations. The empirical results indicate that the volatility spillover effects among cereal futures are different, as response of different economic condition. In addition, the results of hedge effectiveness will also suggest the optimal cross hedge strategies in different economic condition especially upturn and downturn economic.Keywords: agricultural commodity futures, cereal, cross-hedge, spillover effect, switching regime approach
Procedia PDF Downloads 202410 Simulation of Antimicrobial Resistance Gene Fate in Narrow Grass Hedges
Authors: Marzieh Khedmati, Shannon L. Bartelt-Hunt
Abstract:
Vegetative Filter Strips (VFS) are used for controlling the volume of runoff and decreasing contaminant concentrations in runoff before entering water bodies. Many studies have investigated the role of VFS in sediment and nutrient removal, but little is known about their efficiency for the removal of emerging contaminants such as antimicrobial resistance genes (ARGs). Vegetative Filter Strip Modeling System (VFSMOD) was used to simulate the efficiency of VFS in this regard. Several studies demonstrated the ability of VFSMOD to predict reductions in runoff volume and sediment concentration moving through the filters. The objectives of this study were to calibrate the VFSMOD with experimental data and assess the efficiency of the model in simulating the filter behavior in removing ARGs (ermB) and tylosin. The experimental data were obtained from a prior study conducted at the University of Nebraska (UNL) Rogers Memorial Farm. Three treatment factors were tested in the experiments, including manure amendment, narrow grass hedges and rainfall events. Sediment Delivery Ratio (SDR) was defined as the filter efficiency and the related experimental and model values were compared to each other. The VFS Model generally agreed with the experimental results and as a result, the model was used for predicting filter efficiencies when the runoff data are not available. Narrow Grass Hedges (NGH) were shown to be effective in reducing tylosin and ARGs concentration. The simulation showed that the filter efficiency in removing ARGs is different for different soil types and filter lengths. There is an optimum length for the filter strip that produces minimum runoff volume. Based on the model results increasing the length of the filter by 1-meter leads to higher efficiency but widening beyond that decreases the efficiency. The VFSMOD, which was proved to work well in estimation of VFS trapping efficiency, showed confirming results for ARG removal.Keywords: antimicrobial resistance genes, emerging contaminants, narrow grass hedges, vegetative filter strips, vegetative filter strip modeling system
Procedia PDF Downloads 132409 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris
Abstract:
Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging
Procedia PDF Downloads 360408 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez
Abstract:
In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval
Procedia PDF Downloads 232407 Investigating Reading Comprehension Proficiency and Self-Efficacy among Algerian EFL Students within Collaborative Strategic Reading Approach and Attributional Feedback Intervention
Authors: Nezha Badi
Abstract:
It has been shown in the literature that Algerian university students suffer from low levels of reading comprehension proficiency, which hinder their overall proficiency in English. This low level is mainly related to the methodology of teaching reading which is employed by the teacher in the classroom (a teacher-centered environment), as well as students’ poor sense of self-efficacy to undertake reading comprehension activities. Arguably, what is needed is an approach necessary for enhancing students’ self-beliefs about their abilities to deal with different reading comprehension activities. This can be done by providing them with opportunities to take responsibility for their own learning (learners’ autonomy). As a result of learning autonomy, learners’ beliefs about their abilities to deal with certain language tasks may increase, and hence, their language learning ability. Therefore, this experimental research study attempts to assess the extent to which an integrated approach combining one particular reading approach known as ‘collaborative strategic reading’ (CSR), and teacher’s attributional feedback (on students’ reading performance and strategy use) can improve the reading comprehension skill and the sense of self-efficacy of EFL Algerian university students. It also seeks to examine students’ main reasons for their successful or unsuccessful achievements in reading comprehension activities, and whether students’ attributions for their reading comprehension outcomes can be modified after exposure to the instruction. To obtain the data, different tools including a reading comprehension test, questionnaires, an observation, an interview, and learning logs were used with 105 second year Algerian EFL university students. The sample of the study was divided into three groups; one control group (with no treatment), one experimental group (CSR group) who received a CSR instruction, and a second intervention group (CSR Plus group) who received teacher’s attribution feedback in addition to the CSR intervention. Students in the CSR Plus group received the same experiment as the CSR group using the same tools, except that they were asked to keep learning logs, for which teacher’s feedback on reading performance and strategy use was provided. The results of this study indicate that the CSR and the attributional feedback intervention was effective in improving students’ reading comprehension proficiency and sense of self-efficacy. However, there was not a significant change in students’ adaptive and maladaptive attributions for their success and failure d from the pre-test to the post-test phase. Analysis of the perception questionnaire, the interview, and the learning logs shows that students have positive perceptions about the CSR and the attributional feedback instruction. Based on the findings, this study, therefore, seeks to provide EFL teachers in general and Algerian EFL university teachers in particular with pedagogical implications on how to teach reading comprehension to their students to help them achieve well and feel more self-efficacious in reading comprehension activities, and in English language learning more generally.Keywords: attributions, attributional feedback, collaborative strategic reading, self-efficacy
Procedia PDF Downloads 119406 Bioavailability Enhancement of Ficus religiosa Extract by Solid Lipid Nanoparticles
Authors: Sanjay Singh, Karunanithi Priyanka, Ramoji Kosuru, Raju Prasad Sharma
Abstract:
Herbal drugs are well known for their mixed pharmacological activities with the benefit of no harmful side effects. The use of herbal drugs is limited because of their higher dose requirement, frequent drug administration, poor bioavailability of phytochemicals and delayed onset of action. Ficus religiosa, a potent anti-oxidant plant useful in the treatment of diabetes and cancer was selected for the study. Solid lipid nanoparticles (SLN) of Ficus religiosa extract was developed for the enhancement in oral bioavailability of stigmasterol and β-sitosterol-d-glucoside, principal components present in the extract. Hot homogenization followed by ultrasonication method was used to develop extract loaded SLN. Developed extract loaded SLN were characterized for particle size, PDI, zeta potential, entrapment efficiency, in vitro drug release and kinetics, fourier transform infra-red spectroscopy, differential scanning calorimetry, powder X-ray diffractrometry and stability studies. Entrapment efficiency of optimized extract loaded SLN was found to be 68.46 % (56.13 % of stigmasterol and 12.33 % of β-sitosteryl-d-glucoside, respectively). RP HPLC method development was done for simultaneous estimation of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract in rat plasma. Bioavailability studies were carried out for extract in suspension form and optimized extract loaded SLN. AUC of stigmasterol and β-sitosterol-d-glucoside were increased by 6.7-folds by 9.2-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Also, Cmax of stigmasterol and β-sitosterol-d-glucoside were increased by 4.3-folds by 3.9-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Mean residence times (MRT) for stigmasterol were found to be 12.3 ± 0.67 hours from extract and 7.4 ± 2.1 hours from SLN and for β-sitosterol-d-glucoside, 10.49 ± 2.9 hours from extract and 6.4 ± 0.3 hours from SLN. Hence, it was concluded that SLN enhanced the bioavailability and reduced the MRT of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract which in turn may lead to reduction in dose of Ficus religiosa extract, prolonged duration of action and also enhanced therapeutic efficacy.Keywords: Ficus religiosa, phytosterolins, bioavailability, solid lipid nanoparticles, stigmasterol and β-sitosteryl-d-glucoside
Procedia PDF Downloads 473405 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil
Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins
Abstract:
Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.Keywords: biomonitoring, exposure, PBPK modelling, toxic elements
Procedia PDF Downloads 319404 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods
Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie
Abstract:
The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence
Procedia PDF Downloads 248403 The Impact of Public Finance Management on Economic Growth and Development in South Africa
Authors: Zintle Sikhunyana
Abstract:
Management of public finance in many countries such as South Africa is affected by political decisions and by policies around fiscal decentralization amongst the government spheres. Economic success is said to be determined by efficient management of public finance and by the policies or strategies that are implemented to support efficient public finance management. Policymakers focus on pay attention to how economic policies have been implemented and how they are directed into ensuring stable development. This will allow policymakers to address economic challenges through the usage of fiscal policy parameters that are linked to the achieved rate of economic growth and development. Efficient public finance management reduces the likelihood of corruption and corruption is said to have negative effects on economic growth and development. Corruption in public finance refers to an act of using funds for personal benefits. To achieve macroeconomic objectives, governments make use of government expenditure and government expenditure is financed through tax revenue. The main aim of this paper is to investigate the potential impact of public finance management on economic growth and development in South Africa. The secondary data obtained from the South African Reserve Bank (SARB) and World Bank for 1980- 2020 has been utilized to achieve the research objectives. To test the impact of public finance management on economic growth and development, the study will use Seeming Unrelated Regression Equation (SURE) Modelling that allows researchers to model multiple equations with interdependent variables. The advantages of using SUR are that it efficiently allows estimation of relationships between variables by combining information on different equations and SUR test restrictions that involve parameters in different equations. The findings have shown that there is a positive relationship between efficient public finance management and economic growth/development. The findings also show that efficient public finance management has an indirect positive impact on economic growth and development. Corruption has a negative impact on economic growth and development. It results in an efficient allocation of government resources and thereby improves economic growth and development. The study recommends that governments who aim to stimulate economic growth and development should target and strengthen public finance management policies or strategies.Keywords: corruption, economic growth, economic development, public finance management, fiscal decentralization
Procedia PDF Downloads 201402 Determination of Medians of Biochemical Maternal Serum Markers in Healthy Women Giving Birth to Normal Babies
Authors: Noreen Noreen, Aamir Ijaz, Hamza Akhtar
Abstract:
Background: Screening plays a major role to detect chromosomal abnormalities, Down syndrome, neural tube defects and other inborn diseases of the newborn. Serum biomarkers in the second trimester are useful in determining risk of most common chromosomal anomalies; these test include Alpha-fetoprotein (AFP), Human chorionic gonadotropin (hCG), Unconjugated Oestriol (UEȝ)and inhibin-A. Quadruple biomarkers are worth test in diagnosing the congenital pathology during pregnancy, these procedures does not form a part of routine health care of pregnant women in Pakistan, so the median value is lacking for population in Pakistan. Objective: To determine median values of biochemical maternal serum markers in local population during second trimester maternal screening. Study settings: Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology (AFIP) Rawalpindi. Methods: Cross-Sectional study for estimation of reference values. Non-probability consecutive sampling, 155 healthy pregnant women, of 30-40 years of age, will be included. As non-parametric statistics will be used, the minimum sample size is 120. Result: Total 155 women were enrolled into this study. The age of all women enrolled ranged from 30 to39 yrs. Among them, 39 per cent of women were less than 34 years. Mean maternal age 33.46±2.35 SD and maternal body weight were 54.98±2.88. Median value of quadruple markers calculated from 15-18th week of gestation that will be used for calculation of MOM for screening of trisomy21 in this gestational age. Median value at 15 week of gestation were observed hCG 36650 mIU/ml, AFP 23.3 IU/ml, UEȝ 3.5 nmol/L, InhibinA 198 ng/L, at 16 week of gestation hCG 29050 mIU/ml, AFP 35.4 IU/ml, UEȝ 4.1 nmol/L, InhibinA 179 ng/L, at 17 week of gestation hCG 28450 mIU/ml, AFP 36.0 IU/ml, UEȝ 6.7 nmol/L, InhibinA 176 ng/L and at 18 week of gestation hCG 25200 mIU/ml, AFP 38.2 IU/ml, UEȝ 8.2 nmol/L, InhibinA 190 ng/L respectively.All the comparisons were significant (p-Value <0.005) with 95% confidence Interval (CI) and level of significance of study set by going through literature and set at 5%. Conclusion: The median values for these four biomarkers in Pakistani pregnant women can be used to calculate MoM.Keywords: screening, down syndrome, quadruple test, second trimester, serum biomarkers
Procedia PDF Downloads 180401 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems
Authors: Seada Hussen, Frie Ayalew
Abstract:
Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller
Procedia PDF Downloads 78400 Effect of Access to Finance on Innovation and Productivity of SMEs in Nigeria: Evidence from the World Bank Enterprise Survey
Authors: Abidemi C. Adegboye, Samuel Iweriebor
Abstract:
The primary link between financial institutions and economic performance is the provision of resources by these institutions to businesses in order to drive enterprise expansion, sustainability, and development. In this study, the role of access to finance in driving innovations and productivity in Nigerian SMEs is investigated using the World Bank Enterprise Survey (ES) dataset. Innovation is defined based on the ES analysis using five compositions including product, method, organisational, use of foreign-licensed technology, and spending on R&D. The study considers finance in terms of source in meeting investment needs and in terms of access. Moreover, finance access is categorized as external and internal to a firm with each having different implications. The research methodology adopted a survey analysis based on the 2014 World Bank Enterprise Survey of 19 states in Nigeria. The survey comprised over 10,000 manufacturing and services firms, both at the small scale and medium scale levels. The logit estimation technique is used to estimate the relationships in the study. The results from the empirical analysis show that in general, access to finance drives SME innovation in Nigeria. In particular, ease of accessing bank loans and credit is shown to be the strongest positive force in driving all types of innovation among SMEs in Nigeria. In the same vein, the type of finance source for investment matters in terms of how it affects innovation: it is shown that both internal and external sources improve investment in product, process, and organisational innovation, but only external financing has effect on R&D spending and use of foreign licensed technology. Overall spending on R&D is only driven by access to external finance by the SMEs. For productivity, the results show that while structure of financing investment improves productivity, increased access to finance may actually lead to productivity decline among SMEs in Nigeria. There is a need for the financial system to evolve structures to increase fund availability to SMEs in Nigeria, especially for the purpose of innovation investment.Keywords: access to finance, financing investment, innovation, productivity, SMEs
Procedia PDF Downloads 358399 Household Food Security and Poverty Reduction in Cameroon
Authors: Bougema Theodore Ntenkeh, Chi-bikom Barbara Kyien
Abstract:
The reduction of poverty and hunger sits at the heart of the United Nations 2030 Agenda for Sustainable Development, and are the first two of the Sustainable Development Goals. The World Food Day celebrated on the 16th of October every year, highlights the need for people to have physical and economic access at all times to enough nutritious and safe food to live a healthy and active life; while the world poverty day celebrated on the 17th of October is an opportunity to acknowledge the struggle of people living in poverty, a chance for them to make their concerns heard, and for the community to recognize and support poor people in their fight against poverty. The association between household food security and poverty reduction is not only sparse in Cameroon but mostly qualitative. The paper therefore investigates the effect of household food security on poverty reduction in Cameroon quantitatively using data from the Cameroon Household Consumption Survey collected by the Government Statistics Office. The methodology employed five indicators of household food security using the Multiple Correspondence Analysis and poverty is captured as a dummy variable. Using a control function technique, with pre and post estimation test for robustness, the study postulates that household food security has a positive and significant effect on poverty reduction in Cameroon. A unit increase in the food security score reduces the probability of the household being poor by 31.8%, and this effect is statistically significant at 1%. The result further illustrates that the age of the household head and household size increases household poverty while households residing in urban areas are significantly less poor. The paper therefore recommends that households should diversify their food intake to enhance an effective supply of labour in the job market as a strategy to reduce household poverty. Furthermore, family planning methods should be encouraged as a strategy to reduce birth rate for an equitable distribution of household resources including food while the government of Cameroon should also develop the rural areas given that trend in urbanization are associated with the concentration of productive economic activities, leading to increase household income, increased household food security and poverty reduction.Keywords: food security, poverty reduction, SDGs, Cameroon
Procedia PDF Downloads 77398 Structural Stress of Hegemon’s Power Loss: A Pestle Analysis for Pacification and Security Policy Plan
Authors: Sehrish Qayyum
Abstract:
Active military power contention is shifting to economic and cyberwar to retain hegemony. Attuned Pestle analysis confirms that structural stress of hegemon’s power loss drives a containment approach towards caging actions. Ongoing diplomatic, asymmetric, proxy and direct wars are increasing stress hegemon’s power retention due to tangled military and economic alliances. It creates the condition of catalepsy with defective reflexive control which affects the core warfare operations. When one’s own power is doubted it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of Hegemon’s power game since the early WWI to WWII, WWII-to Cold War and then to the current era in three chronological periods exposits that Thucydides’s trap became the reason for war broke out. Thirst for power is the demise of imagination and cooperation for better sense to prevail instead it drives ashes to dust. Pestle analysis is a wide array of evaluation from political and economic to legal dimensions of the state matters. It helps to develop the Pacification and Security Policy Plan (PSPP) to avoid hegemon’s structural stress of power loss in fact, in turn, creates an alliance with maximum amicable outputs. PSPP may serve to regulate and pause the hurricane of power clashes. PSPP along with a strategic work plan is based on Pestle analysis to deal with any conceivable war condition and approach for saving international peace. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a generic application of probability tests to find the best possible options and conditions to develop PSPP for any adversity possible so far. Innovation in expertise begets innovation in planning and action-plan to serve as a rheostat approach to deal with any plausible power clash.Keywords: alliance, hegemon, pestle analysis, pacification and security policy plan, security
Procedia PDF Downloads 106397 [Keynote Talk]: Discovering Liouville-Type Problems for p-Energy Minimizing Maps in Closed Half-Ellipsoids by Calculus Variation Method
Authors: Lina Wu, Jia Liu, Ye Li
Abstract:
The goal of this project is to investigate constant properties (called the Liouville-type Problem) for a p-stable map as a local or global minimum of a p-energy functional where the domain is a Euclidean space and the target space is a closed half-ellipsoid. The First and Second Variation Formulas for a p-energy functional has been applied in the Calculus Variation Method as computation techniques. Stokes’ Theorem, Cauchy-Schwarz Inequality, Hardy-Sobolev type Inequalities, and the Bochner Formula as estimation techniques have been used to estimate the lower bound and the upper bound of the derived p-Harmonic Stability Inequality. One challenging point in this project is to construct a family of variation maps such that the images of variation maps must be guaranteed in a closed half-ellipsoid. The other challenging point is to find a contradiction between the lower bound and the upper bound in an analysis of p-Harmonic Stability Inequality when a p-energy minimizing map is not constant. Therefore, the possibility of a non-constant p-energy minimizing map has been ruled out and the constant property for a p-energy minimizing map has been obtained. Our research finding is to explore the constant property for a p-stable map from a Euclidean space into a closed half-ellipsoid in a certain range of p. The certain range of p is determined by the dimension values of a Euclidean space (the domain) and an ellipsoid (the target space). The certain range of p is also bounded by the curvature values on an ellipsoid (that is, the ratio of the longest axis to the shortest axis). Regarding Liouville-type results for a p-stable map, our research finding on an ellipsoid is a generalization of mathematicians’ results on a sphere. Our result is also an extension of mathematicians’ Liouville-type results from a special ellipsoid with only one parameter to any ellipsoid with (n+1) parameters in the general setting.Keywords: Bochner formula, Calculus Stokes' Theorem, Cauchy-Schwarz Inequality, first and second variation formulas, Liouville-type problem, p-harmonic map
Procedia PDF Downloads 274396 Blood Flow Estimator of the Left Ventricular Assist Device Based in Look-Up-Table: In vitro Tests
Authors: Tarcisio F. Leao, Bruno Utiyama, Jeison Fonseca, Eduardo Bock, Aron Andrade
Abstract:
This work presents a blood flow estimator based in Look-Up-Table (LUT) for control of Left Ventricular Assist Device (LVAD). This device has been used as bridge to transplantation or as destination therapy to treat patients with heart failure (HF). Destination Therapy application requires a high performance LVAD; thus, a stable control is important to keep adequate interaction between heart and device. LVAD control provides an adequate cardiac output while sustaining an appropriate flow and pressure blood perfusion, also described as physiologic control. Because thrombus formation and system reliability reduction, sensors are not desirable to measure these variables (flow and pressure blood). To achieve this, control systems have been researched to estimate blood flow. LVAD used in the study is composed by blood centrifugal pump, control, and power supply. This technique used pump and actuator (motor) parameters of LVAD, such as speed and electric current. Estimator relates electromechanical torque (motor or actuator) and hydraulic power (blood pump) via LUT. An in vitro Mock Loop was used to evaluate deviations between blood flow estimated and actual. A solution with glycerin (50%) and water was used to simulate the blood viscosity with hematocrit 45%. Tests were carried out with variation hematocrit: 25%, 45% and 58% of hematocrit, or 40%, 50% and 60% of glycerin in water solution, respectively. Test with bovine blood was carried out (42% hematocrit). Mock Loop is composed: reservoir, tubes, pressure and flow sensors, and fluid (or blood), beyond LVAD. Estimator based in LUT is patented, number BR1020160068363, in Brazil. Mean deviation is 0.23 ± 0.07 L/min for mean flow estimated. Larger mean deviation was 0.5 L/min considering hematocrit variation. This estimator achieved deviation adequate for physiologic control implementation. Future works will evaluate flow estimation performance in control system of LVAD.Keywords: blood pump, flow estimator, left ventricular assist device, look-up-table
Procedia PDF Downloads 186395 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan
Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib
Abstract:
Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.Keywords: climate change, pulses productivity, agriculture, Pakistan
Procedia PDF Downloads 44394 Status of Sensory Profile Score among Children with Autism in Selected Centers of Dhaka City
Authors: Nupur A. D., Miah M. S., Moniruzzaman S. K.
Abstract:
Autism is a neurobiological disorder that affects physical, social, and language skills of a person. A child with autism feels difficulty for processing, integrating, and responding to sensory stimuli. Current estimates have shown that 45% to 96 % of children with Autism Spectrum Disorder demonstrate sensory difficulties. As autism is a worldwide burning issue, it has become a highly prioritized and important service provision in Bangladesh. The sensory deficit does not only hamper the normal development of a child, it also hampers the learning process and functional independency. The purpose of this study was to find out the prevalence of sensory dysfunction among children with autism and recognize common patterns of sensory dysfunction. A cross-sectional study design was chosen to carry out this research work. This study enrolled eighty children with autism and their parents by using the systematic sampling method. In this study, data were collected through the Short Sensory Profile (SSP) assessment tool, which consists of 38 items in the questionnaire, and qualified graduate Occupational Therapists were directly involved in interviewing parents as well as observing child responses to sensory related activities of the children with autism from four selected autism centers in Dhaka, Bangladesh. All item analyses were conducted to identify items yielding or resulting in the highest reported sensory processing dysfunction among those children through using SSP and Statistical Package for Social Sciences (SPSS) version 21.0 for data analysis. This study revealed that almost 78.25% of children with autism had significant sensory processing dysfunction based on their sensory response to relevant activities. Under-responsive sensory seeking and auditory filtering were the least common problems among them. On the other hand, most of them (95%) represented that they had definite to probable differences in sensory processing, including under-response or sensory seeking, auditory filtering, and tactile sensitivity. Besides, the result also shows that the definite difference in sensory processing among 64 children was within 100%; it means those children with autism suffered from sensory difficulties, and thus it drew a great impact on the children’s Daily Living Activities (ADLs) as well as social interaction with others. Almost 95% of children with autism require intervention to overcome or normalize the problem. The result gives insight regarding types of sensory processing dysfunction to consider during diagnosis and ascertaining the treatment. So, early sensory problem identification is very important and thus will help to provide appropriate sensory input to minimize the maladaptive behavior and enhance to reach the normal range of adaptive behavior.Keywords: autism, sensory processing difficulties, sensory profile, occupational therapy
Procedia PDF Downloads 65393 Gas Chromatography-Analysis, Antioxidant, Anti-Inflammatory, and Anticancer Activities of Some Extracts and Fractions of Linum usitatissimum
Authors: Eman Abdullah Morsi, Hend Okasha, Heba Abdel Hady, Mortada El-Sayed, Mohamed Abbas Shemis
Abstract:
Context: Linum usitatissimum (Linn), known as Flaxseed, is one of the most important medicinal plants traditionally used for various health as nutritional purposes. Objective: Estimation of total phenolic and flavonoid contents as well as evaluate the antioxidant using α, α-diphenyl-β-picrylhydrazyl (DPPH), 2-2'azinobis (3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and total antioxidant capacity (TAC) assay and investigation of anti-inflammatory by Bovine serum albumin (BSA) and anticancer activities of hepatocellular carcinoma cell line (HepG2) and breast cancer cell line (MCF7) have been applied on hexane, ethyl acetate, n-butanol and methanol extracts and also, fractions of methonal extract (hexane, ethyl acetate and n-butanol). Materials and Methods: Phenolic and flavonoid contents were detected using spectrophotometric and colorimetric assays. Antioxidant and anti-inflammatory activities were estimated in-vitro. Anticancer activity of extracts and fractions of methanolic extract were tested on (HepG2) and (MCF7). Results: Methanolic extract and its ethyl acetate fraction contain higher contents of total phenols and flavonoids. In addition, methanolic extract had higher antioxidant activity. Butanolic and ethyl acetate fractions yielded higher percent of inhibition of protein denaturation. Meanwhile, ethyl acetate fraction and methanolic extract had anticancer activity against HepG2 and MCF7 (IC50=60 ± 0.24 and 29.4 ± 0.12µg.mL⁻¹) and (IC50=94.7 ± 0.21 and 227 ± 0.48µg.mL⁻¹), respectively. In Gas chromatography-mass spectrometry (GC-MS) analysis, methanolic extract has 32 compounds, whereas; ethyl acetate and butanol fractions contain 40 and 36 compounds, respectively. Conclusion: Flaxseed contains totally different biologically active compounds that have been found to possess good variable activities, which can protect human body against several diseases.Keywords: phenolic content, flavonoid content, HepG2, MCF7, hemolysis-assay, flaxseed
Procedia PDF Downloads 126392 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference
Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo
Abstract:
Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference
Procedia PDF Downloads 250391 Flood Simulation and Forecasting for Sustainable Planning of Response in Municipalities
Authors: Mariana Damova, Stanko Stankov, Emil Stoyanov, Hristo Hristov, Hermand Pessek, Plamen Chernev
Abstract:
We will present one of the first use cases on the DestinE platform, a joint initiative of the European Commission, European Space Agency and EUMETSAT, providing access to global earth observation, meteorological and statistical data, and emphasize the good practice of intergovernmental agencies acting in concert. Further, we will discuss the importance of space-bound disruptive solutions for improving the balance between the ever-increasing water-related disasters coming from climate change and minimizing their economic and societal impact. The use case focuses on forecasting floods and estimating the impact of flood events on the urban environment and the ecosystems in the affected areas with the purpose of helping municipal decision-makers to analyze and plan resource needs and to forge human-environment relationships by providing farmers with insightful information for improving their agricultural productivity. For the forecast, we will adopt an EO4AI method of our platform ISME-HYDRO, in which we employ a pipeline of neural networks applied to in-situ measurements and satellite data of meteorological factors influencing the hydrological and hydrodynamic status of rivers and dams, such as precipitations, soil moisture, vegetation index, snow cover to model flood events and their span. ISME-HYDRO platform is an e-infrastructure for water resources management based on linked data, extended with further intelligence that generates forecasts with the method described above, throws alerts, formulates queries, provides superior interactivity and drives communication with the users. It provides synchronized visualization of table views, graphviews and interactive maps. It will be federated with the DestinE platform.Keywords: flood simulation, AI, Earth observation, e-Infrastructure, flood forecasting, flood areas localization, response planning, resource estimation
Procedia PDF Downloads 21390 The Impact of Human Intervention on Net Primary Productivity for the South-Central Zone of Chile
Authors: Yannay Casas-Ledon, Cinthya A. Andrade, Camila E. Salazar, Mauricio Aguayo
Abstract:
The sustainable management of available natural resources is a crucial question for policy-makers, economists, and the research community. Among several, land constitutes one of the most critical resources, which is being intensively appropriated by human activities producing ecological stresses and reducing ecosystem services. In this context, net primary production (NPP) has been considered as a feasible proxy indicator for estimating the impacts of human interventions on land-uses intensity. Accordingly, the human appropriation of NPP (HANPP) was calculated for the south-central regions of Chile between 2007 and 2014. The HANPP was defined as the difference between the potential NPP of the naturally produced vegetation (NPP0, i.e., the vegetation that would exist without any human interferences) and the NPP remaining in the field after harvest (NPPeco), expressed in gC/m² yr. Other NPP flows taken into account in HANPP estimation were the harvested (NPPh) and the losses of NPP through land conversion (NPPluc). The ArcGIS 10.4 software was used for assessing the spatial and temporal HANPP changes. The differentiation of HANPP as % of NPP0 was estimated by each landcover type taken in 2007 and 2014 as the reference years. The spatial results depicted a negative impact on land use efficiency during 2007 and 2014, showing negative HANPP changes for the whole region. The harvest and biomass losses through land conversion components are the leading causes of loss of land-use efficiency. Furthermore, the study depicted higher HANPP in 2014 than in 2007, representing 50% of NPP0 for all landcover classes concerning 2007. This performance was mainly related to the higher volume of harvested biomass for agriculture. In consequence, the cropland depicted the high HANPP followed by plantation. This performance highlights the strong positive correlation between the economic activities developed into the region. This finding constitutes the base for a better understanding of the main driving force influencing biomass productivity and a powerful metric for supporting the sustainable management of land use.Keywords: human appropriation, land-use changes, land-use impact, net primary productivity
Procedia PDF Downloads 136389 Ambivilance, Denial, and Adaptive Responses to Vulnerable Suspects in Police Custody: The New Limits of the Sovereign State
Authors: Faye Cosgrove, Donna Peacock
Abstract:
This paper examines current state strategies for dealing with vulnerable people in police custody and identifies the underpinning discourses and practices which inform these strategies. It has previously been argued that the state has utilised contradictory and conflicting responses to the control of crime, by employing opposing strategies of denial and adaptation in order to simultaneously both display sovereignty and disclaim responsibility. This paper argues that these contradictory strategies are still being employed in contemporary criminal justice, although the focus and the purpose have now shifted. The focus is upon the ‘vulnerable’ suspect, whose social identity is as incongruous, complex and contradictory as his social environment, and the purpose is to redirect attention away from negative state practices, whilst simultaneously displaying a compassionate and benevolent countenance in order to appeal to the voting public. The findings presented here result from intensive qualitative research with police officers, with health care professionals, and with civilian volunteers who work within police custodial environments. The data has been gathered over a three-year period and includes observational and interview data which has been thematically analysed to expose the underpinning mechanisms from which the properties of the system emerge. What is revealed is evidence of contemporary state practices of denial relating to the harms of austerity and the structural relations of vulnerability, whilst simultaneously adapting through processes of ‘othering’ of the vulnerable, ‘responsibilisation’ of citizens, defining deviance down through diversionary practices, and managing success through redefining the aims of the system. The ‘vulnerable’ suspect is subject to individual pathologising, and yet the nature of risk is aggregated. ‘Vulnerable’ suspects are supported in police custody by private citizens, by multi-agency partnerships, and by for-profit organisations, while the state seeks to collate and control services, and thereby to retain a veneer of control. Late modern ambivalence to crime control and the associated contradictory practices of abjuration and adjustment have extended to state responses to vulnerable suspects. The support available in the custody environment operates to control and minimise operational and procedural risk, rather than for the welfare of the detained person, and in fact, the support available is discovered to be detrimental to the very people that it claims to benefit. The ‘vulnerable’ suspect is now subject to the bifurcated logics employed at the new limits of the sovereign state.Keywords: custody, policing, sovereign state, vulnerability
Procedia PDF Downloads 168